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Abstract—This paper links the constrained trilinear tensor model
into array signal processing. The structure properties of baseband
signal, such as the Constant-Modulus (CM) and Finite Alphabet
(FA) structures which are already known in the receiving array,
are exploited in trilinear decomposition. Two novel algorithms for
constrained trilinear decomposition are proposed and applied to array
signal processing. The distinguishing features of the proposed model
and algorithms compared to the traditional trilinear signal processing
methods are: (i) the proposed model has a better performance and
lower computation complexity. (ii) it can still work well even if
degeneracy of factors are involved in the data model, which is not
valid in traditional algorithms. Simulation results are presented to
illustrate the application of the constrained trilinear decomposition to
array signal processing and evaluate the performance of the proposed
algorithms in DOAs estimation.

1. INTRODUCTION

In electromagnetics and signal processing area, antenna arrays have
been widely applied to locate various types of signals and improve
system performance [1]. The main work of array signal processing is
the estimation of parameters and signals by utilizing temporal and
spatial information from the samples of receive antenna arrays [2–
5]. Many effective methods, such as MUSIC, ESPRIT, PCA
and HOS, have been developed to deal with direction finding,
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polarization estimation, and signal detection [6–8]. Recently, trilinear
decomposition has been exploited to be an effective method in
array signal processing. Some trilinear models, such as PARAllel
FACtor (PARAFAC) and PARAllel profiles with LINear Dependencies
(PARALIND), have been applied to parameter estimation, signal
detection, etc. [9–11], due to their powerful unique properties
which are not shared by vector or matrix models [12]. In array
signal processing aspect, trilinear decomposition can be classified
as a high-dimension generalization of ESPRIT algorithm and joint
approximate diagonalization (JAD) method [13]. Sidiropoulos et
al. firstly introduced trilinear analysis to multiple invariance sensor
array processing (MI-SAP) [9]. They applied PARAFAC model to
estimate the azimuth and elevation angles from different sources in
a uniform square array. Beamforming [14, 15], polarization sensitive
array processing [16–18] and MIMO radar location [19, 20] have also
been linked to trilinear analysis. The common characteristic of tensor
modeling approach in these applications is that baseband signals and
array response vectors, which are always involved in data model, are
treated as pure ‘double-precision’ or ‘complex’ data during trilinear
decomposition. However, this kind of simplication implies that some
superior structure properties of these data, such as constant-modulus
(for phase/frequency modulated signal) and Vandermonde structure
(for uniform array response), are ignored, which may cause potential
performance loss during signal processing.

Trilinear alternating least square (TALS) algorithm is often
used to accomplish trilinear decomposition in PARAFAC-based signal
processing [21, 22]. Although TALS has some superior properties, such
as simplicity formulation and monotone convergence, it still suffers
from some inherent problems, for example, low convergence speed, in
following cases:
a) High correlated factors involved in trilinear model. This condition

is often defined as “presence of degeneracy” and appears when
coherent signals are considered [23–25].

b) Initialized by random numbers. Sometimes, random initialization
may cause local minimum or low convergent speed in TALS.

Several methods have been proposed to improve the performance of
TALS algorithm, some of which are compression [26], line search [27],
enhanced line search [28, 29], and optimized initialization [30]. In
fluorescence spectroscopy and flow injection analysis, Bro et al. have
pointed out that the performance of trilinear decomposition can be
improved when the multi-way data have some special structure [31]. As
we have mentioned, baseband signals have some structural properties
where the receiving end is always aware of. This paper exploits
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structural properties of baseband signal in PARAFAC analysis. A
constrained PARAFAC model is introduced as a mathematical tool
for modeling array signals. Two novel algorithms are proposed
for constrained PARAFAC decomposition and then applied to
parameter estimation in array signal processing. The distinguishing
improvements of the proposed model and algorithms compared to the
already existing tensor-based signal processing methods are:

i). The proposed trilinear model exploits the structure of signals
to improve the performance of parameter estimation in array
signal processing applications. Simulations will give an example
that constrained PARAFAC decomposition has better accuracy in
parameters estimation than traditional methods.

ii). As an iteration method, the proposed trilinear decomposition algo-
rithm has better convergence performance and lower computation
complexity than TALS-based trilinear signal processing method.

iii). The proposed method still has good performance when some
factors of model are “degeneracy”, which is not valid in the
traditional TALS-based method.

