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Abstract—The reflection and transmission of electromagnetic waves
obliquely incident on a uniaxial chiral slab with the optical axis
perpendicular to the interface have been investigated. Firstly, the
formulas of the reflection and transmission are derived. Then numerical
results for four cases of the uniaxial chiral media are presented and
different chiral parameters are considered. Finally, the Brewster’s
angles and total transmission are discussed.

1. INTRODUCTION

The chiral metamaterials have attracted a lot of attention in the last
decade. The theoretical [1–3] and experimental (or simulative) [4–
11] studies have demonstrated that the negative refractive indices
can be realized in the chiral metamaterials. It is also shown
theoretically that a chiral slab with negative refractive index can be
used as a perfect lens which provides subwavelength resolution for
circularly polarized waves [12, 13]. Many related studies on the chiral
metamaterials have been published [14–22], and several applications
such as waveguides [23–28], polarization rotator [29, 30], cloaking [31],
and antennas [32] using chiral metamaterials have been proposed and
investigated. However, these studies focus on the isotropic chiral
medium. Usually, uniaxially anisotropic chiral medium is quite easy
to be realized artificially [33–35]. Recently, Cheng and Cui [35]
investigated negative refractions in uniaxially anisotropic chiral media.
They found that the condition to realize the negative refraction in
uniaxial chiral media could be quite loose. They also investigated the
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reflection and refraction properties of plane waves incident from free
space into a uniaxially anisotropic chiral medium, and the Brewster’s
angles have been obtained numerically [36]. Guided modes in uniaxial
chiral circular waveguides have been studied [37]. The uniaxial chiral
media may find potential applications for the design of microwave and
optical devices such as polarizers and beam splitters.

On the other hand, the reflection and transmission of electromag-
netic waves obliquely and normally incident on the isotropic chiral
media and chiral slab have been examined in literature [38–42]. The
effective chirality parameter of the C4-symmetry chiral metamaterial
has been retrieved employing the transmission and reflection coeffi-
cients at normal incidence [43]. The reflection and transmission by
the uniaxial chiral slab with optical axis parallel to the interfaces for
normal incident waves have also been investigated [44, 45]. One ap-
plication of the uniaxial chiral slab is a polarization transformer [46].
However, the reflection and transmission by the uniaxial chiral slab for
obliquely incident waves have not been considered yet, and the possi-
bility of negative electromagnetic parameter has not been discussed.
In this paper, we investigate the reflection and transmission of elec-
tromagnetic waves by a uniaxially chiral medium slab with the optical
axis perpendicular to the interface. The formulas of the reflection and
transmission are obtained, numerical examples for four cases of electro-
magnetic parameters of uniaxial chiral media are given, and different
chiral parameters are considered.

2. FORMULATIONS

The constitutive relations in the uniaxial chiral medium are (time-
harmonic field with ejωt is assumed and suppressed) [33]:

D =
[
εt

¯̄It + εz ẑẑ
]
·E− jκ

√
µ0ε0 ẑẑ ·H (1)

B =
[
µt

¯̄It + µz ẑẑ
]
·H + jκ

√
µ0ε0 ẑẑ ·E (2)

where ẑ is a unit vector along z direction which is the optical
axial direction of the uniaxial chiral medium, and ¯̄It = x̂x̂ + ŷŷ.
εt(µt) and εz(µz) are the permittivity (permeability) of the uniaxial
chiral medium perpendicular to the optical axial (transversal) and
the optical axial (longitudinal) direction, respectively; ε0 and µ0 are
the permittivity and permeability of free space. κ is the chirality
parameter, which describes electromagnetic coupling.

