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Abstract—Due to the difficulty in estimating the 2D image plane
of the inverse synthetic aperture radar (ISAR) image, we recently
proposed a new paradigm to construct the training database based
on the flight scenario. However, because the flight condition for the
training and the test data was identical, much more study is required
for this method to be applied to the real ISAR scenario. This paper
presents a study on the factor that can affect the applicability of
scenario-based method to the real target ISAR recognition. Simulation
results using five scatterer models show that accurate measurement
of flight direction and aspect angle variation are required and enough
bandwidth larger than 200 MHz should be guaranteed for the successful
classification.

1. INTRODUCTION

Inverse Synthetic Aperture Radar (ISAR) imaging is a technique
applied to generate a high resolution two-dimensional (2D) image
of a target [1–8] and shows the 2D distribution of the radar
prospection (RCS) [9–17] of the target. This image can be generated
by synthesizing many range profiles [18, 19] obtained from various
observation angles. In this process, the scattering centers of a target are
projected onto the 2D image plane formed by the rotational component
of the target. ISAR has many military applications [20].
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Because of the 2D nature of the ISAR image, construction of
the training database for automated recognition requires estimation
of 2D image plane of a target. This requirement impedes successful
recognition because, in reality, targets are generally engaged in
complicated motions, which seriously degrade the classification result if
image planes corresponding to such motions are not correctly measured
during the training phase. For this reason, we have previously proposed
a new paradigm in which a training database was constructed based
on the flight scenarios of the target to compare the test image of the
target with the training image that corresponds to the flight scenario
of the unknown target [21].

Although our simulations have proved the efficiency of the new
paradigm under the ideal condition that used five point scatterer
models modeled by applying the computer aided design CAD data
of the real aircraft, the new paradigm still needs to be studied further
before it can be applied to the real target recognition. In the real
measurement scenario, discrepancy between the training database and
the test database can occur due to the differences in the flight direction
~vd and the aspect angle variation ∆θ of the target. In addition, the
limitation on the available bandwidth can degrade the performance of
the scenario-based paradigm.

This paper conducts an in-depth analysis of the scenario-based
training-database construction method in terms of signal-to-noise
ratio, bandwidth, training data size and the classification method
under the error in the flight direction and the aspect angle variation.
In simulations using five scatterer models, accurate measurements of
~vd and ∆θ, bandwidth B ≥ 200MHz were required for successful
recognition. When ~vd was at an angle to the viewing vector, the size
of the training data could be reduced to 21.7% of the original size.

2. PRINCIPLES OF THE SCENARIO-BASED
CONSTRUCTION METHOD

2.1. The Scenario-based Construction Method

Because infinite memory space and classification time would be
required to store 2D training images for all rotational angles at each
3D point, we proposed a scenario-based construction method [21]. In
this method, the 3D space (training space) was uniformly sampled
assuming that a target moved at a given velocity in a given direction
vector, ~vd, starting from each given grid point. Then, after deriving
angular variation ∆θ that yields the same cross-range resolution ∆rc =
λ/(2∆θ) (λ = wavelength) as the range resolution ∆r, the image was
stored in the training database (Fig. 1).
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Figure 1. Scenario-based construction method.

In deriving the ISAR image, we avoided the time-consuming
translational motion compensation using completely known motion
parameters of the target. Using the known azimuth angle φ and
elevation angle θ at each pulse emission, the aircraft pose was
constructed by rotating the target around the z and y axes. Then, the
received radar signal was computed and the ISAR image was obtained
by using matched-filtering in the range direction and inverse Fourier
transform (IFT) in the cross-range direction.

2.2. Signal Modeling and Imaging Algorithm

For the radar signal, we assume the monostatic chirp radar signal
widely used for high resolution radar imaging. The transmitted chirp
signal is given by

r(t) = A0e
j2π
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where r (t) is a transmitted signal at time t, A0 is its amplitude, f0 is
the start frequency, B is the bandwidth, τ is the pulse duration and
rect is a function whose value is 1 for t − τ/2 ≤ t ≤ t + τ/2 and 0
otherwise. The received signal reflected from a target composed of K
scattering centers at aspect angle θ is
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where Ak is the amplitude of scattering center k, and dk,θ is the time
delay between the radar and scattering center k; dk,θ is calculated using
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plane wave approximation, in which the distance to a scattering center
is that projected onto the radar line-of-sight vector.