The rest of this paper is outlined as follows. Section 2 defines
the constrained PARAFAC model. In Section 3, two iterative
algorithms are proposed for constrained PARAFAC decomposition.
Some related works, such as convergence property, complexity analysis,
and initialization methods, are also discussed in this section. In
Section 4, we apply constrained trilinear model to array signal
processing. Simulations are presented to evaluate the given algorithms
in parameter estimation. In the last section, we summarize the
conclusion.

Some notation conventions will be used in this paper.
diag ([a, b . . .]) denotes the diagonal matrix with diagonal scalar en-
tries a, b, . . . while blockdiag ([A, B . . .]) denotes the block diagonal
matrix with diagonal matrix entries A, B, . . .. (·)T and (·)† stand for
transpose and pseudo-inverse, respectively. || · ||2F stands for Frobe-
nius norm. vec (·) stacks the columns of its matrix argument in a
vector. unvec (·) is the inverse operation of vec (·), unvec(c, I, J) =
[c(1 : J), c(J +1 : 2J), . . . , c((I − 1)J : IJ)]. ⊗ is Kronecker product.
¯ denotes the Khatri-Rao product, which is a column-wise Kronecker
product. Define A = [a1, . . . , aR] ∈ CI×R, B = [b1, . . . , bR] ∈ CJ×R.
The Khatri-Rao product of A and B is:

A¯B = [a1 ⊗ b1, . . . ,aR ⊗ bR]
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2. CONSTRAINED PARAFAC MODEL

In this section, constrained PARAFAC model is formulated as the basic
modeling tool in array signal processing. Firstly, we give the basic
form of PARAFAC model. Define a three-order tensor X̄ ∈ CI×J×K

with elements of x̄i,j,k. X̄ can be represented as a sum of tensor
products [30].

X̄ = a1 ◦ b1 ◦ c1 + . . . + aR ◦ bR ◦ cR =
R∑

r=1

ar ◦ br ◦ cr (1)

where ar ∈ CI×1, br ∈ CJ×1, cr ∈ CK×1, r = 1, . . . , R and ◦ denotes
the outer product of tensors. Figure 1 gives a illustration of (1).

R is defined as the rank of three-order tensor X̄. Assume that
ai,r, bj,r, ck,r are elements of ar, br, cr. As the scalar form of (1),
xi,j,k can be formulated as a sum of triple products.

x̄i,j,k = ai,1bj,1ck,1+, . . . ,+ai,Rbj,Rck,R =
R∑

r=1

ai,rbj,rck,r (2)

Equations (1) and (2) are variably known as PARAFAC model,
trilinear decomposition or canonical decomposition [32]. Define three
matrices A = [a1, . . . , aR], B = [b1, . . . , bR], C = [c1, . . . , cR].
A, B, C are defined as “mode matrix” of a given PARAFAC model.

When PARAFAC analysis is adopted in array signal processing,
the mode matrices represent meaningful physical interpretation and
usually have structure properties. Especially, baseband signal matrix
is usually one of the mode matrices, for example, in applications
of [9, 10, 13]. Modulated signals usually have special structures which
are already known in the receiving end. Many works have exploited
these structure properties to bilinear decomposition (matrix analysis)
for blind signal separation and parameter estimation [33, 34]. However,
as we have mentioned, baseband signal is only considered as simple
‘data’, not a ‘signal’ in traditional trilinear signal processing. The

= + ... +

a1

b1

c1

aR

bR

cR

X

Figure 1. PARAFAC model.
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traditional algorithms usually do not hold and utilize these prior
structures.

