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Abstract—Magnetic Induction Tomography (MIT) is a relatively new
and emerging type of tomography techniques that is able to map
the distribution of all three passive electrical properties (PEPs). Its
non-invasive and contactless features make it an attractive technique
for many applications compared to the traditional contact electrode
based electrical impedance tomography. Recently, MIT has become a
promising monitoring technique in industrial process tomography, and
the area of the research interest has moved from 2D to 3D because
of the volumetric nature of electromagnetic field. Three dimensional
MIT images provide more information on the conductivity distribution,
especially in the axial direction. However, it has been reported that
the reconstructed 3D images can be distorted when the imaging object
is located at a less sensitive region. Although this distortion can
be compensated by adjusting the regularisation criteria, this is not
practical in real life applications as the prior information about the
object’s location is often unavailable. This paper presents a memory
efficient 4D MIT algorithm which can maintain the image quality
under the same regularisation circumstances. Instead of solving each
set of measurement individually, the 4D algorithm takes advantage of
the correlations between the image and its neighboring data frames
to reconstruct 4D of conductivity movements. The 4D algorithm
improves the image qualities by increasing the temporal resolution.
It also overcomes some sensitivity issues of 3D MIT algorithms and
can provide a more stable result in terms of the size consistency
of the reconstructed image. Several experimental results using real
laboratory data are presented for validating the proposed algorithms.
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1. INTRODUCTION

Magnetic induction tomography (MIT) is an electromagnetic imaging
technique that images all three PEPs distribution inside a region
of interest [1]. Because of its contactless feature, the entire data
collection process becomes non-invasive, which makes it suitable in
many applications in both industrial fields (non-destructive pipeline
imaging, metal production monitoring and material inspection [2–
4]) and biomedical fields [5, 6]. For a typical MIT system, coils
are used as the transmitters and receivers based on the mutual
inductance theory. The technique involves the inductive measurement
of magnetic coupling between different coil combinations. The
measured data is then manipulated using mathematical forward and
inversion techniques to create an image of the distribution of the
electrical properties.

In the literature, MIT have been extensively studied in 2D and
most of the systems are still producing low resolution 2D imaging
result [3, 4, 7–10], which focuses on the cross sectional distribution
and assumes there is no axial (z-axis) conductivity variation. For
some applications where the axial conductivity change is significant,
this assumption is unrealistic and the 2D imaging is no longer
applicable. In order to extract the variation in axial direction, 3D
images are required [11–13]. 3D MIT is valuable for imaging the
volumetric distribution of electrical conductivity and believed to be
the future expansion trend of MIT applications. Some of the early
work in 3D MIT discuss the sensitivity map calculation and inverse
problem [14, 15] and has later been validated using a full scaled 3D
system [16]. Like other imaging techniques [17–21], 3D MIT systems
can only produce sensible results when the measured voltage difference
is greater than the system noise level, i.e., adequate signal to noise
ratio (SNR). A well known technique to improve SNR performance is
measurement averaging, which can be applied when imaging static
or slow moving objects [22]. However, in applications where the
measuring target is involved with movement, the averaging technique is
not appropriate as the measurements are not all taken at the same time.
In this case each measurement set is no longer completely independent
to each other. Averaging between the measurement sets can reduce
the temporal resolution of the reconstructed images.

In this paper, we are interested in the 3D MIT reconstruction when
the imaging object is moving within the measuring space. 4D images
are not simply the combination of several 3D images. In the case
where the movement is involved in the measurement, there are some
degrees of correlation between each measurement frame. This paper



Progress In Electromagnetics Research, Vol. 129, 2012 19

proposes a 4D temporal algorithm which extracts these correlation
information to improve the noise performance and the stability over
the unaveraged 3D images. In [23], Kalman filtering was proposed for
temporal reconstruction in 2D MIT. The temporal algorithm proposed
in this paper can be represented as an extended Kalman filtering
which realise 4D temporal reconstruction in a full scale volumetric
MIT system. Several 4D experiments will be demonstrated to show
the advantages of the algorithm on improving the image qualities.
Higher temporal resolution makes the MIT a good candidate for
4D imaging technique which can be applied into various dynamical
object monitoring applications, such as molten metal flow monitoring
and ice front detection for cryosurgery operation. Both of these
applications require the additional information on dynamical behavior
of underlying process, which can potentially be provided by the 4D
algorithm presented in this paper.

