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Abstract—A new accurate Volterra-based model is introduced
for behavioral modeling and digital predistortion (DPD) of power
amplifiers (PAs). This model extends the GMP model with specific
cross terms, and these augmented terms significantly increase the
model’s performance. The proposed model’s performance is assessed
using a LDMOS Doherty PA driven by two modulated signals
(a 4-carrier WCDMA signal and a single carrier 16QAM signal).
The experimental results in both behavioral modeling and DPD
applications demonstrate that the proposed model outperforms the
hybrid memory polynomial-envelope memory polynomial (HME)
model and generalized memory polynomial (GMP) model. Compared
with the HME model, the proposed model shows an average normalized
mean square error (NMSE) improvement of 2.2 dB in the behavioral
modeling, average adjacent channel power ratio (ACPR) improvement
of 2.8/2.5 dB in the DPD application, and 20% reduction in the number
of coefficients. In comparison with the GMP model, the proposed
model achieves higher model accuracy and better DPD performance,
but reduces approximately 40% of coefficients.

1. INTRODUCTION

Radio frequency (RF) power amplifiers (PAs) are one of the most
important components in wireless communication systems, but they
are also the major source of nonlinearity. Many linearizing techniques
are used in the power amplifiers [1–3]. Compared with the analog
linearizing methods, processing the base band signals in the digital area
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has many advantages such as high flexibility, applicability, and easy to
realize the adaptive processing. Therefore, it has great potential to
research and develop the digital predistortion (DPD) technique [1].

One of the main challenges in developing effective DPD technique
is to find a way to capture the nonlinear distortion and memory
effects of the PA using an accurate behavioral model. Volterra series
can accurately describe the nonlinear system, but it involves a great
number of coefficients [4–8]. Several behavioral models have been
proposed for PAs and transmitters, such as the Memory Polynomial
(MP) model, Envelope Memory Polynomial (EMP) model, HME
model, and GMP model [9–13]. The MP model contains the diagonal
terms of Volterra series, while the EMP model is composed of cross
items between the signal and lagging exponentiated envelope terms,
and the two models combine together to form the HME model. It has
been confirmed that the HME model outperforms the MP model and
EMP model. The GMP model combines the MP model with cross
terms between the signal and lagging and/or leading exponentiated
envelope terms. It can be seen that the cross terms introduced by
the EMP model are special cases of the GMP model’s lagging cross
terms. Though several behavioral models have been proposed and
applied to DPD, the study on modeling technique is still far from
being mature since accurately characterizing RF PAs becomes more
and more difficult as wireless communication systems migrate to higher
frequencies, higher speeds, and wider bandwidths.

In this paper, we present a new accurate Volterra-based behavioral
model for behavioral modeling and DPD of RF PAs. In fact, the
proposed model can be applied to nonlinearity compensation in a
variety of dynamic nonlinear systems used in industrial electronic
applications. Since this model has linear dependence on the
coefficients, the estimation of these coefficients can be achieved by any
least-squares (LS) type of algorithm [13]. In addition, the number
of coefficients can be controlled through a proper choice of model
dimensions. The model’s performance in behavioral modeling and
DPD applications is assessed using a LDMOS Doherty PA, and two
test signals (a 4-carrier WCDMA signal and a single carrier 16QAM
signal) are used for verifications. This paper also presents a thorough
comparison between the proposed model and the HME model, as well
as the GMP model. Normalized mean square error (NMSE) and
error power spectral density (EPSD) are considered to evaluate the
model accuracy while adjacent channel power ratio (ACPR) is used to
assess the DPD application [14–17]. The computational complexity is
characterized by the number of coefficients required for each model [17].
The comparison results fully illustrate that the new model outperforms
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the other two models with the least number of coefficients in both
behavioral modeling and DPD applications.

2. VOLTERRA-BASED BEHAVIORAL MODELS

The MP model takes the diagonal terms of Volterra series, and its
mathematical formulation is given by [9, 10]

yMP(n) =
K∑

k=1

Q∑

q=0

akqx(n− q) |x(n− q)|k−1 (1)

where x(n) and yMP(n) are the input and output waveforms of the MP
model, respectively. Q, K and akq are the memory depth, nonlinearity
order, and model coefficients, respectively.