In this study, structure properties are exploited in PARAFAC
analysis. Assume that mode matrix C stands for the signal matrix
in (2). The scalar form of the constrained PARAFAC model can be
formulated as follow:

x̄i,j,k =
R∑

r=1

ai,rbj,rck,r, ck,r ∈ Ω (3)

where Ω denotes a constrained data set. In this paper, Ω stands for FA
or CM constraint. By exploiting the structure constraints, model (3) is
more appropriate to characterize array signals than traditional trilinear
data model. Furthermore, it is shown that the proposed fitting
algorithm, which will be given in the next section, can improve the
performance in array signal processing applications.

3. ALGORITHMS

In this section, we propose two algorithms, named Trilinear Alternating
Least Square with Projection (TALSP) and Trilinear Alternating
Least Square with Successive Interference Cancellation (TALSSIC),
for constrained PARAFAC decomposition. TALSP algorithm utilizes
‘projection’ method to reconstruct structure of baseband signals, which
can be viewed as a high order extension of FA-based projection
method [33]. It has simple formulation and low computation
complexity. TALSSIC algorithm exploits ‘successive interference
cancellation’ to reconstruct structure in column wise and is guaranteed
to be strictly monotonically convergent during iteration. With a good
initialization, TALSSIC algorithm can converge rapidly to the ML
estimation.

Before giving the algorithms, we rearrange 3-D tensor to 2-D
matrices to simplify algorithm analysis. Consider the formulation of
X̄ in the presence of noise

X̃ = X̄ + Ē (4)

where Ē is Gauss noise triple matrix. Slice X̃ along three directions
and rearrange the elements of X̃. X̃ can be formulated into three ‘slice’
matrices X, Y, Z [20]

XIJ×K = (A¯B)CT + EX

YJK×I = (B¯C)AT + EY

ZKI×J = (C¯A)BT + EZ

(5)
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where [X](i−1)J+j,k = [Y](j−1)K+k,i = [Z](k−1)I+i,j = x̄i,j,k. EX,Y,Z are
three Gauss noise slice matrices. The cost function of matrix variables
A, B and C is defined as:

f(A,B,C;X) =
∣∣∣
∣∣∣X− (A¯B)CT

∣∣∣
∣∣∣
2

F
(6)

3.1. TALSP Algorithm

TALSP is a kind of alternating iteration algorithm. Let (·)(k) stand
for the value obtained in the k-th iteration. There are two steps in the
k-th update procedure of matrix C.

First step: given estimation Â(k−1), B̂(k−1), C̃(k) is the least
square solution of the minimization of f(Â(k−1), B̂(k−1), C; X) with
respect to unconstrained continuous C

C̃(k)=arg min
C

∣∣∣
∣∣∣X−

(
Â(k−1)¯B̂(k−1)

)
CT

∣∣∣
∣∣∣
2

F
=

((
Â(k−1)¯B̂(k−1)

)†
X

)T

(7)

Second step: project elements of C̃(k), c̃k,r, k = 1, . . . , K, r =
1, . . . , R, to the constraint set Ω.

ĉk,r = projΩ(c̃k,r) (8)

where projΩ(•) is the projection operator. According to different
constraints, projΩ(•) denotes different operations. Taking CM
constraint for example, the projection operator is

projCM(c) = c
/||c||22 (9)

Then the k-th estimation of C, denoted as Ĉ(k) with elements ĉk,r, is
obtained. The k-th least square update of A is obtained by minimizing
the cost function, keeping B̂(k−1) and Ĉ(k) fixed.