There are two eigenwaves in the uniaxial chiral medium whose
wavenumbers are [33]: k± = ω

√
εtµt√

cos2 θ±+sin2 θ±/A±
, with A± =
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Figure 1. Oblique incidence of a plane electromagnetic wave on an
infinite uniaxial chiral slab with the optical axis perpendicular to the
interface.
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, θ± are the angles between the

optical axial direction and propagation direction of the eigenwaves.
Consider an infinite uniaxial chiral slab of thickness d, with the

optical axial perpendicular to the interface as shown in Fig. 1. A plane
electromagnetic wave obliquely incidents upon the uniaxial chiral slab.
The incident angle is θi, the reflected and transmitted angles are θr

and θt, the refraction angles in the uniaxial chiral slab are θ+, θ−
for two eigenwaves. The wavenumbers of the incident, reflected and
transmitted waves are ki, kr, and kt. kt = kr = ki = k0 = ω

√
µ0ε0,

θt = θr = θi.
In the region z ≤ 0, the incident plane electromagnetic wave can

be expressed as:

Ei = E0ie
−jki(y sin θi+z cos θi), Hi = H0ie

−jki(y sin θi+z cos θi) (3)

where

E0i = Ei⊥x̂ + Ei‖ (ŷ cos θi − ẑ sin θi) ,

H0i = η−1
0

[−Ei‖x̂ + Ei⊥ (ŷ cos θi − ẑ sin θi)
]
. (4)

η0=
√

µ0/ε0, subscripts ⊥, ‖ represent perpendicular (TE) and parallel
(TM) components of the plane electromagnetic wave, respectively.

The reflected electromagnetic fields can be written as:

Er = E0re
−jkr(y sin θr−z cos θr), Hr = H0re

−jkr(y sin θr−z cos θr). (5)
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where

E0r = Er⊥x̂− Er‖ (ŷ cos θr + ẑ sin θr) ,

H0r = η−1
0

[−Er‖x̂− Er⊥ (ŷ cos θr + ẑ sin θr)
]
. (6)

There are four electromagnetic waves in the uniaxial chiral slab
(0 ≤ z ≤ d), two propagating towards the interface z = d and the
other two propagating towards the interface z = 0, as shown in Fig. 1.
The electromagnetic fields of the two waves propagating towards the
interface z = d can be represented as:

E+
c = E+

01e
−jk+(y sin θ++z cos θ+) + E+

02e
−jk−(y sin θ−+z cos θ−),

H+
c = H+

01e
−jk+(y sin θ++z cos θ+) + H+

02e
−jk−(y sin θ−+z cos θ−). (7)

where

E+
01 = E+

01

(
ωµtYz+x̂ + k+

z ŷ − k+
y

A+
ẑ

)
,

E+
02 = E+

02

(
ωµtYz−x̂ + k−z ŷ − k−y

A−
ẑ

)
,

H+
01 = E+

01Yz+

[
−ωεtZz+x̂ + k+

z ŷ − k+
y

A+
ẑ

]
,

H+
02 = E+

02Yz−

[
−ωεtZz−x̂ + k−z ŷ − k−y

A−
ẑ

]
. (8)

with k±y = k± sin θ±, k±z = k± cos θ±, Yz± = εt
−jκ

√
µ0ε0

(
A± − εz

εt

)
,

Zz± = 1
Yz± = µt

jκ
√

µ0ε0

(
A± − µz

µt

)
[33].

The electromagnetic fields of the two waves propagating towards
the interface z = 0 can be represented as:

E−c = E−01e
−jk+[y sin θ+−(z−d) cos θ+] + E−02e

−jk−[y sin θ−−(z−d) cos θ−],

H−
c = H−

01e
−jk+[y sin θ+−(z−d) cos θ+] + H−

02e
−jk−[y sin θ−−(z−d) cos θ−]. (9)

where

E−01 = E−
01

(
ωµtYz+x̂− k+

z ŷ − k+
y

A+
ẑ

)
,

E−02 = E−
02

(
ωµtYz−x̂− k−z ŷ − k−y

A−
ẑ

)
.
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H−
01 = E−

01Yz+

[
−ωεtZz+x̂− k+

z ŷ − k+
y

A+
ẑ,

]
,

H−
02 = E−

02Yz−

[
−ωεtZz−x̂− k−z ŷ − k−y

A−
ẑ

]
. (10)

In the region z ≥ d, the transmitted electromagnetic fields can be
written as:

Et = E0te
−jkt[y sin θt+(z−d) cos θt], Ht = H0te

−jkt[y sin θt+(z−d) cos θt](11)

where

E0t = Et⊥x̂ + Et‖ (ŷ cos θt − ẑ sin θt) ,

H0t = η−1
0

[−Et‖x̂ + Et⊥ (ŷ cos θt − ẑ sin θt)
]
. (12)

According to the boundary conditions of the electromagnetic fields
at interfaces z = 0 and z = d:





[Ei(0) + Er(0)]t = [E+
c (0) + E−c (0)]t

[Hi(0) + Hr(0)]t = [H+
c (0) + H−

c (0)]t

[Et(d)]t = [E+
c (d) + E−c (d)]t

[Ht(d)]t = [H+
c (d) + H−

c (d)]t

(13)

where [ ]t represents tangent components of the electromagnetic
fields.

Obviously, k± sin θ± = k0 sin θi. Using k± = ω
√

εtµt√
cos2 θ±+sin2 θ±/A±

,

we can find the refraction angles θ± [36]. Then k±z = k± cos θ± can
be obtained. The eight unknowns, Er⊥, Er‖, E+

01, E+
02, E−

01, E−
02, Et⊥

and Et‖ can be related with incident electromagnetic fields amplitudes
Ei⊥, Ei‖ as following:




Er⊥
Er‖
E+

01

E+
02

E−
01

E−
02

Et⊥
Et‖




= Q−1




Ei⊥
Ei‖
Ei‖
Ei⊥
0
0
0
0




(14)
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where Q is the matrix:

Q = 


−1 0 ωµtYz+ ωµtYz−
0 1 k+

z
cos θi

k−z
cos θi

0 −1 η0ωεt η0ωεt

1 0 η0k+
z Yz+

cos θi

η0k−z Yz−
cos θi

0 0 ωµtYz+e−jk+
z d ωµtYz−e−jk−z d

0 0 k+
z

cos θi
e−jk+

z d k−z
cos θi

e−jk−z d

0 0 η0ωεte
−jk+

z d η0ωεte
−jk−z d

0 0 η0k+
z Yz+

cos θi
e−jk+

z d η0k−z Yz−
cos θi

e−jk−z d

ωµtYz+e−jk+
z d ωµtYz−e−jk−z d 0 0

− k+
z

cos θi
e−jk+

z d − k−z
cos θi

e−jk−z d 0 0

η0ωεte
−jk+

z d η0ωεte
−jk−z d 0 0

−η0k+
z Yz+

cos θi
e−jk+

z d −η0k−z Yz−
cos θi

e−jk−z d 0 0
ωµtYz+ ωµtYz− −1 0
− k+

z
cos θi

− k−z
cos θi

0 −1
η0ωεt η0ωεt 0 −1

−η0k+
z Yz+

cos θi
−η0k−z Yz−

cos θi
−1 0




(15)

Thus, the reflection and transmission matrix of the uniaxial chiral slab
can be obtained numerically from above Equations (14)–(15):

(
Er⊥
Er‖

)
=

[
R11 R12

R21 R22

](
Ei⊥
Ei‖

)
(16)

(
Et⊥
Et‖

)
=

[
T11 T12

T21 T22

](
Ei⊥
Ei‖

)
(17)

The normalized reflected power and transmitted power can be
calculated from following formulas:

Pr = |R11|2 + |R21|2, Pt = |T11|2 + |T21|2, for TE incident wave,
and

Pr = |R12|2 + |R22|2, Pt = |T12|2 + |T22|2, for TM incident wave,
where |R11|2, |T11|2, |R22|2, and |T22|2 correspond to the co-polarized
wave terms and |R21|2, |T21|2, |R12|2, and |T12|2 correspond to the
cross-polarized wave terms.
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3. NUMERICAL EXAMPLES AND DISCUSSION

In this section, we will present numerical examples for four cases of
electromagnetic parameters of the uniaxial chiral slab: εt > 0, εz > 0;
εt < 0, εz > 0; εt > 0, εz < 0; and εt < 0, εz < 0, and discuss the
existence of the Brewster’s angle for different chiral parameters. Here
we assume µt = µz = µ0, ω/2π = 10 GHz, d = 5mm.