2. SYSTEM SETUP

A typical three dimensional MIT system comprises multi-layer of sensor
coils. Although a 3D image can also be generated by a single layer MIT
system: moving the the single layer sensor array along the z-direction
during the data collection process. In this case a 3-D image can be
constructed by stacking up several 2-D tomographs. However, this is
only applicable when the imaging target is static or very slow moving
with respect to the frame rate. In order to realise the 4D temporal
imaging, a multi-layer MIT system is necessary.

The MIT hardware used in this paper is the Bath Mk-II
system [16], with an operational frequency of 20 kHz. The system
comprises 16 channels, which are divided into two layers (8 sensor
coils at each plane). The distance between the layers is 6 cm, with an
cylindrical imaging area of 13 cm height and 11 cm diameter. The

Figure 1. The system block diagram of the volumetric MIT system:
Bath Mk-II.
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sensor coil is a 50 turns hand wound air cored coil, which has a
dimension of 4 cm diameter. These dimensions must be considered
when calculating the forward problem in order to formulate a more
accurate model. Figure 1 shows the system block diagram of the
volumetric MIT system. With a 16 channel system, (16× 15)/2 = 120
measurements can be collected at the end of the measuring cycle.

The main disadvantage of the system is that most of the image
processing time was spent at the data acquisition. At this stage the
Mk-II system takes 4 seconds to complete 120 measurements, i.e., the
image can only be updated at a rate of 0.25 frame/sec. To encounter
this, the speed of the moving objects in the experiments need to slow
down to match the system frame rate.

3. EDDY CURRENT MODELING

The forward problem in MIT is the simulation of the measurement
data for a given conductivity distribution and excitation signal. The
forward problem needs to be solved in order to obtain the sensitivity
map for the later image reconstruction task. The forward problem of
MIT is a general eddy current problem, where the magnetic vector
potential (A) needs to be simulated using Maxwell equations [14, 24].
Validation of the forward model has been done in a previous study.
Under a quasi-static approximation, given that

E = −iωA (1)

and
B = ∇×A, (2)

we can obtain the following equation:

∇× (
µ−1∇×A

)
+ iωσA = Js, (3)

where µ is the electrical permeability, σ the electrical conductivity,
and ω the angular frequency. Equation (3) is a differential form of the
eddy current problem. Alternatively, we can solve the problem using
its integration form by implementing the Biot-Savart Law, which is
used to define the magnetic field at each mesh element [24–26]

B =
∫

µ0

4π

Idl × r

|r|3 , (4)

where I is the source current, dl a vector whose magnitude is the length
of the differential element of the wire, µ0 the vacuum permeability
constant, and B the integration of the magnetic field along each source
current segment. This magnetic vector potential A is defined based
on the system dimension we described in the previous section. A
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simple grid mesh was implemented into the forward model, with no
complicated discretisation of sensor coils.

When the forward model is solved, the sensitivity map, also known
as Jacobian matrix, can then be defined. The sensitivity term for each
element we defined in the system is

δVij

δσk
= − ω2

IiIj

∫

Ωek

{Ai} · {Aj}dv. (5)

Equation (5) gives us sensitivity of the induced voltage pairs Vij

of coils of i, j with respect to an element. Ωek is the volume of element
number k, Ii and Ij are excitation currents for the sensor i and sensor
j respectively. Each row of the Jacobian matrix will be sensitivity of a
given measured voltage over the changes in conductivity distribution.

4. 4D IMAGE RECONSTRUCTION

4.1. Inverse Problem

The inverse problem for MIT is to convert the voltage measurements
into a conductivity distribution image. The inverse problem in
MIT is generally ill-posed and non-linear. However, solving a non-
linear problem requires extensive computation of electromagnetic fields
and updating the sensitivity maps [27]. Therefore, in most of the
electrical tomography cases, linear responses are often presumed
when reconstructing images using inverse solvers. This linear
response assumption can simplify the non-linear problem to a linear
approximation, where the problem can be solved through the matrix
multiplications.