Â(k) =arg min
A

∣∣∣
∣∣∣Y−

(
B̂(k−1)¯Ĉ(k)

)
AT

∣∣∣
∣∣∣
2

F
=

((
B̂(k−1)¯Ĉ(k)

)†
Y

)T

(10)

Similarly, a better estimation of B is obtained as

B̂(k) =arg min
B

∣∣∣
∣∣∣Z−

(
Ĉ(k)¯Â(k)

)
BT

∣∣∣
∣∣∣
2

F
=

((
Ĉ(k)¯Â(k)

)†
Z
)T

(11)

Continue this process until Â, B̂ and Ĉ converge. TALSP algorithm
is presented in Table 1.
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Table 1. TALSP algorithm.

Step 1: Initialize three mode matrices Â(0), B̂(0), Ĉ(0), k = 0;

Step 2: k = k + 1

Step 3: According to (7)–(8), update C using X, Â(k−1), B̂(k−1);

Step 4: According to (10), update A using Y, B̂(k−1), Ĉ(k);

Step 5: According to (11), update B using Z, Ĉ(k), Â(k);

Step 6: repeat steps 2–5. Define a fitting error variable

ε = ||X−
(
Â(k−1) ¯ B̂(k−1)

)
C(k−1)T ||2F

−||X−
(
Â(k) ¯ B̂(k)

)
C(k)T ||2F

When ε becomes very small (less than10−8), algorithm is finished.

3.2. TALSSIC Algorithm

A limitation of TALSP is that the projection procedure in C-update
breaks its monotone convergence, which means that TALSP algorithm
cannot guarantee to decrease or hold the value of cost function in each
matrix updating procedure†. TALSSIC is also a nonlinear alternating
iterative algorithm. However, it is most important that TALSSIC
can be guaranteed to monotonically converge to the constrained least
square solution.

The main difference between TALSSIC and TALSP is the update
procedure of mode matrix C. TALSSIC exploits successive interference
cancelation strategy to update C in column wise. Assume that Â(k),
B̂(k), Ĉ(k) stand for the k-th updates of A, B, and C, respectively.
Define Ĥ(k) = Â(k) ¯ B̂(k). â(k)

r , b̂(k)
r , ĉ(k)

r , ĥ(k)
r are columns of Â(k),

B̂(k), Ĉ(k), Ĥ(k). Consider (7) in column wise during the (k − 1)-th
iteration:

X =
(
Â(k−1) ¯ B̂(k−1)

)
Ĉ(k−1)T

+ EX = H(k−1)C(k−1)T
+ EX

=h(k−1)
1 c(k−1)T

1 +
R∑

r=2

h(k−1)
r c(k−1)T

r +EX =h(k−1)
1 c(k−1)T

1 +X1+E1 (12)

where X1 =
R∑

r=2
h(k−1)

r c(k−1)T

r . E1 is the additive noise during the

† Although we have found that TALSP is monotonically convergent mostly, a strictly
demonstration is failed.
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update of c1. The unconstrained least square solution of c1 is

c̃(k)
1 =arg min

c1

∣∣∣
∣∣∣X−h(k−1)

1 cT
1 −X1

∣∣∣
∣∣∣
2

F
=




(
h(k−1)

1

)H

∣∣∣
∣∣∣h(k−1)

1

∣∣∣
∣∣∣
2

2

(X−X1)




T

(13)

Project the elements of c̃(k)
1 to constraint set Ω

ĉ(k)
1 = projΩ

(
c̃(k)
1

)
(14)

where ĉ(k)
1 is the estimation of c1 in the k-th iteration. Then update

ĉ(k)
1 to Ĉ(k−1) (replace ĉ(k−1)

1 with ĉ(k)
1 ) and continue to update cr,

r = 2, . . . , R. Without loss of generality, we give the update procedure
of cr. Define matrix Xr

Xr =
r−1∑

i=1

ĥ(k−1)
i ĉ(k)T

i +
R∑

i=r+1

ĥ(k−1)
i ĉ(k−1)T

i (15)

The formulation of X in the rth update is

X = ĥ(k−1)
r ĉ(k−1)T

r + Xr + Er (16)

where Er is the additive noise during cr-update. ĉ(k)
r can be obtained

as follow

ĉ(k)
r = projΩ




(
ĥ(k−1)

r

)H

∣∣∣
∣∣∣ĥ(k−1)

r

∣∣∣
∣∣∣
2

r

(X−Xr)




T

(17)

Ĉ(k) is then obtained when all columns of C are updated. The update
procedures of A and B are the same as TALSP algorithm. TALSSIC
algorithm is concluded in Table 2.