When the complex gain of the PA is only a function of
the magnitude of the input signal, EMP can be used, and the
corresponding formulation is [11]

yEMP(n) =
K∑

k=1

Q∑

q=0

akqx(n) |x(n− q)|k−1 (2)

where x(n) and yEMP(n) are the EMP model input and output
waveforms, respectively. Q, K and akq are the memory depth, the
nonlinearity order, and the model coefficients, respectively. Compared
with the MP model, the EMP model has an easier structure.

To combine the benefits of the two models mentioned above, the
HME model is proposed in [12]. It is demonstrated that the HME
model achieves better modeling accuracy than each sub-model. The
analytical formulation of the HME model is given by

yHME(n) =
Ka∑

k=1

Qa∑

q=0

akqx(n− q) |x(n− q)|k−1

+
Kb∑

k=1

Qb∑

q=0

bkqx(n) |x(n− q)|k−1 (3)

where x(n) and yHME(n) are the input and output waveforms of
the HME model, respectively. Ka, Qa and akq are the nonlinearity
order, memory depth, and model coefficients of the MP sub-model,
respectively. Equivalently, Kb, Qb and bkq are the nonlinearity
order, memory depth, and model coefficients of the EMP sub-model,
respectively.
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In the GMP model [13], the estimated output waveform is related
to the input waveform by

yGMP(n) =
Ka∑

k=1

Qa∑

q=0

akqx(n− q) |x(n− q)|k−1

+
Kb∑

k=2

Qb∑

q=0

Lb∑

l=1

bkqlx(n− q) |x(n− q − l)|k−1

+
Kc∑

k=2

Qc∑

q=0

Lc∑

l=1

ckqlx(n− q) |x(n− q + l)|k−1 (4)

where x(n) and yGMP(n) are the input and estimated output waveforms
of the GMP model, respectively. Ka, Qa and akq are the nonlinearity
order, memory depth, and coefficients of the aligned terms between
signal and its exponentiated envelope, respectively. Kb, Qb, Lb and bkql

are the nonlinearity order, memory depth, lagging cross terms index,
and coefficients of the signal and lagging exponentiated envelope terms,
respectively. Kc, Qc, Lc and ckql are the nonlinearity order, memory
depth, leading cross terms index, and coefficients of the signal and
leading exponentiated envelope terms, respectively.

Actually, for the behavioral models mentioned above, it is
reasonable to consider only odd-order nonlinearities because the effects
from even order kernels can be omitted in a band-limited modulation
system [5].

3. DISCRIPTION OF THE NEW VOLTERRA-BASED
MODEL

Discrete-time finite-memory complex baseband Volterra series can be
used to describe a nonlinear PA of a wireless communication system,
the mathematical formulation is given by [8]

y(n) =
K∑

k=1
k−odd

Qk∑

qk=0

hk(qk)x(n−q1)
(k−1)/2∏

m=1

x(n−q2m)x∗(n−q2m+1) (5)

where the first summation is restricted to odd values of k; x(n) and y(n)
represent the input and output complex envelope samples of PA; hk(qk)
represents the discrete-time Volterra kernels of order k; qk is composed
of the integer-valued delays, qk = 0, . . . , Qk for all k = 1, 3, . . . , K. Here
we consider decaying memory with the same finite length Qk = Q for
all order k.
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The Volterra series model provides a general way to describe
the nonlinear system, but the number of coefficients to be estimated
increases exponentially with the degree of nonlinearity and memory
depth of the system. The complexity of the Volterra series model is
revealed in the fact that the kernels hk(qk) form an k-dimensional grid
defined by the discrete delays in each axis of the multidimensional
space q1, q2, . . . , qk. Therefore, it is desirable to reduce the number
of these delays [7].

