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DETERMINATION OF CLOSED-FORM EXPRESSIONS
FOR RAYLEIGH SCATTERING OF POLARIZED LIGHT
FROM ADSORBED PARTICLES ON OR BELOW A
SUBSTRATE
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Abstract—An integral equation formulation describing the scattered
field from a distribution of optically small Rayleigh objects of arbitrary
shape adsorbed onto a planar dielectric substrate is presented. When
certain approximations are introduced concerning the scatterers’
permittivity contrast and small size compared to the wavelength,
simple closed-form expressions are obtained for the ellipticity ratio and
reflectivity which can be readily related to the surface coverage and
average height of the surface layer. The formulation is an alternative
to thin-island film theory often used to describe electromagnetic
scattering from such configurations. Results derived from the integral
equation model are compared with previously published measurements
of ellipticity ratio and reflectivity and are found to be in good
agreement with observation.

1. INTRODUCTION

An understanding of the optical properties of adsorbed particles on
a supporting substrate is an important phenomenon to analytical
techniques such as ellipsometry and reflectometry which have found
widespread use in biological, chemical and industrial applications. For
adsorbed layers consisting of biological agents such as proteins, the
size of the particles is of the order of tens of nanometres; an order of
magnitude smaller than the wavelength of incident light used in optical
measurements (typically 633 nm in free-space, 475 nm in water). The
small optical thickness of such adsorbed particles, so-called Rayleigh
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objects, discounts the possibility of direct microscopic observation.
Only the small perturbations from pure Fresnel reflection on quantities
such as the ellipticity ratio and reflectivity near the Brewster angle
enable measurements of the adsorbed layer’s properties to be made.

Optical scattering from a distribution of Rayleigh objects on
a planar substrate has been analysed by a number of previous
researchers. Of particular importance is the thin-island film theory
proposed by Bedeaux and Vlieger [1, 2], which derives expressions
for excess surface polarizabilities perpendicular and parallel to the
surface. These expressions are based on the scattering properties of
spherical particles to varying orders of interaction with the substrate,
and account for the perturbing effect of the adsorbed layer. An
exact formulation for a single spherical scatterer on a dielectric
substrate was presented by Bobbert and Vlieger [3] based on a
Mie series expansion and plane-wave spectral formulation. The
same authors, in collaboration with Greef, extended this analysis to
sparse distributions of spherical particles [4]. A similar single-sphere
analysis was performed by Videen for the case of a sphere behind
a substrate [5]. Comparisons between theoretical predictions and
measured data for Rayleigh objects placed on or below a substrate are
relatively uncommon in the literature. The work of van Duijvenbode
and Koper [6] is one of the few publications containing such a
comparison for ellipticity ratio and reflectivity measurements carried
out in the vicinity of the Brewster Angle. The measured data reported
in [6] for small latex spheres of known radius and refractive index
is used in this paper for comparison with theoretical predictions.
The review article of Moreno et al. [7] describes theoretical and
experimental results for the case of optical scattering from metallic
particles on a substrate. However, the research described in [7] relates
to the case for which the particle size is comparable to the wavelength
of light used and, as such, does not constitute Rayleigh scattering.

An alternative formulation is presented here for the scattering
from adsorbed particles on a substrate. This utilises the superposition
of volume and surface integrals based on the rigorous scattering theory
due to Stratton and Chu [8]. It will be shown that when this
formulation is applied to objects small compared to the wavelength
of incident light (the defining property of a Rayleigh object), the
dependence on particle shape vanishes. In addition, applying the
approximation that the permittivity contrast between scatterer and
host medium is small (the so-called Born Approximation), results
in integrals for the scattered field that can be easily evaluated to
give simple closed-form expressions involving the surface coverage and
effective height of the adsorbed layer.
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2. THEORY

2.1. Object Above Substrate

Figure 1 shows a Rayleigh object of arbitrary shape in close contact
with a planar dielectric substrate illuminated by a plane wave
propagating in the same host medium in which the scatterer resides.
This case is typical of adsorbed particles in an aqueous medium above
an opaque substrate material such as silicon or carbon. A single
scatterer is shown here for clarity but the analysis can be applied
to multiple scatterers distributed over the substrate by employing
superposition. The case for which the scatterer lies beneath the
interface between host medium and substrate will also be analysed
in this paper. This case is typical of adsorbed particles in an aqueous
medium beneath a transparent substrate such as glass.

From the electromagnetic scattering theory developed by Stratton
& Chu [8], the scattered electric field at a point, P , denoted by
Escat (P ), lying within the host medium can be determined from the
sum of the following two terms, each of which can be expressed as an
integral:

Escat (P ) = EV
scat + ES

scat (1)

where in (1)

EV
scat =

−j

4πωε0ε1

∫

V

[
(J · ∇)∇φ + k2

1Jφ
]
dV (2)
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Figure 1. Geometry of a Rayleigh object above a substrate.
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ES
scat =

−j

4πωε0ε1

∫∫

S

[
(Js · ∇)∇φ+k2

1Jsφ−jωε0ε1Ms×∇φ
]
dS (3)

In the above equations, j =
√−1 and harmonic time-dependence is

assumed with the form ejωt. This factor is suppressed from the above
and all subsequent expressions.