3.3. Convergence

Unlike TALSP algorithm, TALSSIC algorithm is monotonically
convergent. Here we give a simple demonstration, which is equivalent
to show that matrices update procedures of TALSSIC only decrease or
hold, but never increase the value of the cost function. The updates
of A and B are standard least square procedures. Then the following
inequalities are always hold

f
(
A(k),B,C;X

)
≤ f

(
A(k−1),B,C;X

)
(18)

f
(
A,B(k),C;X

)
≤ f

(
A,B(k−1),C;X

)
(19)
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Table 2. TALSSIC algorithm.

Step 1: Initialize three mode matrices Â(0), B̂(0), Ĉ(0), k = 0;
Step 2: k = k + 1
Step 3: According to (12)–(17), update C using X, Â(k−1), B̂(k−1);
Step 4: According to (10), update A using Y, B̂(k−1), Ĉ(k);
Step 5: According to (11), update B using Z, Ĉ(k), Â(k);
Step 6: repeat steps 2–5. Define a fitting error variable

ε = ||X−
(
Â(k−1) ¯ B̂(k−1)

)
C(k−1)T ||2F

−||X−
(
Â(k) ¯ B̂(k)

)
C(k)T ||2F

When ε becomes very small (less than 10−8), algorithm is finished.

Therefore, if

f
(
A,B,C(k);X

)
≤ f

(
A,B,C(k−1);X

)
(20)

is satisfied, TALSSIC algorithm can be demonstrated monotonically
convergent. Now we prove the validity of (20). Consider the following
constrained least square problem:

ĉ = arg min
c∈Ω

∣∣∣
∣∣∣X− hcT

∣∣∣
∣∣∣
2

F
(21)

[35] has pointed out that (21) is equivalent to two procedures:

c̃ = arg min
∣∣∣
∣∣∣X− hcT

∣∣∣
∣∣∣
2

F
(22)

ĉ = arg min
c∈Ω

∣∣∣∣c̃− c
∣∣∣∣2

F
(23)

where c̃ is the unconstrained least square solution of (21). Therefore,
(17) is the constrained least square solution of (16), and the following
inequality is always satisfied

∣∣∣
∣∣∣X−Xr − hrĉ(k)T

r

∣∣∣
∣∣∣
2

F

= min
cr

∣∣∣
∣∣∣X−Xr − hrcT

r

∣∣∣
∣∣∣
2

F
≤

∣∣∣
∣∣∣X−Xr − hrĉ(k−1)T

r

∣∣∣
∣∣∣
2

F
(24)

Then it follows

f
(
A,B,C(k);X

)

=
∣∣∣
∣∣∣X−(A¯B)C(k)T

∣∣∣
∣∣∣
2

F
=

∣∣∣
∣∣∣X−HC(k)T

∣∣∣
∣∣∣
2

F
=

∣∣∣∣∣

∣∣∣∣∣X−
R∑

r=1

hrĉ(k)T

r

∣∣∣∣∣

∣∣∣∣∣
2

F



204 Liu et al.

=
∣∣∣
∣∣∣X−XR−1 − hRĉ(k)T

R

∣∣∣
∣∣∣
2

F
= min

c

∣∣∣
∣∣∣X−XR−1 − hRcT

∣∣∣
∣∣∣
2

F

≤
∣∣∣
∣∣∣X−XR−1 − hRĉ(k−1)T

R

∣∣∣
∣∣∣
2

F
=

∣∣∣
∣∣∣X−XR−2 − hR−1ĉ

(k)T

R−1

∣∣∣
∣∣∣
2

F

= min
c

∣∣∣
∣∣∣X−XR−2 − hR−1cT

∣∣∣
∣∣∣
2

F
≤

∣∣∣
∣∣∣X−XR−2 − hR−1ĉ

(k−1)T

R−1

∣∣∣
∣∣∣
2

F

...