Firstly, consider the case that input samples are all at the same
time instant, i.e., q1 = q2 = . . . = qk = q, thereby generating a two-
dimension (2-D) array from (5). Actually, this is the so-called MP
model and it can be written as

y2−D(n) =
K∑

k=1
k−odd

Q∑

q=0

hkqx(n− q) |x(n− q)|k−1 (6)

Then relax the restriction condition and consider another case that
just one time delay distinguishes itself from the others. Assuming that
the special time delay is q, the corresponding signal is a x term, while
the others are all equal to q − l (l ≥ 1). Then the first 3-D array is
generated from (5) and it can be expressed as

y3−D,1(n) =
K∑

k=1
k−odd

Q∑

q=0

L∑

l=1

h
(1)
kqlx(n− q) |x(n− q − l)|k−1 (7)

When q = 0, it can be seen that (7) degenerates into an EMP
model, as described in (2). Furthermore, the degraded (7) and (6)
constitute the HME model.

If the other time delays are all equal to q + l (l ≥ 1), we can
formulate the second 3-D array as

y3−D,2(n) =
K∑

k=1
k−odd

Q∑

q=0

L∑

l=1

h
(2)
kqlx(n−q) |x(n−q+l)|k−1 (8)

It can be seen that Equation (6) together with (7) and (8) lead to
the GMP model. Similarly, if the signal with the special time delay is
a x∗ term, another two 3-D arrays are achieved

y3−D,3(n) =
K∑

k=3
k−odd

Q∑

q=0

L∑

l=1

h
(3)
kqlx

∗(n− q)x2(n−q−l) |x(n−q−l)|k−3

(9)
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and

y3−D,4(n) =
K∑

k=3
k−odd

Q∑

q=0

L∑

l=1

h
(4)
kqlx

∗(n− q)x2(n− q + l) |x(n− q + l)|k−3

(10)
It is obvious that if we continue this process, more items will

be produced, which is not feasible for practical application. Thus
we put a termination to the process, the resulting outputs y2−D(n),
y3−D,1(n), y3−D,2(n), y3−D,3(n) and y3−D,4(n) are additively combined
to construct the overall output signal of the new Volterra-based model,
and its analytical formulation is given by

y(n) = y2−D(n) +
4∑

m=1

y3−D,m(n) (11)

where y(n) is the output waveforms of the new pruned Volterra series
model.

In most real PAs, the static nonlinearities and low-order dynamics
are the dominant sources of the distortions induced by the PA [12]. In
addition, the GMP model (Equation (6) together with (7), (8)) has
proven effective for predistortion of actual PAs [13, 17]. Equations (9)
and (10) can be seen as supplements to the GMP model, so it is
reasonable to just retain the 3rd-order dynamics of Equations (9)
and (10) to reduce the model complexity. Furthermore, there is no
need to take the same model dimensions for all the arrays. They can
be controlled separately, which leads to a reasonable total number
of coefficients while maintaining acceptable performance. Finally,
Equation (11) is further simplified as follows

y(n) =
Ka∑

k=1
k−odd

Qa∑

q=0

akqx(n− q) |x(n− q)|k−1

+
Kb∑

k=3
k−odd

Qb∑

q=0

Lb∑

l=1

bkqlx(n− q) |x(n− q − l)|k−1

+
Kc∑

k=3
k−odd

Qc∑

q=0

Lc∑

l=1

ckqlx(n− q) |x(n− q + l)|k−1

+
Qd∑

q=0

Ld∑

l=1

dqlx
∗(n− q)x2(n− q − l)



Progress In Electromagnetics Research C, Vol. 29, 2012 211

+
Qe∑

q=0

Le∑

l=1

eqlx
∗(n− q)x2(n− q + l) (12)

where Ka, Kb and Kc are the nonlinearity order of the first three arrays,
respectively. Qa, Qb, Qc, Qd and Qe are the memory depth of the five
arrays, respectively. Lb, Lc, Ld and Le are the corresponding lagging
or leading cross terms index of the last four arrays, respectively. akq,
bkql, ckql, dql and eql are the coefficients of the proposed model. Like
those of the GMP model, the coefficients of the proposed model appear
in linear form. Therefore, the coefficients can be simply and robustly
estimated using any least-squares type of algorithm. This has favorable
implications for algorithm stability and computational complexity [13].

Apparently, the new Volterra-based model extends the GMP
model with specific cross terms. Compared with the GMP model, the
proposed model dimensions are defined by four more variables, but
the augmented terms further increase the accuracy of the model. In
addition, the model’s complexity can be controlled through the proper
choice of the model dimensions.