3.1. Case (A): εt > 0, εz > 0

Figures 2(a) and (b) show the normalized reflected and transmitted
power versus incident angle θi for different chiral parameters κ = 1e−6,
0.5, 1.5, 3, where εt = 3ε0, εz = 4ε0. Solid and dashed lines correspond
to TM (electric field parallel to the plane of incidence) and TE (electric
field perpendicular to the plane of incidence) incident waves. It is found
from the calculation that, for TM incident wave, the Brewster’s angle
θB‖ (normalized reflected power equal to zero) exists only for smaller
chiral parameters (κ = 1e− 6 and κ = 0.5, black and red solid curves
in Fig. 2(a)). With the increases of the chiral parameter, θB‖ becomes
bigger and then disappears (κ = 1.5, blue solid curve in Fig. 2(a)).
When the chiral parameter becomes very large, the Brewster’s angle
θB‖ occurs again (κ = 3, green solid curve in Fig. 2(a)). Its value is
smaller than that for smaller chiral parameters. It is found from the
calculation that the total of the normalized reflected and transmitted
power is one, and it can also be seen from Figs. 2(a) and (b). At the
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Figure 2. The normalized reflected power (a) and transmitted power
(b) for TE (dashed lines), TM (solid lines) incident waves and different
chiral parameters κ = 1e− 6, 0.5, 1.5, 3, where εt = 3ε0, εz = 4ε0.
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Figure 3. The Brewster’s angle θB‖ versus the chirality parameter,
where εt = 3ε0, εz = 4ε0.
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Figure 4. The power of the normalized reflected and transmitted co-
polarized and cross-polarized waves for TE and TM incident waves,
where εt = 3ε0, εz = 4ε0, κ = 1.5.

Brewster’s angle θB‖, the normalized transmitted power is equal to
one, and total transmission will occur (κ = 1e− 6, 0.5, 3 in Fig. 2(b)).

Figure 3 shows the Brewster’s angle θB‖ as a function of the
chirality parameter, where εt = 3ε0, εz = 4ε0. When κ < 1.3
and κ > 2.4, the Brewster’s angle θB‖ exists, and increases with
the chirality parameter increases. When 1.3 < κ < 2.4, there is no
Brewster’s angle. In fact, when 1.3 < κ < 2.4, only minimum reflection
occurs, but no zero reflection.

For TE incident wave, the normalized reflected power increases
with the incident angle θi increases for all chiral parameters. There is
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no Brewster’s angle appears for TE incident wave (Fig. 2(a)).
If we analyze the reflected and transmitted waves in detail, we

can find that in the case of existence of the Brewster’s angle, there
is no cross-polarized wave appears in the reflected and transmitted
wave when the incident wave is TE wave or TM wave. However, in
the case of non-existence of the Brewster’s angle, the cross-polarized
waves will occur in the reflected and transmitted wave. That means if
incident wave is TE wave, there are not only TE electromagnetic wave
components but also TM components in the reflected and transmitted
waves. For example, Figs. 4(a) and (b) illustrate the normalized
reflected and transmitted co-polarized and cross-polarized waves power
for TE and TM incident waves when the chiral parameter is κ = 1.5.
The red solid and blue solid curves represent the power of co-polarized
wave (TE to TE wave, TM to TM wave). The red dashed and blue
dashed curves represent the power of cross-polarized waves (TE to TM
wave, TM to TE wave). It can be seen from Fig. 4(a) that the power
of the reflected cross-polarized waves are equal to each other (blue
dashed curve in Fig. 4(a)). However, the power of the transmitted
cross-polarized waves are different to each other (blue and red dashed
curves in Fig. 4(b)).