Equation (2) represents the contribution to the scattered field from
the Rayleigh object. This has the form of an integral over the volume
V involving the induced polarization current density J.

Equation (3) represents the contribution to the scattered field from
the planar interface at z = 0 between the host medium and substrate.
This takes the form of a surface integral over S involving equivalent
electric and magnetic currents Js and Ms, respectively. Note that
the surface S consists of the entire substrate surface — both covered
and exposed parts. Also, it is assumed that S is sufficiently large
compared to the wavelength to be regarded as infinite in lateral extent
a condition that is readily satisfied in practice. With the exception of
the substrate-host medium interface, the remaining bounding surfaces
of the host medium are assumed to be far enough away from the
substrate as to be at infinity. The scattered electric field on these
bounding surfaces therefore vanishes in this case due to the radiation
conditions at infinity, leaving only the substrate surface S contributing
to the scattered field at the interior field point P .

Other terms in Equations (2) and (3), and in the figure, are defined
as follows:

φ = exp(−jk1R)
R = Scalar Green’s function for the host medium.

k1 = Propagation constant for the host medium (radians per
metre).
R = Position vector from source point to field point, P .
R = |R| = Distance from source point to field point, P .
R0 = Position vector from the coordinate origin to the field point,
P .
r = Position vector from coordinate origin to the source point.
ε1 = Complex relative permittivity of host medium.
ε2 = Complex relative permittivity of substrate.
ε = Complex relative permittivity of Rayleigh object.
ε0 = Permittivity of free space = 8.854× 10−12 Fm−1.
ω = Angular frequency (radians per second).

k̂i = Unit vector defining incident field propagation direction.
k̂r = Unit vector defining reflected field propagation direction.



Progress In Electromagnetics Research B, Vol. 41, 2012 5

Considering first the volume integral in (2), the polarization current
density J is defined in terms of the permittivity contrast between host
medium and Rayleigh object and the total interior electric field Etotal

as follows:
J = jωε0 (ε− ε1)Etotal (4)

For a dielectric object that is much smaller in size compared to the
wavelength in the host and object media, the Born approximation can
be used to define the electric field inside the object. That is, the interior
electric field Etotal can be approximated by the field that exists over the
volume V in the absence of the object. By way of a typical example, for
a free-space wavelength of 633 nm, the wavelength in a host medium of
water (refractive index, n1 = 1.333) is 475 nm. That within a protein-
based Rayleigh object (refractive index, n = 1.5) is 422 nm. Thus,
an object 40 nm in diameter is approximately 1/10th of a wavelength
across, small enough to be considered a Rayleigh object. In addition,
the permittivity contrast is ε − ε1 = n2 − n2

1 = 0.47 which is small
enough for application of the Born Approximation.

Therefore, in (4), the electric field Etotal is well-approximated by
the sum of the incident field plus that specularly reflected from the
planar substrate with the Rayleigh object removed. That is:

Etotal
∼= E0φinc (cos γŝ + sin γp̂i)+E0φref

(
r12
s cos γŝ+r12

p sin γp̂r

)
(5)

where in (5):

γ = Polarization angle
= 0 for perpendicular polarization
= π/2 for parallel polarization.

ŝ = Unit vector perpendicular to the plane of incidence.
p̂i = Unit vector parallel to the plane of incidence for the incident
field

= k̂i × ŝ
p̂r = Unit vector parallel to the plane of incidence for the reflected
field

= −k̂r × ŝ
r12
s = Fresnel reflection coefficient for perpendicular polarization

for an incident plane wave in medium ‘1’.
r12
p = Fresnel reflection coefficient for parallel polarization for an

incident plane wave in medium ‘1’.
E0 = Amplitude of the incident electric field.
φinc = Phase factor for the incident plane-wave.
φref = Phase factor for the reflected plane-wave.
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The plane-wave phase factors can be written in terms of the
Cartesian coordinates x,y,z and the spherical polar angles θi, φi as
follows:

φinc = φt exp (+jk1z cos θi)
φref = φt exp (−jk1z cos θi) (6)

where the transverse phase factor φt is defined as:

φt = exp (−jk1x sin θi cosφi) exp (−jk1y sin θi sinφi) (7)

The angle of incidence is defined by θi.
Returning to the volume integrand in (2), the vector differential

operator ∇ operates on the source coordinates that define a point
within the Rayleigh scatterer relative to the origin O. Performing the
necessary vector differentiations and using (4) for the polarization
current density gives the following form for the volume integral
contribution to the scattered field:

EV
scat =

−j

4πωε0ε1

∫

V

[
(J · ∇)∇φ + k2

1Jφ
]
dV

=
k2

0

4π
(ε− ε1)

∫

V

[
aEtotal+b

(
Etotal · R̂

)
R̂

]
φdV (8)

where in (8)
k0 = Propagation constant for free space.
R̂ = Unit vector parallel to the vector R.

a = 1− j

k1R
− 1

(k1R)2
b = −1 +

3j

k1R
+

3
(k1R)2

When k1R À 1, as is usually the case in practice, the above factors
can be approximated as a ≈ 1 and b ≈ −1. In addition, R̂ ≈ R̂0 the
unit vector parallel to R0. Therefore, under these far-field conditions
(8) becomes:

EV
scat =

k2
0

4π
(ε− ε1)

∫

V

[
Etotal −

(
Etotal · R̂0

)
R̂0

]
φdV (9)

We now consider the individual cases for perpendicular and parallel
polarized incidence. For perpendicular polarization (γ = 0)
Equation (9) becomes

EV
s = EV

scat · ŝ =
k2

0

4π
(ε− ε1)

∫

V

[
Etotal · ŝ−

(
Etotal · R̂0

)
R̂0 · ŝ

]
φdV
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In the above, the scalar product R̂0 · ŝ is always zero since R̂0 and ŝ
are orthogonal vectors. Therefore, the only non-zero term in the above
integrand is Etotal · ŝ = E0 (φinc + rsφref). This latter expression comes
from the result of Equation (5).

Using the expressions in (6) and (7) for the plane-wave phase
factors then gives the following result:

EV
s = EV

scat · ŝ =
k2

0

4π
(ε− ε1) E0

∫

V

(
ejβz + r12

s e−jβz
)

φtφdV (10)

where in (10) β = k1 cos θi, the z-component of the incident
propagation vector in the host medium.

Similarly, for parallel polarization (γ = π/2), the volume integral
contribution to the scattered field is given by:

EV
p = EV

scat · p̂r =
k2

0

4π
(ε−ε1)

∫

V

[
Etotal · p̂r−

(
Etotal · R̂0

)
R̂0 · p̂r

]
φ dV

In the above, the scalar product R̂0 · p̂r is always zero since R̂0 and
p̂r are orthogonal vectors. Therefore, the only non-zero term in the
above integrand is (using (5))

E · p̂r = E0

(
φincp̂r · p̂i + r12

p φref

)
= E0

(
φinc cos 2θi + r12

p φref

)

where the factor cos 2θi arises from the scalar product p̂r·p̂i. Therefore,
we obtain the following expression for parallel polarization:

EV
p = EV

scat · p̂r =
k2

0

4π
(ε−ε1) E0

∫

V

(
cos 2θie

jβz+r12
p e−jβz

)
φtφdV (11)

In the expressions given in (10) and (11), it can be seen that the
integrand is a sum of two terms. The first term in each case,
proportional to the phase factor ejβz, is that due to the relevant
component of the incident electric field lying within the volume of
the Rayleigh scatterer. The remaining term in each case, proportional
to the phase factor e−jβz, is that due to the Fresnel-reflected field from
the substrate that impinges upon the volume of the Rayleigh scatterer.
Due to the reversal of the sign of the complex exponential phase factor,
this latter term can be interpreted as a mirror image of the Rayleigh
scatterer sitting beneath the substrate with an internal electric field
strength determined by the Fresnel reflection coefficient. Within the
Born Approximation (that is, low permittivity contrast), this first-
order image term dominates the interaction between Rayleigh scatterer
and substrate. Higher-order multiple scattering effects between the
Rayleigh object and substrate can be ignored. Similarly, multiple
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scattering effects between particles lying on the substrate can also
be neglected due to the assumed low permittivity contrast. The
volume integrals of (10) and (11) can therefore be evaluated by simply
integrating over the entire volume of the Rayleigh object distribution.
Thus, (10) and (11) are now evaluated as follows.

From Figure 1, we have the following relationship between position
vectors, R = R0 − r. Therefore, the distance R between a source
point inside the Rayleigh object and the field point at P is given by
R =

√
R2

0 + r2 − 2R0 · r. Under the assumed far-field conditions we
have R0 À r, so that a binomial expansion of the above square root
gives the following far-field approximation for R:

R ∼= R0 − R̂0 · r (12)

Substituting for R using (12) in the defining expression for the scalar
Green’s function φ then gives:

φ =
e−ik1R

R
∼= e−ik1R0

R0
e+ik1R̂0·r (13)

The scalar product in (13) is given by the following explicit expression:

R̂0 · r = x sin θi cosφi + y sin θi sinφi + z cos θi (14)

In the integrands of (10) and (11) we have the product φφt which,
using the results of (13), (14) and (7), can now be expressed as:

φφt
∼= e−jk1R0

R0
e+jk1(x sin θi cos φi+y sin θi sin φi+z cos θi)

e−jk1(x sin θi cos φi+y sin θi sin φi)

=
e−jk1R0

R0
ejk1z cos θi (15)

Substituting (15) into (10) gives for perpendicular polarization:

EV
s =

k2
0

4π
(ε− ε1) E0

e−jk1R0

R0

∫

V

(
e2jk1z cos θi + r12

s

)
dV (16)

Writing the volume element dV = dSdz, and introducing the effective
height, d, and surface area, Σ, for the Rayleigh scatterers, the integral
in (16) is evaluated as follows:

∫

V

(
e2jk1z cos θi +r12

s

)
dV =

∫∫

Σ

dS

d∫

0

e2jk1z cos θidz+r12
s

∫∫

Σ

dS

d∫

0

dz

= Σd
(
ejk1d cos θisinc (k1d cos θi)+r12

s

)
(17)
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The product Σd is equivalent to the volume of the object, V .
Since k1d ¿ 1, the sinc function in (17) is well-approximated by
unity. Therefore, the following result for perpendicular polarization
is obtained using the result of (17) in (16):

EV
s =

k2
0

4π
(ε− ε1) E0

e−jk1R0

R0
Σd

{
ejk1d cos θi + r12

s

}
(18)

A similar analysis can be applied to (11) for parallel polarization giving
the following result

EV
p =

k2
0

4π
(ε− ε1) E0

e−jk1R0

R0
Σd

{
cos 2θie

jk1d cos θi + r12
p

}
(19)

It now remains to determine the surface integral contribution to the
scattered field as per Equation (3) which is repeated below:

ES
scat =

−j

4πωε0ε1

∫∫

S

[
(Js · ∇)∇φ + k2

1Jsφ− jωε0ε1Ms ×∇φ
]
dS

On performing the necessary vector differential operations as before,
the above integral becomes:

ES
scat =

−jk1

4π

∫∫

S

[
aZ1Js + bZ1

(
Js · R̂

)
R̂ + cMs × R̂

]
φdS (20)

where in (20) a and b are defined as before (see Equation (8)) and
c = 1− j

k1R . Also, in (20), we have

Z1 = Intrinsic impedance of host medium = Z0/n1

Z0 = Impedance of free-space = 376.73Ω
n1 = Refractive index of host medium.
For large k1R, a ≈ 1, b ≈ −1 and c ≈ 1 so that (20) becomes

ES
scat =

−jk1

4π

∫∫

S

QφdS (21)

where in (21)

Q = Z1Js − Z1

(
Js · R̂

)
R̂ + Ms × R̂ (22)

The equivalent electric and magnetic currents on the substrate surface,
Js and Ms, respectively, are defined in terms of the tangential field
components as follows:

Z1Js = Z1n̂×H ≡ ẑ×
[
k̂i ×Einc + k̂r ×Eref

]

Ms = E× n̂ ≡ Einc × ẑ + Eref × ẑ (23)
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In the above definitions, n̂ is a unit normal vector on the substrate
surface pointing into the host medium (= ẑ). Using (5), the incident
electric field is Einc = E0φinc (cos γŝ + sin γp̂i) and the reflected electric
field is Eref = E0φref

(
r12
s cos γŝ + r12

p sin γp̂r

)
. Substituting (23) into

(22) and setting R̂ ≈ R̂0 for far-field conditions eventually results
in the following expressions for (21) for perpendicular and parallel
polarization, respectively

ES
s = ES

scat .̂s =
jk1

2π
cos θiE0r

12
s

∫∫

S

φref φdS (24)

ES
p = ES

scat.p̂r =
jk1

2π
cos θiE0r

12
p

∫∫

S

φref φdS (25)

Equations (24) and (25) are consistent with the well-known Physical
Optics approximation.

The common integrand in (24) and (25) contains the product
φrefφ. Using the definition of φref given in (6) and the far-field
approximation of the scalar Green’s function φ given in (13) gives the
following result

φrefφ ∼= e−jk1R0

R0
e+jk1R̂0·re−jk1(x sin θi cos φi+y sin θi sin φi+z cos θi)

≡ e−jk1R0

R0
(26)

Therefore, using (26) in (24) and (25) gives

ES
s =

jk1

2π
cos θiE0r

12
s

e−jk1R0

R0
S (27)

ES
p =

jk1

2π
cos θiE0r

12
p

e−jk1R0

R0
S (28)

where in the above, S is the surface area of the substrate.
The total scattered field for perpendicular polarization is then

given by the sum of (18) and (27) which can be expressed in the
following form:

Es = ES
s + EV

s

=
jk1

2π

e−jk1R0

R0
ScosθiE0

[
r12
s −

jk2
0dα

2k1 cos θi
(ε−ε1)

{
ejk1d cos θi +r12

s

}]
(29)