Given a linear response equation Kf = b, where K is the Jacobian
matrix with size m× n, f is the conductivity distribution and b is the
normalised sensor measurement, the single step Gauss Newton inverse
solver with Tikhonov regularisation is to find the solution f which has
the minimum error function:

‖b−Kf‖2
2 + ‖f − f0‖2

2. (6)
If f0 is set to 0, the linear algebra in Equation (6) can be rearranged

to the following form

f =
(
K>K + λR

)−1
K>b, (7)

where R is the weighting matrix and λ the Tikhonov regularisation
parameter. Choosing λ properly can effectively increase the system
stability and remove the sharp edge from the reconstruction images,
which results in a stable reconstructed object with smooth surface.
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The main challenge with this type of inverse technique
(Equation (6)), especially in a large scaled 3D problem, is that a
tremendous amount of memory is required to solve the K>K and its
inversion calculation. Since in most of the 3D cases, the number of
columns n in matrix K is too large to compute when solving the inverse
problem, some alternative inverse methods are required to resolve the
limited memory issue [22, 28]. Equation (6) can be rewritten as:

f =

[(
K>K + λR

)−1
K>

(
K

1
λ
PK> + I

)(
K

1
λ
PK> + I

)−1
]
b

=

[(
K>K+λR

)−1
(
K>K+λ

1
P

) (
1
λ
PK>

)(
K

1
λ
PK>+I

)−1
]
b

=
(
PK>

) (
KPK> + λI

)−1
b, (8)

where P = R−1 and R is the regularisation matrix that represents the
spatial correlation between imaging pixels. R is usually the identity
matrix in MIT. Using Equation (8), the K>K multiplication can be
avoided, hence the memory size and the computational time required
for solving the inversion can be reduced dramatically. For a three
dimensional 17 × 17 × 17 grid mesh, Equations (7) and (8) require
4.99 seconds and 0.03 second respectively for solving the same linear
equation (Intel T7700 Core2Duo 2.4 GHz CPU). Using Equation (8)
can effectively increase the time efficiency by a factor 160. Please note
that Equation (8) does not consider any temporal information in the
reconstructed data. Each data frame is still solved independently with
no correlation involved.

4.2. Temporal Solver

Instead of using the Kalman filtering, which the image is reconstructed
based on the current data and the past image frames [23], the 4D
algorithm we implement uses the neighboring data set which are nearby
in time to estimate the reconstructed image [22]. Figure 2 shows a
simple illustration of 4D MIT image reconstruction. Each time frame
corresponds to a 3D image using Equation (8), and each 4D image is
reconstructed based on the correlation between several 3D images.

Reconstructing one 4D image requires multiple 3D image frames.
If a sequence of the 3D measurement sets are obtained within a time
period from t−d to td, the total measurement sets can be formulated
as

b̃ = [b−d,b−d+1, . . . ,bd−1,bd] (9)
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Figure 2. Illustration of 4D image reconstruction (d = 1), each of the
4D image is reconstructed by 2d + 1 frames of 3D images.

and the corresponding conductivity distribution is

f̃ = [f−d, f−d+1, . . . , fd−1, fd] . (10)

Given a linear forward model b = Kf , all the models within the
time frame can be concatenated into the following form




b−d

b−d+1
...

bd−1

bd




=




K 0 . . . 0

0
. . .

... K
...

. . . 0
0 . . . 0 K







f−d

f−d+1
...

fd−1

fd




(11)

and also as
b̃ = K̃f̃ , (12)

where K is the Jacobian matrix, which is assumed to be a constant
during the time frame. The concatenated Jacobian matrix K̃ is I⊗K,
where the identity matrix has a size of 2d + 1. The ⊗ notation is the
Kronecker product, which results in K̃ as a block diagonal matrix.

