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ENERGY DENSITY OF MACROSCOPIC ELECTRIC
AND MAGNETIC FIELDS IN DISPERSIVE MEDIUM
WITH LOSSES

O. B. Vorobyev*

Stavropol Institute of Radiocommunications, Russia

Abstract—Electric permittivity and magnetic permeability of linear
passive dispersive medium were defined using the circuit equation of an
electrically small antenna (scatterer) with resonant and antiresonant
properties. It was shown that the average macroscopic energy stored
by the scatterers is proportional to frequency derivative of the input
admittance of corresponding antenna. It was found that the average
macroscopic energy density of electric and magnetic fields in dispersive
lossy medium is a function of frequency derivatives of its effective
constitutive parameters in accordance with Poynting’s theorem in
dispersive lossy medium clarified for this case in the paper.

1. INTRODUCTION

Several methods were employed to define average density of the
electromagnetic energy in dispersive lossy materials [1–6] which
were classified [2, 3] as equivalent circuit (EC) and electrodynamic
(ED) approaches. Both kinds of approaches gave the same specific
dependence of the electric field energy density corresponding to the
Lorentz model [1–5] while they led to different relations for the specific
magnetic field energy density corresponding to the non-Lorentz [2]
model of broken loop composites [1].

The energy densities of macroscopic electric and magnetic fields
were defined by ED methods [2–4] together with power of losses on
basis of assumptions about possible types of energy density functions,
using equations of motion for polarization and magnetization [3] in
Poynting’s theorem. Employed ED approaches gave different relations
for the magnetic field energy density in a lossy medium [2, 3] while,
according to them, the magnetic field energy density in medium
comprised of electrically small elements might be less than the energy
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density in vacuum [1] without clear reasons. According with [2, 3],
ED relations for the magnetic field energy density based on the non-
Lorentz permeability are consistent with Brillouin’s energy density in
the limit of zero losses. However, the quality factor derived from
relations obtained in [3] for the non-Lorentz permeability demonstrated
a nonphysical behavior [1].

The input impedance of the solenoid defined through use of the
non-Lorentz magnetic permeability of metamaterial was employed to
find an equivalent circuit for quasi-static calculations of the stored
energy in EC approach [1, 5]. Positivity of the energy stored by
the solenoid loaded with metamaterial demonstrated positivity of
corresponding magnetic field energy density. However, obtained
relation for the magnetic field energy density is not consistent with
Brillouin’s energy density in the limit of zero losses according with [1].

Employed approaches for definition of the energy density were
based on using of constitutive parameters for lossy medium, whereas,
according with [1, 7], those macroscopic parameters is not sufficient,
and knowledge of microscopic circuit structure is necessary to make
sure that it does not include subcircuits with invisible energy on the
level of the macroscopic description.

In order to determine specific issues limiting use of constitutive
parameters for definition of the energy density, a generalized RLC
circuit model of a moderately electrically small structural element
was introduced in the paper in contrast with the Lorentz model.
The generalized RLC circuit model takes into account performance
properties of electrically small antennas and scatterers [8–11].
Obtained results show that the average macroscopic energy density of
electric and magnetic fields in dispersive lossy medium defined through
use of the energy stored by the ensemble of the independent electrically
small antennas-scatterers with sufficiently high quality factors and
not overlapping resonances is accurately approximated by functions of
effective permittivity and permeability. The obtained average energy
density of the macroscopic electric and magnetic fields in dispersive
lossy medium corresponds to Poynting’s theorem for linear dispersive
lossy medium, which was clarified in the paper.

2. POYNTING’S THEOREM IN DISPERSIVE LOSSY
MEDIUM

The energy density in dispersive lossy medium may be obtained using
Poynting’s theorem in the Abraham form, which implies that [12–14]

div (E×H) = −E
∂D
∂t

−H
∂B
∂t

. (1)
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In order to discuss dispersion, one has to use Fourier
decomposition of the field vectors [12, 13]. In the case of the electric
field, one can write

E (t) =
∫ +∞

−∞
dωE(ω)ejωt,

D (t) =
∫ +∞

−∞
dωD(ω)ejωt,

(2)

where D (ω) = ε0ε (ω)E(ω) for an isotropic linear medium.
Using Fourier components of the electric field, one can find

E
∂D
∂t

=
∫ +∞

−∞
dω

∫ +∞

−∞
dω′E(ω′) [jωε0ε (ω)]E(ω)ej(ω+ω′)t. (3)

In a general case, knowledge of ε (ω) in the frequency range up to
the infinity is necessary in accordance with (2) and (3). Presence
of dispersion corresponds to the complex and frequency-dependent
electric susceptibility χe (ω) = ε (ω) − 1, which in a narrow frequency
range may be approximated by a linear dependence. In order to use (3)
for the electric field with a narrow frequency range ω ≈ ω′, one can
write (3) in a symmetrical form