4. THE EXPERIMENTAL RESULTS AND DISCUSSION

In order to validate the proposed behavioral modeling technique in a
real system, a highly nonlinear 80 W LDMOS Doherty PA (Vds = 28 V,
Vgs = 5.6V) was tested. This PA was operated at 1.96 GHz and excited
by a 4-carrier WCDMA signal (PAPR = 8.7 dB) and a 15 MHz data
ratesingle carrier 16QAM signal (PAPR = 6.2 dB). Fig. 1 shows the
test bench set-up.

Attenuators
(50dB)

Doherty PA

PC

 Vector Signal 
Generator

Switch

LAN

LAN

LAN

 Vector Signal 
Analyzer

Send a trigger signal

LAN

Figure 1. Experiment test bench.
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This experimental setup was composed of a LDMOS Doherty PA,
a vector signal generator (N5182A), a vector signal analyzer (VSA),
and a computer. The computer was used to download signals into
the N5182A that drove the PA with the RF input signals. The
output signals of the PA was attenuated and then down-converted and
demodulated within the VSA. MATLAB software was then applied
to behavioral modeling and DPD. 4000 samples of the input and
output waveforms were used for model identification employing the LS
(Least Squares) algorithm [17]. For comparison,we also implemented
the HME model, the GMP model and they are represented as Model
M1 and Model M2 respectively in the following measure results. The
proposed model as shown in (12) is called Model M3.

4.1. Model Accuracy Evaluation

For each test signal, the HME model, GMP model, and the proposed
model were all identified. Two assessments were considered to evaluate
the model accuracy: NMSE in the time domain and EPSD in the
frequency domain [14–17].

The MP sub-model dimensions are estimated using a general
sweep method [17]. The memory depth is swept from 0 to 5, and the
nonlinearity order is swept from 1 to 13. Fig. 2 shows the NMSE values
versus the memory depth Ka and nonlinearity order Qa obtained for
the 4-carrier WCDMA signal. Accordingly, the dimensions of the MP
sub-model are set to Ka = 9 and Qa = 3.
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Figure 2. NMSE values versus the nonlinearity order and memory
depth of the MP sub-model.
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For the sake of reducing model complexity, the lagging or leading
cross terms indexes (Lb, Lc, Ld and Le) and the memory depths of
the added cross terms (Qd and Qe) are set to 1. In order to avoid
accidental results, Kb/Kc and Qb/Qc are set to different values and
the corresponding NMSEs are summarized in Table 1.

As highlighted in Table 1, compared with the HME model, the
proposed model shows a NMSE improvement of 1.6 dB with 80%
coefficients. The GMP model performance in terms of NMSE does
not exceed −37 dB even if the number of parameters is increased far
above the total number of parameters that are used for the proposed
model to achieve an NMSE that exceeds −37.18 dB. In this case, the
EPSD plots along with the original PA output spectra are shown in
Fig. 3. This figure makes it clear that the proposed model also achieves
the best performance in the frequency domain.

These models were also identified for the single carrier 16QAM
signal, model dimensions were set to different values as used for
the 4-carrier WCDMA signal. Fig. 4 shows the comparison of the
three models in terms of the NMSE as a function of the number
of coefficients. This figure clearly illustrates the advantage of the
proposed model in terms of the NMSE. In the case that stressed in
Fig. 4, the EPSD plots along with the original PA output spectra are
shown in Fig. 5. Obviously, the proposed model achieves the lowest
error in the frequency domain.

According to the calculated results in terms of NMSE, EPSD
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Figure 3. EPSD plots for the 4-
carrier WCDMA signals test.
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Table 1. NMSE comparison of different models.