In the temporal algorithm, the conductivity estimation at time
t0 is calculated from the data set within the time frame from t−d to
td. The correlation corresponding elements between adjacent frames
can be represented by an inter-frame correlation coefficient γ, which
has a range from 0 (independent) to 1 (fully dependent). As the time
difference between each frame increases, γ becomes closer to 0 as the
correlation decreases between the adjacent measurements. Frames with
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large time lag can be considered independent. The inversion equation
with Tikhonov regularisation (Equation (8)) can be re-written as

f̃ =
(
P̃K̃>

) (
K̃P̃K̃> + λW̃−1

)−1
b̃, (13)

where W̃ = I ⊗ W and W is the regularisation matrix for the
measurement noise. W is modeled as identity matrix since the
measurement noise between frames are assumed independent. λ here
again is the regularisation parameter. P̃ = T ⊗ P where T is the
regularisation matrix that represents the temporal correlation between
the sequential images. The size of the T is determined by the time step
d and is defined as follows:

T =




1 γ . . . γ2d−1 γ2d

γ 1 . . . γ2d−2 γ2d−1

...
...

. . .
...

...
γ2d−1 γ2d−2 . . . 1 γ
γ2d γ2d−1 . . . γ 1




. (14)

From Equations (13) and (14), we can obtain

f̃ =
[
T⊗

(
PK>

)] [
T⊗

(
KPK>

)
+ λ

(
I⊗W−1

)]−1
b̃, (15)

where the temporal reconstructed result f̃ has the following form:



σ̃−d
...

σ̃0
...

σ̃d




= f̃ . (16)

Although this reconstruction result is an augmented image
sequence, typically only the current conductivity distribution σ̃0 is
interested and will be used as the reconstructed 4D image result.
In reality, Both b̃ (acquired by real system) and K̃ (FEM model of
the forward problem) contribute error and noise to the inverse solver.
However it is shown that in a noisier data, the 4D algorithm actually
outperforms the 3D algorithm [29].

5. EXPERIMENTAL RESULTS

In order to evaluate the performance of proposed 4D method in
comparison with to the traditional single step 3D method, several
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Figure 3. Bath Mk-II system
and the sample objects used in the
experiments.

Figure 4. The L curve plot used
for choosing regularisation factor.

laboratory based experiments were conducted using the Bath Mk-II
system. A 2.4 cm metallic iron cube and a 20 cm long aluminum rod
were used as imaging targets (Figure 3) Each object was moved into the
system imaging area under different angles and movement directions.
All the results shown in Figures 5 and 6 are the comparison between the
reconstructed 3D and 4D images. The regularisation parameter was
chosen based on the L-curve method (Figure 4) and then empirically
checked for a wide range of parameters near the ideal value. A safer
choice of 0.1 regularisation factor was selected, due to the fact of limited
measurement for volumetric imaging. A larger regularisation factor can
make the reconstructed images more stable and noise-resistant. The
temporal correlation coefficient γ and the time step d were chosen to
be 0.5 and 1 respectively for temporal reconstructions. All the object
movements in the experiments were well matched according to the
frame rate of the MIT system.

In the first two experiments a moving steel cube was used to
evaluate the performance of the temporal algorithms. Figure 5(a)
shows the experimental result when the metallic cube was moving
vertically downwards with an estimated speed of 2.5 mm/sec into the
central area of the imaging region. Figure 5(b) shows the result under
the same movement speed but different path orientations; the metallic
cube was moved diagonally across the imaging region.

In all cases, the 4D algorithms successfully reconstructed the
sample movement from the 3D results. To achieve a better noise
performance, all the images shown here are the thresholded result
from the reconstructed images. In electrical tomography, it is known
that the centre of the imaging area always has a weaker sensitivity,
since the region is more distant from the coil sensors. With the same
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(a) (b)

Figure 5. Comparison between 3D and 4D MIT visualisation of a
moving metallic cube which move (a) vertically downwards and (b)
diagonally downwards.
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Figure 6. Comparison between 3D and 4D MIT visualisation of a
moving aluminum rod.
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regularisation factor, the shape of the reconstructed image can be
distorted during the moving process depending on the object’s location.
In the experimental results shown in Figure 5, the reconstructed size of
the 3D imaging object was observed to be smaller when the steel cube
was moved to the central area of low sensitivity. Here the advantages
of using the 4D algorithms could be seen. Aside from the successful
temporal 4D reconstruction, the size of the reconstructed object was
considered to be much more consistent throughout the entire movement
process. When the steel cube was moved through the centre region,
the difference in size of the imaged steel cube when placed in the
central region is negligible in 4D images. These results indicate that
4D imaging can provide animations/images with a better stability in
terms of the shape consistency.