E
∂D
∂t

=
1
2

∫ +∞

−∞
dω

∫ −∞

+∞
dω′E∗

(
ω′

)

× [
jωε0ε (ω)− jω′ε0ε

∗ (
ω′

)]
E (ω) ej(ω−ω′)t, (4)

where the Fourier decomposition of E (t) is presented by a function of
E∗ (ω′) = E(ω), ω′ = −ω. In the case ω′ ≈ ω, one can find

[
jωε0ε (ω)− jω′ε0ε

∗ (
ω′

)]

= 2ωε0ε
′′ (ω) + j

(
ω − ω′

) d (ω′ε0ε
∗ (ω′))

dω′

∣∣∣∣
ω′=ω

+ o
[(

ω′ − ω
)]

.(5)

Using (5) in (4), one can find [13]

E
∂D
∂t

=
∫ +∞

−∞
dω

∫ −∞

+∞
dω′E∗

(
ω′

)

×ωε0ε
′′ (ω)E (ω) ej(ω−ω′)t +

1
2

∂

∂t

∫ +∞

−∞
dω

∫ −∞

+∞
dω′E∗

(
ω′

)

×ε0E (ω) ej(ω−ω′)t +
1
2

∂

∂t

∫ +∞

−∞
dω

∫ −∞

+∞
dω′E∗

(
ω′

)

× d (ω′ε0χe
∗ (ω′))

dω′

∣∣∣∣
ω′=ω

×E (ω) ej(ω−ω′)t. (6)
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In order to illustrate obtained results, one can use the case of a
monochromatic field E (t) = E0 cosωt. The first integrand (6) for
this case gives the power of losses ε0ωε′′E (t)2 in accordance with (3).
The second integrand (6) gives the time derivative of the energy
density of the electric field in free space ε0

2
∂
∂tE (t)2. If permittivity is

approximated by a constant and losses are small, then d(ωε0ε′)
dω = ε0ε

′
and the time derivative of the total electric field energy density is
ε0ε′
2

∂
∂tE (t)2 = − ε0ε′ω

2 E2
0sin 2ωt in accordance with (6). It is worth

noticing that, in accordance with (3), j cosωt in (3) corresponds to
−sinωt in (6).

All summands in (6) are real values for the quasi-monochromatic
field except for the last integrand, which includes the complex value.
The function ωε (ω) in the narrow frequency range is accurately
approximated by the linear expansion (5), while we can clarify meaning
of the imaginary component using the last integrand in (6) in the form
similar to (3)

1
2

∂

∂t

∫ +∞

−∞
dω

∫ +∞

−∞
dω′E

(
ω′

)

×
∣∣∣∣
d (ω′ε0χe (ω′))

dω′

∣∣∣∣
ω′=ω

∣∣∣∣×E (ω) ej(ω+ω′−α)t, (7)

where ω′ was substituted for −ω′, cosα =
d(ωε0(ε′(ω)−1))

dω∣∣∣∣
d(ωε0χe(ω))

dω

∣∣∣∣
, α > 0. In the

case of the monochromatic field, relation (7) corresponds to the time
derivative of the energy density 1

2

∣∣∣∂(χe(ω)ω)
∂ω

∣∣∣ ∂
∂t(E0cos (ωt− α/2))2

with the average value ε0
4

∣∣∣∂(χe(ω)ω)
∂ω

∣∣∣E0
2.

In the case of the monochromatic field, the real part of the last
integrand (6) equal to 1

2
d(ωε0(ε′(ω)−1))

dω
∂
∂tE (t)2 ∼ −sin2ωt corresponds

to the time derivative of the dispersive (Brillouin’s) component of
the electric field energy density stored by dispersive medium. The
imaginary part of the integrand (6) 1

4
d(ωε0ε′′(ω))

dω E2
0

∂
∂t sin 2ωt ∼ cos2ωt

corresponds to the time derivative of the dissipation component of
the electric field energy density, which is necessary to introduce in
accordance with (3) and (6). Nature of this component of the energy
is discussed in the Section 4. Using a similar approach to H∂B

∂t , one
can obtain the average energy density of the the quasi-monochromatic
macroscopic magnetic field.