≤
∣∣∣
∣∣∣X−X1 − h1ĉ

(k−1)T

1

∣∣∣
∣∣∣
2

F
=

∣∣∣
∣∣∣X−

R∑

r=1

hrĉ(k−1)T

r

∣∣∣
∣∣∣
2

F

=
∣∣∣
∣∣∣X−HC(k−1)T

∣∣∣
∣∣∣
2

F
=

∣∣∣
∣∣∣X− (A¯B)C(k−1)T

∣∣∣
∣∣∣
2

F

= f(A,B,C(k−1);X) (25)

The proof of (20) is finished. According to (18) ∼ (20), TALSSIC
algorithm is demonstrated monotonically convergent.

3.4. Complexity and Initialization

In the C-update procedure of algorithms, the multiplication cost
of TALSP is IJR2 + IJKR while the complexity of TALSSIC is
3IJR + IJR2 + IJKR. Note that TALSSIC algorithm has higher
computation complexity than TALSP algorithm. However, because of
the similarity of these two algorithms, we can use TALSP to ‘initialize’
TALSSIC to ensure convergence and decrease complexity during signal
processing. The main procedure can be summarized as two steps:
TALSP is firstly used to pre-fit the triple data (e.g., the receiving
signals of sensor array). When TALSP worsens the fit or the fitting
error variable ε is relatively small (less than 1e-4, for example) in
the (k+1)th iteration, then we use the estimations A(k), B(k) and
C(k), obtained from TALSP, to initialize TALSSIC and continue to
fit the data until algorithm converges. This method combines the
advantage of TALSP (low computation costs) and the benefits of
TALSSIC (monotone convergence). In the following simulations, we
use this initialization method to evaluate the performance of proposed
algorithms.

4. SIMULATION RESULTS

In this section, we apply constrained PARAFAC decomposition to
model multiple invariance sensor array signals and accomplish joint
azimuth and elevation angles estimation by using TALSSIC algorithm.
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Subarray 3

Subarray 4

Subarray 1 Subarray 2

Figure 2. The arrangement of 6×5 rectangular array and subarraies.

The following four simulations will illustrate the improvements of the
proposed constrained model and algorithms listed in Section 1. Firstly,
simulations 1 and 2 evaluate the performance of parameters estimation
of the TALSSIC-based algorithm in the forms of both scatter diagram
and mean squared error curve, compared with TALS-based algorithm
and traditional ESPRIT algorithm. Secondly, simulation 3 depicts
the convergence performance of the proposed algorithms. Finally,
simulation 4 gives the performance of TALSSIC-based and TALS-based
algorithms when correlated factors are involved in the data model.

As discussed in Section 3, TALSP algorithm is used to initialize
TALSSIC. Consider a 6 × 5 rectangular array and four subarraies,
depicted in Figure 2 [9, 36].

Assume that the baseband signals are modulated as QPSK with
CM structure. The received signal of multiple invariance sensor array
can be formed as constrained PARAFAC model.

X = (Φ¯A)ST + E, S ∈ Ω (26)

Three mode matrices are the subarray response matrix A, parameters
matrix Φ, and baseband signal matrix S, formulated as

A = [a1, . . . ,aR]=




1 . . . 1

e−j 2πd
λ

sin(θ1) . . . e−j 2πd
λ

sin(θR)

...
...