For ISAR imaging, we use the range-Doppler algorithm [22–24],
which assumes that the relative rotational angle between the target
and the radar is small and scatterers do not migrate into neighboring
range bins for the small angle variation. This algorithm consists of
four steps: range compression, TMC and azimuth compression. In
range compression, the reflected signal (2) is matched-filtered to yield
the high resolution range profile (RP) at each aspect angle and TMC
is carried out to remove the phase error caused by the motion of
the target. Finally, the fast Fourier transform (FFT) is conducted
to each range bin to resolve scattering centers in the cross-range
direction. Among the three steps, TMC is the most important step
and is composed of two steps: range alignment and phase adjustment.
One dimensional entropy minimization method was used for the range
alignment and for the phase adjustment, two dimensional entropy
minimization method was used (see [22–24]).

2.3. Multiple Signal Classification (MUSIC) Algorithm

This paper applies a multiple signal classification (MUSIC) algorithm
to further improve the resolution of the ISAR image. This method
belongs to the modern spectral estimation technique and is based on
the characteristic that the eigen vector of the noise in the covariance
matrix is orthogonal to the direction vector of the scatterer on the
ISAR image. Once the covariance matrix is estimated, the b eigen
vectors corresponding to the smallest b eigen values constitute the noise
matrix EH

n and the ISAR image is given as

IMUSIC(x, y) =
e(x, y)He(x, y)

e(x, y)HEH
n Ene(x, y)

(3)

where e (x, y) is the direction vector at (x, y) position on the image and
H is the complex conjugate transpose. If a scatterer exists at (x, y),
e (x, y) is orthogonal to EH

n and the denominator in (3) becomes 0 or
very close to 0. Therefore, a sharp peak is generated at that position.
MUSIC is used to derive high resolution ISAR images using narrow-
band radar signals (see [5] for the procedure).

2.4. Classification Method and Overall Classification
Procedure

Two classifiers are compared in this paper; the nearest neighbor
classifier (NNC) using the principal component analysis (PCA) [25–
27] of the image classifier and the polar mapping classifier (PMC). For
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the NNC, each M×N training image k is first aligned using the center
of mass (COM) of the first image which is converted to MN ×1 vector
fk. Then, PCA is applied to reduce the dimension of the vector and to
remove the redundancy in the vector. fk is compressed into a feature
vector with a smaller dimension l using the PCA matrix P as follows:

x = PT fk (4)

where

P = [v1,v2, . . . ,vl] (5)

The column vector vk in P are the eigen vectors corresponding to the
largest l eigen values of the sample covariance matrix [28]. P is also
used to compress the test vector of the aligned test image and the
compressed vector is inserted to NNC for the final classification. NNC
uses a simple Euclidean distance between two vectors

d(x1,x2) = ‖x1 − x2‖ (6)

Then, the class of an unknown test vector xu is determined by

i = minid(xu,xi) (7)

where xi is a training vector compressed by PCA that belongs to the
target i.

The PMC [28] used in this paper is invariant to the variation of
the scale, and the translation of the ISAR image uses a projection
of the polar mapped image onto the r-axis (r-projected image), a
projection onto the θ-axis (θ-projected image), and the polar image
compressed by PCA. Targets in the training database are coarsely
sifted using the correlation coefficients of their r-projected images, and
the θ-projected images of the coarsely-sifted targets are fine-sifted by
seeking the maximum cross-correlation. The final decision is made
using the PCA images of the fine-sifted images.

Based on the principles mentioned above, classification is
conducted using the unknown target. The test target starts from
a random location in the training space, and the reflected signal is
collected at each point on the trajectory. Then, matched-filtering,
TMC and cross-range FFT are applied to obtain the test ISAR image
(Fig. 2), and the absolute value of the derived image is used for
classification using PCA + NNC and PMC. Classification performance
is expressed as the correct classification percentage

Pc =
Nc

Nt
× 100% (8)

where Nc is the number of the correct identifications and Nt is the
number of test sets.
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Figure 2. Classification procedure.

3. SIMULATION RESULTS

3.1. Effect of the Errors in the ~vd and the ∆θ

The first simulation was conducted to study the effect of the errors in
~vd and ∆θ. We used five targets consisting of isotropic point scatterers
derived from 3D CAD data of real aircraft; Boeing 737, F18, F14, Su35,
and Rafale jets (www.3dcadbrowser.com). As in the general ISAR
simulation, jet engine modulation [29–32] was not considered. For the
radar system, we used a monostatic chirp radar with pulse repetition
frequency = 2 kHz, center frequency = 9.15GHz, B = 200 MHz (cross-
range resolution ∆rc = 0.75m), sampling frequency = 512MHz and
τ = 30 µs. To study the effect of the noise, reflected signals were
collected with the signal-to-noise ratios (SNRs) 0, 10, 20 and 30 dB.