The definition of the energy density of the quasi-monochromatic
field in dispersive medium is based on linear approximation of
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dependences ωε (ω) , ωµ (ω) valid in a narrow frequency range. In
the case of arbitrary changing fields discussed in [2–4], constitutive
parameters have to be defined in frequency range up to infinity because
they set constitutive relations necessary for a sufficient definition of
Maxwell’s equations [12]. Constitutive parameters of dispersive lossy
medium defined in a limited frequency range are not fully represent
properties of a medium because, Kramers-Kronig’s formulae can be
satisfied by different functions of constitutive parameters, which have
common functional dependences in the mentioned frequency range.
While the problem of definition of the energy density of an arbitrary
changing field in arbitrary medium cannot be solved using models
applicable in a limited frequency range, such models clarify physical
mechanisms of interaction of the quasi-monochromatic field with
dispersive lossy medium.

3. GENERALIZED CIRCUIT MODEL OF DISPERSIVE
LOSSY MEDIUM

The Lorentz model is commonly used to approximate the electric
permittivity of dispersive lossy medium. According to the model,
motion of electrical charge in atoms [12–14] and structural elements
of metamaterial in an applied field is described by similar differential
equations [2, 4, 14] in accordance with mechanics equation of motion
and resonant circuit model. That equation is transformed into a
macroscopic equation for polarization [2–4, 12–14]. Using the equation
for polarization, one can find Lorentz’s relative permittivity, which
represents properties of dispersive lossy medium on the macroscopic
level

ε (ω) = 1 +
ω2

p

ω2
0 − ω2 + iωΓ

, (8)

where ε (ω) = ε′ (ω) − iε′′ (ω) is the complex permittivity for an
electric field with accepted in the paper time dependency eiωt, ω0

— the resonant angular frequency of atoms or structural elements of
metamaterial, Γ — the damping coefficient, ωp — the characteristic
(plasma) frequency, which are constant.

It is known that the Lorentz model [12–14] does not take into
account effects of radiative reaction [13], which are essential for
structural elements of a non-infinitesimal electrical size. The line
breadth of the radiating oscillator is not exactly predicted even by a
modified Lorentz model with radiative damping [13] that demonstrates
inherent limitations of the resonant model. Similar limitations arise in
the case of applying of the resonant model to structural elements of
metamaterial.
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Despite noticed limitations, the Lorentz-type dependences
of effective constitutive parameters [1–6, 14] were used in EC
approach [1, 5, 7] to describe dispersive lossy metamaterial by
macroscopic equivalent circuits. According with equivalent circuits,
electrically small structural elements embedded in free space was
presented by macroscopic resonant circuits. Insufficiency of the
resonant model in the case of permeability was demonstrated for a lossy
matrix material [1] that resulted in definition of a corrected Lorentz’s
dependence.

One can use a more general approach to definition of effective
constitutive parameters, using a circuit model of an electrically small
antenna (scatterer). Performance properties of those antennas are
sufficiently known, while the antennas with resonant and antiresonant
properties are accurately modeled by equivalent circuits [8–11, 15].
Using examples of equivalent circuits of an electrically small antenna
with two resonances around antiresonance in Fig. 1 [11] and a scatterer
with resonant and antiresonant frequencies in Fig. 2, one can write a
circuit equation of an electrically small antenna in the form

L (ω)
d2q

dt2
+ R (ω)

dq

dt
+

q

C (ω)
= U(t), (9)

where q = q (t) — electric charge of the capacitance C (ω),
U (t) = U0e

iωt — voltage produced by an applied field [4].
The circuit Equation (9) is similar to the resonant circuit
equation [4]. However, total inductance L (ω), capacitance C (ω),
and resistance R (ω) are functions of frequency. As a result,
the circuit Equation (9) corresponds to the generalised Lorentz
effective permittivity. Similarity of the circuit Equation (9) and
the resonant circuit equation [4] provides similarity of generalised
Lorentz effective permittivity and Lorentz permittivity (2) while

Figure 1. Equivalent circuit of an
electrically small antenna with two
resonances around antiresonance.

Figure 2. Equivalent cir-
cuit of an electrically small
scatterer with resonant and
antiresonant frequencies.
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parameters of the generalized permittivity, such as the resonance
angular frequency ω0 (ω) = (L (ω) C (ω))−0.5, the damping coefficient
Γ (ω) = R (ω) /L (ω), and plasma frequency are functions of frequency
ω in accordance with (9). Frequency dependences of discussed
parameters of the permittivity are especially significant when energy
densities are expressed by functions of the parameters of equivalent
circuits.

4. ELECTRIC FIELD ENERGY DENSITY IN THE
MODELED MEDIUM

The problem of definition of the electric field energy density can be
solved through use of the quality factor of electrically small antenna,
which is defined by the ratio of the energy stored by an antenna to
power of losses and radiation. The quality factor of an electrically
small antenna is proportional to the inverse conductance bandwidth [9]
while the bandwidth is defined by conductance of the antenna [8].
Using the conductance of an antenna, one can obtain the quality factor
as a function of the input impedance of the antenna [9]. However,
it was noticed in [8–10, 16] that those relations had low accuracy
in antiresonant ranges of some antennas. Fortunately, reasons of
that have been recently clarified, using the case of electrically small
antennas with double resonances [11, 15].