In (29), the fraction of the surface area covered by the Rayleigh
scatterers is defined by the dimensionless parameter, α = Σ

S .
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For parallel polarization, the result for the total scattered field is
found from the sum of (19) and (28), namely

Ep = ES
p + EV

p =
jk1

2π

e−jk1R0

R0
Scos θiE0

[
r12
p −

jk2
0dα

2k1 cos θi
(ε−ε1)

{
cos 2θie

jk1d cos θi +r12
p

}]
(30)

Therefore, for the case of a distribution of Rayleigh objects lying above
the substrate, the complex ellipticity ratio ρ12 is defined as follows:

ρ12 =
Ep

Es
=

Total scattered field for parallel polarization
Total scattered field for perpendicular polarization

The superscript ‘12’ is used in the above to denote an incident wave
residing in the host medium (that surrounding the Rayleigh object =
medium ‘1’) impinging on the substrate (= medium ‘2’).

Substituting (29) and (30) into the above gives

ρ12 =
r12
p − jA12

{
cos 2θie

jδ12 + r12
p

}

r12
s − jA12 {ejδ12 + r12

s }
(31)

In (31), the parameters A12 and δ12 are defined as follows

A12 =
k2

0dα

2k1 cos θi
(ε− ε1) δ12 = k1d cos θi

For reflectivity, r12, the parameter of interest is that pertaining to
parallel polarization only which, using the result of (30) becomes

r12 =
∣∣∣r12

p − jA12
{

cos 2θie
jδ12 + r12

p

}∣∣∣
2

(32)

Equations (31) and (32) are the salient results for the ellipticity ratio
and reflectivity arising from the integral equation analysis described for
the case of a distribution of Rayleigh objects residing on a substrate.

The following section concerns the case where the Rayleigh objects
reside beneath the substrate. It is this latter case that is compared
with previously published measured results for the ellipticity ratio and
reflectivity.

2.2. Object Beneath Substrate

Figure 2 shows a similar configuration to that presented in
Subsection 2.1 except that the Rayleigh object now lies beneath the
substrate. In this case, the substrate material is assumed to be largely
transparent thereby permitting incident light to illuminate the object
via the substrate-host medium interface.
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Thus, the incident light originates from within the substrate
medium with permittivity ε2. Similarly, the scattered field at the point
P also lies within the semi-infinite substrate medium. The analysis for
the scattered field at P proceeds as before, with the evaluation of a
volume integral term involving the induced polarization current density
within the Rayleigh object, and a surface integral term involving
the equivalent electric and magnetic surface currents on the interface
surface S.

The surface integral contribution to the scattered field is identical
in mathematical form to the previous case with the object located
above the substrate except for the interchange of incident and host
media. This contribution gives rise to the Physical Optics results
given in Equations (24) and (25). Evaluation of the volume integral
contribution to the scattered field for the case of the Rayleigh object
lying beneath the substrate requires a slight modification to the
analysis described before which is as follows.

With the Rayleigh object beneath the substrate, application of
the Born Approximation in this instance means that the total electric
field inside the Rayleigh object is that due to the refracted plane-wave
in the host medium with the object assumed to be absent. This is

rkR ˆ 

Substrate, relative permittivity 2 , assumed semi-infinite 

Host medium, relative permittivity 1 

Rayleigh object; 

relative permittivity  , 

volume V 

i
k̂

Incident plane-wave 

i

yx ˆ,ˆ

ẑ

O

Field point, P 

r S

0R

i

tt

ttt
krr ˆ=

trrr
krr ˆ=

ε

ε

θ θ

θ θ

ε

=_

Figure 2. Geometry of a Rayleigh object beneath a substrate.
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found simply by multiplying the incident field from within the substrate
medium by the appropriate Fresnel transmission coefficient for the
planar interface. Therefore, analogous to Equation (5), we have for
the total electric field in the Rayleigh object volume:

Etotal
∼= E0φtrans

(
t21
s cos γŝ + t21

p sin γp̂t

)
(33)

In Equation (33)

ŝ = Unit vector perpendicular to the plane of incidence.
p̂t = Unit vector parallel to the plane of incidence for the refracted
wave = k̂t × ŝ.
k̂t = Unit propagation vector for refracted wave in host medium.
t21
s = Fresnel transmission coefficient for perpendicular polariza-

tion with incident field in medium ‘2, refracted field in medium
‘1’.
t21
p = Fresnel transmission coefficient for parallel polarization with

incident field in medium ‘2, refracted field in medium ‘1’.
φtrans = Phase factor for the plane-wave transmitted into the
Rayleigh object.