...

e−j
2π(I−1)d

λ
sin(θ1) . . . e−j

2π(I−1)d
λ

sin(θR)



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Φ=




1 . . . 1
e−j 2πd

λ
sin(θ1) . . . e−j 2πd

λ
sin(θR)

e−j 2πd
λ

cos(θ1) sin(φ1) . . . e−j 2πd
λ

cos(θR) sin(φR)

e−j 2πd
λ

(sin(θ1)+cos(θ1) sin(φ1)) . . . e−j 2πd
λ

(sin(θR)+cos(θR) sin(φR))




S=




s11, s12 . . . , s1R

s21, s22 . . . , s2R
...

...
...

sK1, sK2 . . . , sKR




(27)

where θ, φ denote azimuth and elevation. λ is the wavelength of
signals. d is the distance between adjacent antenna. R is the number of
sources. K denotes the length of data block and is assumed to be 100
in the following simulations. I is the length of subarray. According to
Figure 2, I is equal to 5. Parameters, including azimuth and elevation,
are involved in Φ. The TALS-based algorithm [9] and traditional
ESPRIT algorithm [36] are also simulated just for comparison. SNR
is defined in terms of the noisy data model (26)

SNR = 10 log10

∣∣∣∣X̄∣∣∣∣2
F

||E||2F
(28)

Three sources are considered in the simulation. The azimuths and
elevations are listed in Table 3.

4.1. Simulation 1

The performance of azimuth and elevation estimations of TALSSIC-
based algorithm, TALS-based algorithm and ESPRIT algorithm are
evaluated in this simulation. CM constraint is involved in TALSSIC-
based algorithm. SNR is 40 dB, and 100 independent Monte Carlo runs
are used to evaluate performance. Figures 3–5 depict the azimuth-
elevation scatter diagrams of three algorithms. The X coordinate
stands for azimuth, and Y coordinate stands for elevation. The
left sub-figure of each figure depicts the estimated azimuth-elevation
diagrams of all 3 waves, and the right two sub-figures, titled as (a)

Table 3. Azimuths and elevations of sources.

Azimuth (θ) Elevation (φ)
source 1 5◦ 10◦

source 2 10◦ 15◦

source 3 15◦ 20◦
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and (b), are the zoom-in diagrams of two waves with parameters (5◦,
10◦) and (10◦, 15◦). It is illustrated that the proposed TALSSIC-based
algorithm has a better performance than TALS-based algorithm and
ESPRIT algorithm.

4.2. Simulation 2

This simulation evaluates the root mean squared error (RMSE)
performance of the three algorithms in parameter estimation. Since
matrix Φ involves the full information of the azimuth and elevation,
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Figure 3. Azimuth-elevation scatter diagram of TALSSIC-based
algorithm.
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Figure 4. Azimuth-elevation scatter diagram of TALS-based
algorithm.



208 Liu et al.

4 6 8 10 12 14 16
8

10

12

14

16

18

20

22

azimuth

e
le
v
a
ti
o
n 4.5 5 5.5

9.5

10

10.5

azimuth
(a)

e
le
v
a
ti
o
n

9.5 10 10.5
14.5

15

15.5

azimuth
(b)

e
le
v
a
ti
o
n

Figure 5. Azimuth-elevation scatter diagram of ESPRIT algorithm.
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0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Monte Carlo runs

it
er

at
io

n
 n

u
m

b
e
r

 

 

TALS-based algorithm
TALSS IC-based algorithm

Figure 7. Iteration number in
100 Monte Carlo runs (SNR =
20dB).

we calculate the RMSE between the estimated Φ̂ and the original Φ to
evaluate the RMSE performance of parameters estimation, formulated
as the Frobenius norm of (Φ− Φ̂i)

ξ =
1
Q

Q∑

i=1

∣∣∣
∣∣∣Φ− Φ̂i

∣∣∣
∣∣∣
F

(29)

where Φ̂i is the estimated parameter matrix in the ith simulation and
Q the number of independent runs. SNR varies from 20 dB to 40 dB.
100 independent Monte Carlo runs are simulated. Figure 6 plots the
RMSE curve versus SNR in logarithmic coordinates. It is depicted that
the RMSE values of the proposed TALSSIC-based algorithm are less
than the other two algorithms under either high or low SNR conditions.