It was shown that the time-averaged energy of non-propagating
electromagnetic field of an antenna with two coupled resonances [15]
presented by the equivalent circuit in Fig. 1 is accurately approximated
by the sum of the energies of the resonant and antiresonant
subcircuits [11]

W (ω) =
1
4


∂Xr

∂ω
+

√[
∂R

∂ω

]2

+
[
∂Xa

∂ω

]2

+ ∆2


 I2

0 , (10)

where I0 is the amplitude of the input current of the antenna,
∂Xr
∂ω = |XrC |+XrL

ω — frequency derivative of reactance of the resonant
subcircuit comprised of Cr and Lr with reactance XrC and XrL; ∂Xa

∂ω

and ∂R
∂ω is frequency derivatives of reactance and resistance of the

antiresonant subcircuit comprised of Ra, La and Ca. The sum of
negative Xc and positive Xl components of reactance produced by
the antiresonant subcircuit is [11]

|Xc|+ Xl = ω

√[
∂R

∂ω

]2

+
[
∂Xa

∂ω

]2

+ ∆2, (11)
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where ∆ = 2R
ω0

, ∆2¿ [
∂R
∂ω

]2
+

[
∂Xa
∂ω

]2
for the antenna with the electrical

size ka ∼= 0.5 [11], k — the wave number, a — the minimal radius of
the sphere circumscribing the antenna. According with (11), frequency
derivatives of reactance and resistance define the effective reactance
of the antiresonant subcircuit, while the energy is stored by reactive
elements.

In order to evaluate relative importance of addends in (11),
one can use the so called approximate quality factor (or the
impedance quality factor) of an electrically small antenna tuned to
antiresonance [8–11]

Q =

([
∂R

∂ω

]2

+
[
∂Xa

∂ω

]2
)0.5

/∆. (12)

As a result,
√[

∂R
∂ω

]2
+

[
∂Xa
∂ω

]2
+ ∆2 ∼=

√[
∂R
∂ω

]2
+

[
∂Xa
∂ω

]2
with relative

accuracy 0.5Q−2, while Q ≤ (ka)−1 + (ka)
−3

[17].
The energy stored by the antenna (10) is calculated through

use of reactance of resonant and antiresonant circuits because the
frequency derivative of reactance of an antiresonant subcircuit of
an antenna becomes negative in the vicinity of the antiresonant
frequency [11, 15]. This aspect is essential for antennas with closely
spaced resonances because of comparable magnitudes of frequency
derivatives of reactance of resonant and antiresonant subcircuits.
Decrease of the electrical size of the antenna corresponds to increase
in the quality factor and frequency ranges between resonances and
antiresonance of the antenna [11, 15]. Increase in the quality factor of
the antiresonant subcircuit of the antenna of a comparatively small
size ka < 0.1 as compared with ka ∼= 0.5 corresponds to a more
than 102 times increase in the frequency derivative of reactance of the
antiresonant circuit [18]. Therefore, ∂Xa

∂ω
∼= ∂X

∂ω ,
∣∣∂Xa

∂ω /∂R
∂ω

∣∣ ∼= 1 and the
energy stored by electrically small antennas ka ≤ 0.1 in antiresonant
ranges is defined by

∣∣∂Z
∂ω

∣∣ with accuracy better than Q−2.
In resonant ranges, equivalent circuits of antennas with ka < 0.1

boil down to a resonant circuit that provides ∂R
∂ω ¿ ∣∣∂X

∂ω

∣∣. An
additional resistance connected in parallel with capacitance of the
resonant circuit [1] provide R (ω) of the equivalent series circuit
with comparatively small frequency derivative ∂R

∂ω
∼=

∣∣∂X
∂ω

∣∣ /Q that
corresponds accuracy better than Q−2.

Overall, in accordance with calculations of the quality factors of
antennas with not closely spaced resonances [8–11, 15, 16], the average
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energy stored by an antenna is

W =
1
4

√[
∂R

∂ω

]2

+
[
∂X

∂ω

]2

I0
2 =

1
4

∣∣∣∣
∂Z

∂ω

∣∣∣∣ I0
2. (13)

Comparison of the impedance and exact quality factors with inverse
antenna bandwidths shows that the relation (13) connected with the
impedance quality factor is more reliable for antennas in dispersive
lossy medium [8].