To construct the training images, we assumed that the jets were
flying at velocity v = 300 m/s in one of three directions, ~vd = [0 − 1 0],
[−1 −1 0] and [−1 0 0], until they reach ∆θ = 1.26◦, which corresponds
to the cross-range ∆rc. Because the angular variation is large in
~vd = [−1 − 1 0] and [−1 0 0], the test space for these scenarios was
constructed at a long range using axis values 80 ≤ y ≤ 120 km,
−16 ≤ x ≤ 16 km, and 2 ≤ z ≤ 10 km. However, because the angular
variation which is mainly due to the elevation variation is very small for
[0−1 0] flight, the range in y-axis was 6 ≤ y ≤ 10 km, −16 ≤ x ≤ 16 km
and 2 ≤ z ≤ 10 km. Then 125 training samples per target were stored
by dividing the training space into 5× 5× 5 = 125 grid points in each
of the three axes (125 × 5 = 625 training images). For each scenario,
50 images of each target were derived (50× 5 = 250 test images).

In the test phase, two groups of test images were constructed;
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one without the errors and the other with the errors in ~vds and ∆θs
to include errors in the real measurement situation; error in ~vd yields
different image planes from those in the training database and the error
in ∆θ cause scaling of the image in cross-range direction. In this paper,
the test ~vd was selected at random in a range of ±[0.1 0.1 0.1] from the
training ~vd and ∆θ was selected at random in a range of 1.26 ± 0.5◦
(0.534 ≤ ∆rc ≤ 1.235m). For the aircraft motion, a range of velocities
(250 ≤ v ≤ 350 m/s) and accelerations a (0 ≤ a ≤ 5m/s2) were used
to consider the difference of v and a between the training and the test
targets.

The ~vds for the test ISAR image were much different from [0 −1 0]
due to the error (Fig. 3(a)), and the ISAR images with the +0.5◦ and
−0.5◦ angle errors at 30 dB SNR were different due to the scaling in
cross-range direction (Figs. 3(b) and (c)). In this scenario, scatterers
were not well-spread in the two images because the ISAR images were
mainly formed using the elevation angle variation and thus, the degree
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Figure 3. Flight directions, scaled ISAR images and classification
result (~vd = [0 − 1 0]). (a) Flight directions. (b) ISAR image
(∆θ = 0.76◦). (c) ISAR image (∆θ = 1.76◦). (d) Classification result.
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of scaling was not considerable. The overall performance of PMC
was better than that of PCA + NNC due to the translational and the
rotational invariance of the PMC (Fig. 3(d)). For PCA + NNC, the
image can be rotationally variant even though it is aligned using COM.
This variance degraded the classification result. The performance
degradation of PMC (ranging between 1 and 5%) was smaller than
that of PCA + NN (ranging between 6 and 9%) in both cases.

In the scenario of ~vd = [−1 − 1 0], scatterers were well-spread in
the two images because the ISAR images were mainly formed using the
azimuth angle variation (Figs. 4(a) and (b)). Due to the large scale
difference, a larger degradation of Pcs was yielded for PMC than that
in [0 − 1 0]; the amount of degradation ranged from 4 to 9% for both
PCA + NNC and PMC (Fig. 4(c)). The overall performance of PMC
is better than PCA + NNC.
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Figure 4. Scaled ISAR images and classification result (~vd = [−1 −
1 0]). (a) ISAR image (∆θ = 0.76◦). (b) ISAR image (∆θ = 0.76◦).
(c) Classification result.
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Figure 5. Classification result (~vd = [−1 0 0]).

PMC outperformed PCA + NNC for all SNRs in the scenario of
~vd = [0 − 1 0]. Similar to the [−1 − 1 0] direction, the degree of
image scaling was larger than that in [0 − 1 0] direction, and thus,
degradation of Pcs in PMC was larger than that in [0 − 1 0]; the
amount of degradation ranged from 4 to 9% for both PCA+NNC and
PMC (Fig. 5).

3.2. Effect of Bandwidth Reduction

To study the effect of the reduction in B, two Bs, 100MHz (∆r =
1.5m) and 200MHz (∆r = 1.5m), were used at SNR = 10 dB under
the same simulation condition as in the Subsection 3.1. For the two
groups of test images mentioned above, the simulation results using
PCA + NNC and PMC were compared for each scenario.

For each flight direction, reduction of Pcs was considerable
regardless of the error in ~vd and ∆θ (Table 1). Due to the lower quality
of the ISAR image, PCA + NNC yielded poor results. In PMC, poor
estimation of COM yielded poor r and θ-projected images, and as a
result, Pcs decreased. In the first case (without error), the reduction
of Pcs in PCA + NNC was 7.6, 20.4, and 18.8% in the three ~vds. In
PMC, the reduction was 20, 21.6 and 11.6%. In the second case (with
error), Pcs in PCA + NNC decreased by 8, 19.2 and 14.8% and the
reduction of Pcs in PMC was 17.2, 28.8, and 33.2%.