The results of simulations 1 and 2 show that TALSSIC-based
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Figure 8. Average iteration number curve versus SNR.

algorithm has better accuracy of parameter estimation than TALS-
based algorithm and ESPRIT algorithm, because TALSSIC-based
algorithm not only makes use of three diversities of trilinear data
model, but also exploits the structure of signals to improve the
performance of parameter estimation.

4.3. Simulation 3

The convergence performance of constrained and unconstrained
algorithms is evaluated in this simulation. Figure 7 depicts the
iteration number of TALS-based algorithm and TALSSIC-based
algorithm in 100 independent runs when SNR is 20 dB. Figure 8 depicts
the average iteration number curve of two algorithms versus SNR.
Obviously, TALSSIC-based algorithm converges faster than TALS-
based algorithm, which illustrates that the structure reconstruction
during matrix update procedure can improve the convergence speed.
Note that the complexity of an iterative algorithm is related to its
convergence speed and the computation cost of each iteration. The
simulation results also imply that TALSSIC needs lower computation
complexity than TALS in array signal processing.

4.4. Simulation 4

As mentioned in Section 1, correlated factors in mode matrix may lead
to performance loss in trilinear decomposition. This simulation will
evaluate the performance of algorithms when correlated factors are
involved in subarray matrix A. Due to (27), the correlation property
of factors in A can be characterized by the similarity of θ1, . . . , θR. To
simplify the calculation, we change the azimuth of source 1, denoted as
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θ1, from 5◦ to 9.9◦ and keep azimuth of source 2 and source 3 constant,
as θ2 = 10◦, θ3 = 15◦. The correlation degree of factors a1 and a2,
denoted as ρ1,2, can be characterized by the inverse of their Edices
distance.

ρ1,2 =
1√

(a1 − a2)
H (a1 − a2)

(30)

Assume that SNR is 40 dB. Table 4 presents the azimuths of three
sources and the related ρ1,2.

ρ1,2 is increased when θ1 and θ2 become closer and closer. Figure 9
presents the RMSE curve of parameter estimation versus ρ1,2 while
Figure 10 depicts the average iteration number curve versus ρ1,2.

The simulation results illustrate that the performances of both
parameter estimation and convergence of TALS-based algorithm are
decreased sharply as ρ1,2 increased, which implies that TALS-based
algorithm is not suitable for data with correlated factors. However,

Table 4. Azimuths of three sources and the related ρ1,2.

θ1 θ2 θ3 ρ1,2

5◦ 10◦ 15◦ 0.69
6◦ 10◦ 15◦ 0.86
7◦ 10◦ 15◦ 1.13
8 10◦ 15◦ 1.7
9 10◦ 15◦ 3.38

9.5◦ 10◦ 15◦ 6.75
9.9◦ 10◦ 15◦ 33.8
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Figure 9. RMSE curve of
parameter estimation versus ρ1,2.
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TALSSIC-based algorithm still performs very well in either low or
high ρ1,2 conditions. In array signal processing aspect, high correlated
factors are often caused by coherent signals in multipath transmitting
and radar receiving scenarios. It can be concluded that TALSSIC-
based algorithm is still valid in these applications.

5. CONCLUSION

This paper exploits structure constraint in trilinear decomposition and
links it to array signal processing. Constrained PARAFAC model is
introduced for model analysis. Two new algorithms, named TALSP
and TALSSIC, are proposed to accomplish constrained PARAFAC
decomposition in signal processing. We apply the proposed model and
algorithms to azimuth and elevation estimation of multiple invariance
sensor arrays. Simulations show that TALSSIC-based algorithm
outperforms traditional TALS-based algorithm and ESPRIT algorithm
in terms of the performance of both parameter estimation and
convergence. Especially, the proposed algorithms can still work well
even if high correlated columns are involved in the data model, which
may be encountered in multipath transmitting and radar receiving
scenarios.
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