Using the admittance Y = Z−1 in (6), one can find

W =
1
4

∣∣∣∣
∂Y

∂ω

∣∣∣∣U0
2, (14)

where I0 = U0/ |Z|,
∣∣∂Z
∂ω

∣∣ =
∣∣∂Y

∂ω

∣∣ /|Z|2, Y = G+ iB, G = R
R2+X2 is the

conductance, and B = − X
R2+X2 — the susceptance of an electrically

small antenna [19]. Making use of (14), one can find the time-averaged
energy stored by a circuit comprised of N subcircuits connected in
parallel

W =
1
4

∑
N
i=1

∣∣∣∣
∂Yi

∂ω

∣∣∣∣U0
2. (15)

It should be noticed that dependence of the stored energy from
frequency derivative of resistance (13) demonstrates importance of
antiresonant properties along with resonant ones in a general case in
accordance with the generalized Lorentz model, whereas it becomes
vague for the formula (15) and other below-derived relations.

RLC circuit in Fig. 2 represents an equivalent circuit of a
scatterer with resonant and antiresonant properties, e.g., an electrically
small pair of needles directed along the electric field [1, 14], which
antiresonant properties is provided by capacitance of free space [10, 18]
Ca around needles. Localization of resonant admittance of the circuit
in Fig. 2 in a frequency range ∆ω ∝ 1/Q [8, 9] allows neglecting by
interference of resonant and antiresonant properties in the vicinity of
a resonant frequency if Q À 1, as a result,

∑N
i=1

∣∣∣∂Yi
∂ω

∣∣∣ ∼=
∣∣∂Y

∂ω

∣∣. That
is also applied to the case of many resonant frequencies of different
scatterers (inclusions in [1]) since corresponding series circuits do not
significantly interact if resonances are not considerably overlapped.

Reactance of an electrically small antenna in accordance with the
circuit Equation (9) is

X (ω) = ωL (ω)− 1
ωC (ω)

= ωL

(
1− ω2

0

ω2

)
, (16)

where for brevity L = L (ω), ω0= ω0 (ω).
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Using (16), one can find conductance and susceptance correspond-
ing to a scatterer.

G (ω) =
(ω

L

) Γω

Γ2ω2 +
(
ω2 − ω2

0

)2 ,

B (ω) = −
(ω

L

) (
ω2 − ω2

0

)

Γ2ω2 +
(
ω2 − ω2

0

)2 .

(17)

Comparing (8) and (17), one can connect the admittance and
the effective permittivity of a medium comprised of an ensemble of
independent electrically small scatterers

B (ω) = ε0

(
ε′ − 1

)
ωS/d,

G (ω) = ε0ε
′′ωS/d,

(18)

where S
(
m2

)
and d (m) is dimensional constants, ω2

p = d/ (ε0LS) in
accordance with (8) and (17). It is worth noticing that the average
energy stored by LC circuit is proportional to

∣∣∂B
∂ω

∣∣ (14) while the
energy density of the electric field in dispersive lossless medium is
proportional to ∂(ε′ω)

∂ω in accordance with Brillouin’s formula [12–
14]. The time-averaged power accepted by an RLC circuit or an
antenna [8, 9] is proportional to G while the power of losses of the
energy flux of an applied field in dispersive lossy medium depends on
ε′′ω in accordance with (1). Even though the electrical size of structural
elements is small, ε′′ depends on radiation resistance proportional to
(ka)2 [21].

Spacial averaging of the microscopic electromagnetic field results
in nontrivial attribution of the electromagnetic energy to macroscopic
electric and magnetic fields. If pair parts of microscopic inductances of
structural elements of a medium create magnetic fields in opposite
directions, then macroscopic magnetization of the medium is zero.
That would result in absence of the macroscopic magnetic field energy
stored by the medium with constitutive parameters µ = 1, ε 6= 1 while
the energy of the microscopic magnetic field is taken into account as
positive energy of the macroscopic electric field.

Using (14) and (18), one can find the energy of the macroscopic
electric field stored by electrically small scatterers arranged on a lattice
as a function of the effective susceptibility

We =
ε0

4

∣∣∣∣
∂ (χeω)

∂ω

∣∣∣∣
S

d
( E0d)2 =

ε0

4

∣∣∣∣
∂ (χeω)

∂ω

∣∣∣∣V E0
2, (19)

where U0 = E0d, E0 is the amplitude of an applied electric field, d —
effective length of a unit cell of the lattice in the direction of the electric
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field, and V = Sd — volume of the unit cell. Using the amplitude of a
slowly varying envelope E0(t) [12–14] instead of E0, one can find the
total average energy density of the quasi-monochromatic electric field
in dispersive lossy medium, including the energy density in free space

Uet(t) =
We

V
+

1
4
ε0|E0(t)|2 =

ε0

4

(
1 +

∣∣∣∣
∂ ((ε− 1)ω)

∂ω

∣∣∣∣
)
|E0(t)|2, (20)

where ε0
4 |E0(t)|2 is the field energy density in free space taken into

account in the macrostructural circuit model [5] through use of
capacitance C0. In accordance with (20), the energy density does not
depend on the conductance of a matrix material σ = const because
corresponding ∆ε′′ ∼ σ/ω [12].