In order to resolve the scattered field at the field point P into parallel
and perpendicularly polarized components, we must first identify the
contribution from the volume integral that gives rise to a plane-
wave propagating in the specularly reflected direction denoted by
the unit vector k̂r. From the geometry shown in Figure 2, a plane
wave scattered in the direction given by the unit vector k̂tr will be
refracted at the substrate interface and emerge parallel to the vector
k̂r. Analogous to the above-substrate case, we also need to define a
unit vector p̂tr = −k̂tr × ŝ for the parallel-polarized field component
radiated into the host medium by the induced polarization current
inside the Rayleigh object. Note that the volume integral formulation
given previously determines the scattered field at a point lying within
the host medium. In order to determine the scattered field at the point
P in the substrate medium, it is therefore necessary to multiply the
scattered field so determined by the appropriate Fresnel transmission
coefficient for a wave refracted into the substrate medium. Therefore,
making similar far-field approximations for the phase factors as before,
we obtain the following volume integrals:

For perpendicular polarization

EV
s |21 = EV

scat · ŝ =
k2

0

4π
(ε− ε1) E0

e−jk2R0

R0
t12
s t21

s

∫

V

e2jk1z cos θt dV (34)
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For parallel polarization

EV
p |21 = EV

scat · p̂tr

=
k2

0

4π
(ε− ε1) E0

e−jk2R0

R0
t12
p t21

p

∫

V

cos 2θte
2jk1z cos θt dV (35)

where for parallel polarization, the term cos 2θt arises from the scalar
product p̂t · p̂tr and the terms t12

s and t12
p are the Fresnel transmission

coefficients for perpendicular and parallel polarization, respectively,
for plane waves refracted into medium ‘2’ from an incident wave in
medium ‘1’ (see Appendix).

The relevant surface integral terms for the Rayleigh object lying
beneath the substrate are

ES
s |21 =

jk2

2π
cos θiE0r

21
s

e−jk2R0

R0
S (36)

ES
p |21 =

jk2

2π
cos θiE0r

21
p

e−jk2R0

R0
S (37)

where k2 is the propagation constant for medium ‘2’.
Evaluating the volume integrals in (34) and (35) in the same way

as for the above-substrate case, and adding the surface integral terms
of (36) and (37) gives the following expressions for the ellipticity ratio
ρ21

ρ21 =
r21
p − jt12

p t21
p A21e−jδ21 cos 2θt

r21
s − jt12

s t21
s A21e−jδ21

(38)

In (38), the parameters A21 and δ21 are defined as follows

A21 =
k2

0dα

2k2 cos θt
(ε− ε1) δ21 = k1d cos θt

For the reflectivity, r21 (parallel polarization only) the result is

r21 =
∣∣∣r21

p − jt12
p t21

p A21e−jδ21 cos 2θt

∣∣∣
2

(39)

3. COMPARISON WITH MEASURED DATA

The expressions for the ellipticity ratio given in (31) and (38) are
of a simple, closed form that offers computational simplifications
for effective height and surface coverage of adsorbed particles on or
beneath a substrate. This is in contrast to previously published
formulae associated with thin-island film theory [1, 2] and with rigorous
spherical harmonic scattering models for spheres [3–5]. To validate
the accuracy of the formulation derived in this paper, a comparison



Progress In Electromagnetics Research B, Vol. 41, 2012 15

was made with previously published measured data for ellipticity
ratio and reflectivity. A suitable set of data for comparison is that
due to van Duijvenbode & Koper [6] for the case of latex spheres
of various known radii immersed in water above a glass substrate.
This case corresponds to that for which the Rayleigh objects are lying
beneath the substrate layer so that Equations (38) and (39) are the
relevant theoretical expressions to be used for the ellipticity ratio and
reflectivity, respectively.

From the experiments described in [6], layers of latex spheres
with known nominal radii of 10 nm, 30 nm and 50 nm were considered.
Plane-wave illumination with a free-space wavelength of 632.8 nm was
used with measurements of ellipticity ratio and reflectivity made in the
vicinity of the Brewster angle. The surface coverage of the adsorbed
latex spheres was not known a priori in the experiments reported in [6]
but was estimated from the ellipticity ratio and reflectivity data using
a number of different models (Abeles matrix and optical invariants).
The refractive index parameters of the (lossless) materials used in these
experiments are given below along with the relative permittivity (equal
to the square of refractive index):

Latex spheres: Refractive index, n = 1.591, ε = 2.531.
Glass substrate: Refractive index, n2 = 1.515, ε2 = 2.295.
Water host medium: Refractive index, n1 = 1.333, ε1 = 1.777.

The Brewster angle, θB, for the above material configuration is given
by θB = tan−1

(
n1
n2

)
= 41.34◦ .

The modulus and phase of the ellipticity ratio were evaluated using
Equation (38) for incidence angles a few degrees either side of the
Brewster angle using the effective height, d, and surface coverage, α,
as variable parameters. Similarly, reflectivity data was evaluated using
Equation (39).

The values of surface coverage and effective height parameters
were adjusted to obtain the best fit to the measured values reported
in [6]. It was found that by varying the values of d and α to obtain
the observed angular location and value of the minimum modulus, a
good fit could be obtained between theory and measurement over the
full range of incidence angles measured for both modulus and phase of
the ellipticity ratio.