During the first two experiments the steel cube with 2.4 cm side
length was used. To further verify our hypothesis that 4D algorithms
can overcome the the issue of poor sensitivity and enhance the image
stability, another experiment was performed using the aluminum rod.
This time the rod was inserted vertically downwards near the wall
of the imaging area, also under an estimated speed of 2.5mm/sec.
In the previous 3D literature [16], it is known that the area around
the side wall and between the horizontal sensor layers also has a low
sensitivity, due to the nature of the electromagnetic field distribution.
Less shape distortion is expected in the image in the reconstructed
4D images if the hypothesis is correct. Figure 6 shows the results of
the rod experiment, which compares the reconstruction/visualisation
of the 3D and 4D MIT methods.

As stated previously, MIT has a limited resolution due to the
nature of the soft-field tomography. All the 3D/4D results for the
experiments were visualised in the contour manner as it can best
highlight the central aspect of this paper in terms of the improvement
on shape preservation. The results from the rod experiment are also
promising. In both cases shown in Figure 6, the movement of the
object were reconstructed successfully; the rod shape is clear in the
final frame of both the 3D and 4D sequences. However, the shape of
the reconstructed object started to be distorted when the rod was
moved into the low sensitivity area (starting from the 4th frame),
i.e., the regions near the side wall and in between the sensor layers.
One can see that the size of the reconstructed rod in the images
were again decreased when the aluminum rod entered the insensitive
region. In contrast, the size distortion phenomenon is shown to be
less severe in the 4D images. It is worth noting that if the 3D images
were reconstructed individually, the shape distortion problem could be
rectified by adjusting the regularisation factor when solving the inverse
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problem. However, this can only be realised if the information of the
object location/moving path can be obtained in advanced, which is
unrealistic for most of the applications. With no prior knowledge,
the regularisation factor must be consistent during the entire image
reconstruction process. Under the same regularisation, it is shown that
the temporal correlation algorithm can effectively image the object
movement with a better stability (size consistency) regardless of the
poor sensitivity.

6. CONCLUSION

A 4D temporal image reconstruction has been demonstrated using
MIT for the first time. By extracting the correlation information
between the 3D data frames, the 4D conductivity distribution can
be reconstructed. It is demonstrated that implementing the temporal
correlation can improve not only the temporal resolution of the images,
but also the spatial resolution in terms of the image stability. The
4D algorithm can correctly reconstruct the movement of the object,
and the size of the reconstructed object will not be altered due to
the inconsistency of the sensitivity distribution within the imaging
volume. The implementation of the 4D algorithms is promising and can
be applied into many MIT applications which involves the movement
of imaging samples. In 4D reconstruction, the temporal correlation
coefficient γ needs to be decided based on the frame rate of the
imaging system and the movement speed of the imaging target. The
main ‘bottleneck’ of the experiments presented in this paper is the
slow frame rate of the system. To demonstrate the performance of
the 4D algorithms, the metallic object was moved under a relatively
slow speed. With a faster data acquisition system, the experiments
can be performed at a faster pace, which would probably be more
realistic in terms of the real life applications. However, the aim
of this paper is to demonstrate the feasibility of applying the 4D
algorithms into MIT techniques. Improving the system frame rate
is beyond the scope of this paper and will be addressed in future work.
Under the same regularisation factor throughout the entire moving
process, the obtained 4D results have more consistency in terms of
shape reconstruction. If a prior knowledge of the temporal change
of the conductivity distribution is known (which is often available in
the physical model of a real application), then the selection of the the
optimal γ can be done in a more reasonable way. The 4D algorithm
expand the previous Kalman filter based temporal algorithms to
a complete 4D MIT imaging system. By introducing an explicit
control over the regularisation factor and the weighted time correlation
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coefficient, the image can be reconstructed successfully, even the
imaging object is moving under high speed around the insensitive
region in the measuring space.
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