According with Kramers-Kronig’s formulae based on the causality
principle, real and imaginary parts of constitutive parameters are
Hilbert transforms of each other [14]. This implies in accordance
with (18) interconnection of conductance and susceptance (or
resistance and reactance) of scatterers with Q À 1. That clarifies
dependence of the stored energy (20) from the factor

∣∣∣∂((ε−1)ω)
∂ω

∣∣∣.
In the limit of zero losses Uet(t) = ε0

4
∂(ε′ω)

∂ω |E0(t)|2 in accordance
with (20) and Brillouin’s formula because ∂(ε′ω)

∂ω > 1 [5]. Using the
Lorentz permittivity (8) in (20), one can find

Ues =
ε0

4

(
1 +

ω2
p

(
ω2 + ω2

0

)

Γ2ω2 +
(
ω2 − ω2

0

)2

)
E0

2. (21)

The specific energy density of the electric field (21) obtained through
use of the generalized Brillouin’s formula (20) coincides with previously
obtained results for the specific energy density of the electric field
[1–6] in dispersive lossy medium comprised of resonant non-radiative
structural elements.

5. MAGNETIC FIELD ENERGY DENSITY

The equivalent circuit of the electrically small antenna in Fig. 1 with
resonant and antiresonant properties generalizes serial RLC circuits
used to model structural elements of metamaterials, such as broken
loops [1, 5, 14]. Emf in the loop of the shorted antenna is U (t) =
−dΦ

dt [13]; Φ is the magnetic flux created through the loop by an applied
magnetic field. Under condition of uniformity of the magnetic field
within an electrically small unit cell, one can find emf amplitude

U0 = µ0ωS⊥H0, (22)
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where H0 is the magnetic field amplitude, S⊥ — projection area of the
of the loop on a plane orthogonal to the lines of the magnetic field.

Using relations (14) and (22), one can find the average
electromagnetic energy stored by the loop

Wm =
1
4

∣∣∣∣
∂Y

∂ω

∣∣∣∣µ2
0ω

2S2
⊥H0

2. (23)

In order to use (23) on the macroscopic level, it is necessary to
connect the admittance of the loop with macroscopic parameters.
In accordance with [1–5], one can introduce the generalised relative
non-Lorentz magnetic permeability as effective medium parameter of
broken loops arrays

µ (ω) = 1 +
Aω2

ω2
0 − ω2 + iωΓ

, (24)

where A (ω) = µ0S
2
⊥/ (L (ω) V ), µ (ω) = µ′ (ω) − iµ′′ (ω). Using (17)

and (24), one can obtain

G (ω) = V µ′′/
(
ωµ0S

2
⊥
)
,

B (ω) = V
(
µ′ − 1

)
/

(
ωµ0S

2
⊥
)
,

(25)

where V is the volume of a unit cell of broken loops arrays. Using (24)
and (25) in (23), one can find the average magnetic energy density

Wm =
µ0

4

∣∣∣∣
∂ (χm/ω)

∂ω

∣∣∣∣ ω2V H0
2, (26)

where χm (ω) = µ (ω)−1 [12]. Using the amplitude of a slowly varying
envelope |H(t)| [12–14] instead of H0, one can find the total energy
density of the magnetic field including the energy density in free space

Umt(t) =
〈Wm〉

V
+

µ0H0
2

4
=

µ0

4

(
1 +

∣∣∣∣
∂ ((µ−1) /ω)

∂ω

∣∣∣∣ω2

)
|H(t)|2. (27)

The non-Lorentz permeability is a physically sound parameter
in the quasi-static limit (limω→0 µ (ω) = 1), whereas the Lorentz
permeability is adequate in the high frequency limit [1, 3, 5].
Combining properties of Lorentz and non-Lorentz permeability, one
can introduce the quasi-Lorentz magnetic permeability

µ̃ (ω) = 1 +
Aω2

m

ω2
0 − ω2 + iωΓ

, (28)

where in the high frequency limit, in which the condition of electrically
small size of structural elements is satisfied [14], ω2

m (ω)= ω2
0m,

ω2
0m is a constant parameter of the Lorentz permeability so that
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limω→∞ µ̃ (ω) = 1. In accordance with properties of the the non-
Lorentz permeability (24), ω2

m (ω) ≈ ω2 is an approximating step-
function defined in low frequency range

(
∂ω2

m
∂ω = 0

)
. Using (24) and

(28) in (27), one can find

Umt(t) =
µ0

4

(
1 +

∣∣∣∣
∂ ((µ̃− 1) ω)