Figures 3, 4 and 5 plot the measured and best-fit theoretical results
for the modulus and phase of the ellipticity ratio and reflectivity for
latex spheres of nominal radii 10 nm, 30 nm and 50 nm, respectively.
Figures denoted by suffix ‘a’ show the modulus of ellipticity ratio, suffix
‘b’ the phase of the ellipticity ratio, and suffix ‘c’ the reflectivity data.
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Figure 3. (a) Modulus of ellipticity ratio for latex spheres of nominal
radius 10 nm. The theoretical curve uses an effective radius of 10 nm
and a surface coverage of 15.0%. (b) Phase of ellipticity ratio for latex
spheres of nominal radius 10 nm. The theoretical curve uses an effective
radius of 10 nm and a surface coverage of 15.0%. (c) Reflectivity for
latex spheres of nominal radius 10 nm. The theoretical curve uses an
effective radius of 10 nm and a surface coverage of 14.0%.
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Figure 4. (a) Modulus of ellipticity ratio for latex spheres of nominal
radius 30 nm. The theoretical curve uses an effective radius of 32 nm
and a surface coverage of 12.0%. (b) Phase of ellipticity ratio for latex
spheres of nominal radius 30 nm. The theoretical curve uses an effective
radius of 32 nm and a surface coverage of 12.0%. (c) Reflectivity for
latex spheres of nominal radius 30 nm. The theoretical curve uses an
effective radius of 32 nm and a surface coverage of 12.0%.
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Figure 5. (a) Modulus of ellipticity ratio for latex spheres of nominal
radius 50 nm. The theoretical curve uses an effective radius of 59 nm
and a surface coverage of 10.0%. (b) Phase of ellipticity ratio for latex
spheres of nominal radius 50 nm. The theoretical curve uses an effective
radius of 59 nm and a surface coverage of 10.0%. (c) Reflectivity for
latex spheres of nominal radius 50 nm. The theoretical curve uses an
effective radius of 59 nm and a surface coverage of 10.0%.
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It should be noted that in making the comparison between the
theoretical results obtained using Equations (38) and (39) and the
measured values reported in [6], the sign and sense of the phase of the
theoretical ellipticity ratio had to be modified to be consistent with
that shown in the measured data. This is due to the conventions used
in the respective analyses and is discussed in Appendix A.

The computed values of d and α obtained from the optical
measurements and theories reported in [6] were compared with those
using the theory described in this paper. The results are summarised
in Table 1. In this table, the effective radii values shown are one half
of the effective height, d.

Table 1. Calculated effective and true radii, and theoretical
percentage surface coverage (in parentheses) as obtained from the
theory described in this paper, and from the Abeles matrix and optical
invariants methods described in [6].

True 

radius 

(nm) 

This 

paper 

Ellipso-

metry 

This 

paper 

Reflect

-ometry 

Abeles 

matrix 

[6] 

Ellipso-

metry 

Abeles 

matrix 

[6] 

Reflect-

ometry 

Optical 

invariants 

[6] 

Ellipso-

metry 

Optical 

invariants 

[6] 

Reflect-

ometry 

10 ± 2 
10 

(15%) 

10 

(14%) 

8  

(18%) 

9 

 (20%) 

10 

 (14%) 

12 

 (19%) 

30 ± 3 
32 

(12%) 

32 

(12%) 

37 

(13%) 

36 

(13%) 

37 

 (14%) 

35 

 (15%) 

50 ± 2 
59 

(10%) 

59 

(10%) 

58 

(13%) 

58 

(13%) 

53 

 (14%) 

50  

(16%) 

The results shown in Table 1 indicate that the effective radii and
surface coverage values obtained from the theory described in this
paper are very consistent between the ellipticity ratio and reflectometry
models used. The effective radii for the 10 nm and 30 nm latex
spheres are recovered very accurately from either of Equations (38)
or (39), with calculated values lying within the measured dimensional
tolerance. Overall, the theory described in this paper determines
effective radii for the 10 nm and 30 nm spheres more accurately than
the Abeles matrix and optical invariants methods. Values obtained
for the largest sphere (nominal radius 50 nm) are over-estimated and
lie outside the dimensional tolerance, with the exception of the optical
invariants result using reflectometry. One possible explanation is that
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the size of the latex spheres in this case may not be small enough with
respect to the wavelength in the host medium for the theory to be
accurate.

As for the surface coverage values obtained, there was no ‘ground
truth’ data available from the experiments reported in [6] to enable
direct validation with theoretical values. In general, surface coverage
values obtained from the theory described in this paper are typically
lower than those obtained from the Abeles matrix and optical
invariants methods. This result appears to be consistent with the
observations of Wormeester et al. [9]. In [9], it was reported that below
surface coverage values of 20%, the thin-island film theory tended to
over-estimate the surface coverage obtained from ellipsometry data
unless details of the lateral distribution of the particles was available.