3.2. Case (B): εt < 0, εz > 0

Figure 5 shows the normalized reflected power versus incident angle θi

for different chiral parameters κ = 1e − 6, 0.5, 1.0, where εt = −4ε0,
εz = 0.5ε0. For TM incident wave, there exists the Brewster’s angle for
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Figure 5. The normalized reflected power for different chiral
parameters κ = 1e− 6, 0.5, 1.0, where εt = −4ε0, εz = 0.5ε0.
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smaller chiral parameter. With the increase of the chiral parameter,
the Brewster’s angle θB‖ disappears (κ = 0.5, red solid curves in
Fig. 5). The normalized reflected power is close to one for larger chiral
parameter when incident angle θi is larger. Fig. 6 shows the Brewster’s
angle θB‖ as a function of the chirality parameter, where εt = −4ε0,
εz = 0.5ε0. When κ < 0.45, the Brewster’s angle θB‖ decreases with
the chirality parameter increases. When κ > 0.45, the Brewster’s angle
disappears. For TE incident wave, almost total reflection occurs for
arbitrary chiral parameter when incident angle θi is larger (dashed
curves in Fig. 5).

3.3. Case (C): εt > 0, εz < 0

Figure 7 shows the normalized reflected power versus incident angle θi

for different chiral parameters κ = 1e−6, 0.5, 1.5, 3.0, where εt = 4ε0,
εz = −0.5ε0. There always exists Brewster’s angle for TM incident
wave. The Brewster’s angle θB‖ increases with chiral parameter κ
increases. It is very interesting that the reflected power is nearly zero
in some wide range of incident angle θi for smaller chiral parameters
(κ = 1e−6 and 0.5, black and red solid curves in Fig. 7). That implies
nearly total transmission can be achieved for wide range of incident
angle θi. Fig. 8 shows the Brewster’s angle θB‖ as a function of the
chirality parameter where εt = 4ε0, εz = −0.5ε0. The Brewster’s
angle θB‖ increases with the chirality parameter increases. When
the chirality parameter becomes very large, the Brewster’s angle θB‖
approaches 60 degree. For TE incident wave, the reflected power are
almost the same for different chiral parameters.
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Figure 6. The Brewster’s angle θB‖ versus the chirality parameter,
where εt = −4ε0, εz = 0.5ε0.
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Figure 8. The Brewster’s angle θB‖ versus the chirality parameter
where εt = 4ε0, εz = −0.5ε0.

3.4. Case (D): εt < 0, εz < 0

Figure 9 shows the normalized reflected power versus incident angle θi

for different chiral parameters κ = 1e−6, 0.5, 1.5, 3.0, where εt = −3ε0,
εz = −4ε0. There is no Brewster’s angle and no total transmission
regardless of the values of the chiral parameter for TE and TM incident
wave. However, there are minimum values of the normalized reflected
power for TM incident wave, and there are no minimum values for
TE incident wave. The variation of the reflected power is small for
different chiral parameters. The value of the normalized reflected
power are large (Pr > 0.9). It can be shown that refracted waves in
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Figure 9. The normalized reflected power for different chiral
parameters κ = 1e− 6, 0.5, 1.5, 3.0, where εt = −3ε0, εz = −4ε0.

the uniaxial chiral slab become evanescent waves in the case of εt < 0
and εz < 0. There always exists little transmitted power, and most
power is reflected, thus there is no Brewster’s angle.

4. CONCLUSION

The reflection and transmission of electromagnetic waves by a
uniaxially chiral slab with the optical axis perpendicular to the
interface have been investigated. The formulas of the reflection
and transmission are derived, numerical examples for four cases of
electromagnetic parameters of uniaxial chiral slab are given, and
different chiral parameters are considered. The existence of the
Brewster’s angles and total transmission are discussed. For the cases
of εt > 0, εz > 0; εt < 0, εz > 0; and εt > 0, εz < 0; the Brewster’s
angles exist for TM incident wave. For the case of εt < 0, εz < 0,
there is no Brewster’s angles. Through the results presented here we
may find potential applications for the design of microwave and optical
devices such as polarization transformer.
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