∂ω

∣∣∣∣
ω2

ω2
m

)
|H0(t)|2. (29)

In accordance with (27) and (29), the macroscopic magnetic field
energy density can be expressed through use of the Lorentz
permeability (the causal model [1], ω2

m = ω2
0m) (29) and non-Lorentz

permeability (27).
Using the condition of quasi-monochromaticity ωm

∼= ω for a
slowly varying envelope H(t) in the denominator of (29), one can find
in accordance with definition of the quasi-Lorentz permeability (28)

Umt (t) =
µ0

4

(
1 +

∣∣∣∣
∂ ((µ̃− 1) ω)

∂ω

∣∣∣∣
)
|H0(t)|2. (30)

Using (30) in the limit of zero losses, one can obtain Brillouin’s
formula for the magnetic energy density in the form, which is valid in
low and higher frequency ranges

Umt(t) =
µ0

4

∂
(
µ̃′ω

)

∂ω
|H0(t)|2. (31)

In the limit of zero losses, relation (30) and (31) are equivalent because
∂(µ̃′ω)

∂ω > 1 [5]. Therefore, relations (27), (30), and (31) are equivalent
under stated conditions.

Inserting non-Lorentz permeability (A = const, ω0 = const,
Γ = const) (24) in (27) or using analogy between (20) and (30), one
finds the specific magnetic field energy density [1, 5]

Ums =
µ0

4

(
1 +

Aω2
(
ω2 + ω2

0

)

Γ2ω2 +
(
ω2 − ω2

0

)2

)
H0

2. (32)

In fact, there is natural similarity of (21) and (32). In both
cases we have the same energy of electromagnetic oscillations; while
the factor ω2 in (32) is explained by proportionality U0 ∼ ω (22).
Relations (21) and (32) are valid in the case of constant parameters
of the Equation (9) when analogy with mechanical vibrations [22] is
lawful.

Macroscopic equations of motion for magnetization used in ED
approaches [2–4] are based on (9), whereas the obtained specific energy
density functions inconsistent with (32). Conformity of the obtained
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energy density in the limit of zero losses with the formula Umt =
µ0

4
∂(µ′ω)

∂ω |H(t)|2 was assumed as a criterium of internal consistency of
the ED approaches [2–4], whereas the latter relation and (31) do not
coincide. Using the non-Lorentz permeability (24) in (30) by analogy
with ED approach, one can find

Ums =
µ0

4


1 +

Aω2
(
4Γ2ω

2 +
(
ω2 − 3ω2

0

)2
)0.5

Γ2ω2 +
(
ω2 − ω2

0

)2


 H0

2. (33)

Relation (33) closely approximates the energy density of the magnetic
field (26) [3] in a lower frequency range ω <

√
3ω2

0 + Γ2. The magnetic
field energy density (26) [3] and (28) [2] obtained with ED approaches
is smaller than the energy density in free space in a higher frequency
range [1], whereas (33) is free from this disadvantage. In the case of
zero losses, relations (33), (19) [3], and (21) [2] are identical. However,
all those relations, including (33), inconsistent with (9).

Using the model of the quasi-Lorentz magnetic permeability (28),
one can transform the specific magnetic field energy density
obtained through use of ED approach with the Lorentz magnetic
permeability [6, 14] into relations corresponding to the non-Lorentz
magnetic permeability. The above mentioned energy relation, similarly
as the relation for the electric field (21), includes a constant factor in
the numerator [3, 6, 14] in the form of the squared frequency ω2

0m. If
ω2

0m (28) is presented by a step-function approximating ω2, then that
specific magnetic field energy density is transformed in (32). Choosing
frequency ranges of steps of the step-function wider than the frequency
range of the quasi-monochromatic field, one boils down ED approach
in the magnetic field case to ED approach successfully employed for
the electric field.

6. DISCUSSION

Macroscopic electric and magnetic properties of lossless medium
comprised of electrically small elements are fully described by
constitutive parameters. However, constitutive parameters might be
insufficient for definition of the average field energy density in some
lossy mediums in accordance with [1, 5, 7].

In fact, using pieces of winded cable, one can design an artificial
medium with structural elements with electrical sizes larger than the
electrical size defined by their external geometry. Obviously, such
medium is described by constitutive parameters in a low frequency
range where the true electrical size of structural elements is electrically
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small. Even if one does not know topology of the structural elements a
priori, the true electrical size of structural elements is revealed through
interaction of such medium with quasi-monochromatic radiation
because of reflections in the cable. The fact of absence of losses in
dispersive medium does not provide validity of constitutive parameters
or the quasi-static EC approach in a high frequency range.