3.3. Result of MUSIC Algorithm

For each ~vd, MUSIC was applied to the training and the test ISAR
images were derived at SNR = 10dB to further improve the resolution,
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Table 1. Result of MUSIC.

Scenario B PCA + NNC PMC

~vd = [0 − 1 0]
200MHz 65.2% 72.0%
100MHz 57.2% 54.8%

~vd = [−1 − 1 0]
200MHz 86.0% 89.2%
100MHz 66.8% 60.4%

~vd = [−1 0 0]
200MHz 87.2% 90.4%
100MHz 72.4% 57.2%
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Figure 6. Enhancement of ISAR image by MUSIC at B = 200MHz
(~vd = [−1 − 1 0]). (a) Original, (b) MUSIC.

and the performance was compared with that of the original image.
Simulation conditions were the same as in Subsection 3.2. The
subarray size to derive the covariance matrix for MUSIC was sent
to M/3 × N/3 (see [13] for the definition of the subarray). Clearly,
the resolution of the ISAR image was improved by MUSIC algorithm
(Fig. 6).

At B = 200 MHz, MUSIC did not improve Pcs very much; Pcs
slightly increased for PCA + NNC and slightly decreased for PMC
(Table 2). This proves that B = 200MHz with the conventional
range-Doppler algorithm provides high-resolution ISAR images good
enough for the recognition of the real-sized jets. At 100 MHz, MUSIC
increased Pcs considerably. The amount of improvement in PMC was
more than that in PCA because Pcs in PMC decreased very much due
to the bandwidth reduction. These findings led us to conclude that
time-consuming MUSIC is not necessary if enough bandwidth is given
by the radar system.
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Table 2. Effect of MUSIC.

Scenario B
Original image Image by MUSIC

PCA + NNC PMC PCA + NNC PMC

~vd = [0 − 1 0]
200MHz 65.2% 72.0% 66.8% 69.2%

100MHz 57.2% 54.8% 71.2% 67.2%

~vd = [−1 − 1 0]
200MHz 86.0% 89.2% 87.2% 88.4%

100MHz 66.8% 60.4% 78.8% 80.8%

~vd = [−1 0 0]
200MHz 87.2% 90.4% 86.4% 90.8%

100MHz 72.4% 57.2% 79.6% 82.4%

(a) (b)

(c)

Figure 7. Classification result for training data reduction. (a) [0−1 0].
(b) [−1 − 1 0]. (c) [−1 0 0].

3.4. Effect of Training Data Reduction

We also conducted a simulation to study the influence of the number
of the training images Ntr = N3

g per target where Ng is the number
of grids in each axis. Ng was changed from 5 to 2 at SNR = 10dB.
For ~vd = [0 − 1 0], ISAR images did not represent each target clearly
because scatteres were positioned in narrow regions (see Fig. 3).
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Therefore, Pcs were very sensitive Ng reduction (Fig. 7(a)). For
~vd = [−1 −1 0] and [−1 0 0], ISAR images represented each target very
clearly because scatterers were widely spread in the image. Therefore,
Pcs for 3 ≤ Ng ≤ 5 did not decreased considerably. Because Pcs
reduced less than 2% for Ng = 3, the training data size could be
reduced to 27/125× = 21.6% of the original training database in the
two scenarios (Figs. 7(b) and (c)).

4. CONCLUSION

To enable the scenario-based construction method to recognize targets
successfully, this paper performed an in-depth analysis of the scenario-
based method to construct an ISAR training database using PCA +
NNC and PMC in the existence of the error in ~vd and ∆θ. The
performance of the two classifiers was degraded in three ~vds. Therefore,
an accurate measurement of ~vd and ∆θ are required for the scenario-
based construction method for the successful recognition of targets.

Due to the rotational invariance, Pcs derived by PMC with
B = 200 MHz were higher than those by PCA + NNC regardless
of the error in ~vd and ∆θ. However, Pcs of PMC reduced much
more than those of PCA + NNC because of the error in estimating
COM. Therefore, sufficient B ≥ 200 MHz is required for PMC to
be used for the recognition of the real target. The high resolution
technique MUSIC was useful for small Bs; Pcs at B = 100 MHz were
improved considerably. However, at the sufficient B, the original range-
Doppler method was sufficient for the recognition; Pcs at B = 200 MHz
were not much improved by MUSIC. For the flight scenario with
~vd = [0 − 1 0], a sufficient number of training images are required
because Pcs are very sensitive to the reduction of the training data.
However, when the target is moving at an angle to a viewing vector
(~vd = [−1 − 1 0] and ~vd = [−1 0 0]), Pcs are insensitive to the size
of the training database and the size of the training database can be
reduced to 21.6% of the original size.
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