Kb/Kc Qb/Qc
M1 M2 M3

No.

coef

NMSE

(dB)

No.

coef

NMSE

(dB)

No.

coef

NMSE

(dB)

3 0 22 −34.05 22 −34.56 26 −35.38

3 1 24 −34.32 24 −34.96 28 −35.92

3 2 26 −34.64 26 −35.05 30 −36.00

3 3 28 −34.74 28 −35.14 32 −36.07

5 0 23 −34.05 24 −35.25 28 −36.27

5 1 26 −34.72 28 −35.99 32 −37.18

5 2 29 −35.10 32 −36.14 36 −37.35

5 3 32 −35.25 36 −36.27 40 −37.48

7 0 24 −34.05 26 −35.38 30 −36.42

7 1 28 −34.82 32 −36.31 36 −37.35

7 2 32 35.26 38 −36.53 42 −37.61

7 3 36 −35.43 44 −36.66 48 −37.80

9 0 25 −34.05 28 −35.46 32 −36.50

9 1 30 −34.86 36 −36.38 40 −37.43

9 2 35 −35.36 44 −36.61 48 −37.73

9 3 40 −35.58 52 −36.74 56 −37.94
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Figure 5. EPSD plots for the
single carrier 16QAM signal test.
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Figure 6. Comparison of the
output spectra for the 4-carrier
WCDMA signal test.

and number of coefficients, compared with the HME model and
the GMP model, the new proposed Volterra-based model uses the
least coefficients but achieves the highest accuracy in both time and
frequency domains.
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4.2. DPD Performance Assessment

The proposed model, as well as the HME and GMP models were
applied to DPD. The model dimensions were set to the values
highlighted in Table 1 and Fig. 4. ACPR was considered to assess
the DPD performance.

The measured ACPRs and number of coefficients for the 4-carrier
WCDMA signal and the single carrier 16QAM signal are listed in
Table 2 and Table 3 respectively. In comparison with the HME
model, the proposed model shows significant ACPR improvements of
2.90/1.34 dB and 2.61/3.54 dB for the two test signals respectively,and
a 20% reduction in the number of coefficients. The proposed model
also outperforms the GMP model with ACPR improvements of
2.26/0.42 dB and 1.38/0.82 dB for the two test signals respectively, but
with approximately 40% decrease in the number of coefficients. The
measurement results in terms of ACPR demonstrate the superiority of
the proposed model.

Figures 6 and 7 show the comparison of the output spectra for
the 4-carrier WCDMA signal and the single band 16QAM signal,
respectively. The figures prove that the proposed model achieves the
best DPD performance once again.

Table 2. Comparison of ACPRs for 4-carrier WCDMA signal.

DPD approaches
ACPR of upper

band (dBc)

ACPR of lower

band (dBc)
No. coef

DPD OFF −22.53 −24.41

DPD M1 −47.69 −48.68 40

DPD M2 −48.33 −49.60 52

DPD M3 −50.59 −50.02 32

Table 3. Comparison of ACPRs for single carrier 16QAM signal.

DPD approaches
ACPR of

upper band (dBc)

ACPR of lower

band (dBc)
No. coef

DPD OFF −34.32 −36.61

DPD M1 −46.49 −46.55 40

DPD M2 −47.72 −49.27 52

DPD M3 −49.10 −50.09 32



216 Du et al.

1.91 1.92 1.93 1.94 1.95 1.96 1.97 1.98 1.99 2.00 2.01

-60

-50

-40

-30

-20

-10

0

N
or

m
al

iz
ed

 P
ow

er
 S

pe
ct

ru
m

 D
en

si
ty

(d
B

/H
z)

Frequency(GHz)

DPD OFF
 DPD M1
 DPD M2
 DPD M3

Figure 7. Comparison of the output spectra for the single carrier
16QAM signal test.

5. CONCLUSION

In this paper, a new accurate Volterra-based model is proposed for
behavioral modeling and DPD of RF PAs. It extends the GMP model
with specific cross terms, and these augmented terms significantly
increase the model’s performance. The model’s performance in the
behavioral modeling and DPD of a highly nonlinear Doherty PA driven
by two signals (a 4-carrier WCDMA signal and a single carrier 16QAM
signal) was assessed and compared to that of the HME and GMP
models. In the behavioral modeling application, the calculated results
in terms of NMSE, EPSD and number of coefficients indicate that
the proposed model achieves the highest accuracy with the lowest
computational complexity. In the DPD application, the measurement
results also clearly demonstrate the superiority of the proposed model.
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