4. CONCLUSIONS

Within the restrictions of the Rayleigh region and Born Approxima-
tion, simple expressions for the ellipticity ratio and reflectivity of a
layer of adsorbed particles on or beneath a dielectric substrate were
derived using fundamental surface and volume integral expressions for
the scattered electric field. With these approximations in place, the
resulting expressions for the ellipticity ratio and reflectivity are in-
dependent of the particle shape, and do not rely on an analysis of
dielectric spheres unlike the widely used thin-island film theory.

The theory described in this paper automatically models a first-
order representation of the image dipole contribution to the scattered
field but does not include higher-order particle-substrate interactions
or interactions between particles. Nevertheless, results obtained with
the theory described agree well with measured data for low-contrast
Rayleigh objects. With the aforementioned in mind, the expressions
derived in this paper should provide an accurate description of
polarized scattered light from adsorbed layers consisting typically of
biological materials on or beneath dielectric substrates.
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APPENDIX A. A NOTE ON FRESNEL REFLECTION
COEFFICIENTS AND SIGN CONVENTIONS USED FOR
THE COMPLEX ELLIPTICITY RATIO

Expressions for the Fresnel reflection and transmission coefficients used
in this paper and in Equations (1) and (2) of reference [6], which was
used as a source of measured data, are given below:

r12
s =

n2 cos θt − n1 cos θi

n2 cos θt + n1 cos θi
r12
p =

n2 cos θi − n1 cos θt

n2 cos θi + n1 cos θt
(A1)

t12
s =

2n1 cos θi

n2 cos θt + n1 cos θi
t12
p =

2n1 cos θi

n1 cos θt + n2 cos θi
(A2)

In (A1) and (A2) above, light is incident from medium ‘1’ with
refractive index n1 and angle of incidence θi. Light is refracted
into medium ‘2’ with refractive index n2 and refraction angle θt.
Plane-wave reflection coefficients are designated by r12

s and r12
p , and

transmission coefficients by t12
s and t12

p . The subscripts ‘s’ and ‘p’ refer
to perpendicular and parallel polarized light, respectively.

The mathematical behaviour of the equations for the reflection
coefficients in (A1) can be used to determine how the phase of the
ellipticity ratio should behave at the extremes of incidence angle and
as the transition through the Brewster angle occurs. The measured
results for the phase of ellipticity ratio, ∆, that appear in Figure 4 of
reference [6], show curves for latex spheres of various radii but also a
curve for the Fresnel case, that is, with just the dielectric interface and
no adsorbed particles present.

This measured result for the Fresnel case passes through a value of
negative 90◦ as the angle of incidence transits the Brewster angle. At
smaller incidence angles, the value tends to negative 180◦ (as normal
incidence is approached), and approaches a value of zero at larger
incidence angles (towards grazing incidence). However, these limiting
values, and that at the Brewster angle itself, are inconsistent with the
reflection coefficient equations in (A.1). To illustrate this, consider the
case of normal incidence for which θi = θt = 0.

One obtains r12
s = r12

p = n2−n1
n2+n1

. Therefore, the corresponding

ellipticity ratio for this limiting case is r12
p

r12
s

= 1. This is purely real
with the respective reflection coefficients in phase; that is, a phase
angle of zero, not negative 180◦as shown in Figure 4 of reference [6].
Similarly, as we approach grazing incidence, for which θi = 90◦, we have
cos θi = 0 and therefore r12

s = 1 and r12
p = −1. Thus, the respective

reflection coefficients are now in anti-phase giving a value of negative
180◦ for the ellipticity ratio at grazing incidence. This is in contrast
to the value of zero given in Figure 4 of reference [6].
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The above analysis highlights a discrepancy in the phase angle of
the ellipticity ratio between the measured results of [6] and the values
expected from the Fresnel reflection coefficient equations used in the
analysis of this paper and that of [6]. Therefore, when comparing the
predicted values of the ellipticity ratio phase derived in this paper
with the measured values, the sign and sense of the phase angle
of the predicted results was amended to be consistent with that of
the measured results of [6]. This allowed direct comparison to be
made between theory and experiment despite the difference in sign
convention suspected in the sign and sense of the measured ellipticity
ratio phase angle.
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particles on substrates. Theory and experiments,” Light Scattering
and Nanoscale Surface Roughness, edited by Maradudin, A. A.,
305–340, Springer, New York, 2007.

8. Stratton, J. A. and L. J. Chu, “Diffraction theory of
electromagnetic waves,” Physical Review, Vol. 56, 99–107, 1939.

9. Wormeester, H., E. S. Kooij, and B. Poelsema, “Unambiguous
optical characterisation of nanocolloidal gold films,” Physical
Review B, Vol. 68, 085406-1–6, 2003.