If reflection in the cable loaded by corresponding resistor is absent,
then the stored energy in the cable is invisible on the macroscopic
level and may be counted as a kind of the pro-thermal energy. That
part of the microscopic field energy is inevitably dissipated while
macroscopic electromagnetic properties of the medium do not depend
on mechanisms of dissipation. As a result, the electrical size of the
structural elements does not depend on the cable length.

In a number of cases, the energy stored by RLC circuits can be
found through presenting the impedance of the circuit by a sum of the
impedance of simple subcircuits analogously the methods of synthesis
of lossless circuits. That was used in the Section 4 for the antennas
with closely spaced resonances around antiresonance of the antenna.
Using that example, it was shown that the energy of RLC circuits is
defined by frequency derivative of admittance of the whole circuit with
accuracy dependent on the quality factor of the circuit.

There is a particular example of a two-pole RLC circuit, which
was used in [1, 7] to demonstrate impossibility of finding of the
electromagnetic energy stored by the circuit through use of the input
impedance. The circuit differs from the antiresonant subcircuit in
Fig. 1 by an additional series resistance Ra in the branch with Ca

so that
√

La/Ca = Ra. That implements critical damping in the
circuit and provides constant value of the input impedance with
zero reactance at least in some frequency range [20]. The quality
factor of the circuit is small (Q = 0.5) as well as the ratio of the
stored energy to resistance. If resistor in a resonant circuit with
the quality factor Q À 1 had properties of such circuit the quality
factor of the resonant circuit would change insignificantly ∆Q ≈ 1.
Moreover, as in the case of resistor connected through use of the
cable, the reactive energy of the critically damped RLC circuit should
be classified as the pro-thermal energy. It means that macroscopic
electromagnetic field does not depend on the energy of the microscopic
electromagnetic field in reactive elements of the resistor subcircuit.
Therefore, invisibility of the small part of the microscopic energy on
the level of the macroscopic description of the field means absence
of contribution of the invisible energy in the macroscopic field and
macroscopic electromagnetic properties.

As was shown in Section 2, we can use Poynting’s theorem not
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only in the case of dispersive medium without losses but also with
losses, taking into account the dissipative part of the stored energy (7).
One can measure the total monochromatic flux through the surface
of sample volume and find the power of losses as a function of the
flux. Using a quasi-monochromatic field, we can find variation of
the stored energy provided by slow variation of the amplitude of the
quasi-monochromatic field, taking into account the power of losses. In
order to detect dispersive and dissipative parts of the stored energy
separately, one can use their dependence from frequency.

7. CONCLUSION

In accordance with the causality principle [12], there is one-to-
one association between microscopic structure of a medium and its
(effective) constitutive parameters defined in all frequency range up
to infinity. Such definition cannot be consistently deduced from
Maxwell’s equations because it has to reflect macroscopic properties
of a particular medium. However, in order to define the energy density
of the quasi-monochromatic macroscopic electric and magnetic fields
in any dispersive lossy medium, a linear approximation of dependences
ωε(ω), ωµ(ω) is sufficient. That allows general definition of the average
macroscopic field energy density comprised of the dispersive and
dissipative parts in accordance with Poynting’s theorem in dispersive
lossy medium discussed in Section 2.

Using the circuit model of a structural element of dispersive
lossy medium corresponding to the circuit model of an electrically
small antenna, effective constitutive parameters were described
by generalized Lorentz-type dependences with frequency dependent
parameters. The resonant model corresponding to the Lorentz-type
dependences represents a particular case of generalized Lorentz-type
dependences in the case of neglecting by antiresonant and radiative
properties of structural elements.

It was shown that concept of electrically small structural element
in the definition of constitutive parameters [12–14] may be refined.
Accuracy of the definition of the average macroscopic field energy
depends on the the quality factor of corresponding structural elements.
According to the model, representation of resonant and antiresonant
properties is necessary for an accurate description of properties of
structural elements in accordance with the generalized Lorentz model.

Modelling of dispersive lossy medium by an ensemble of
electrically small antennas in Sections 4 and 5 showed that constitutive
parameters of the medium are defined by the admittance of electrically
small antennas. The energy density of the electric (20) and
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magnetic (27), (30) fields in dispersive lossy medium comprised of
electrically small structural elements with non-overlapping resonances
Q À 1 was defined by functions of frequency derivatives of constitutive
parameters in accordance with Poynting’s theorem in dispersive lossy
medium. The obtained energy densities of macroscopic electric and
magnetic fields in dispersive lossy medium were described by similar
types of relations, which, consistent with (9), generalise Brillouin’s
formula for the case of lossy dispersive medium.
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