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Abstract—The authors discuss and demonstrate the feasibility of
using ultra wide band microwave radar to detect and identify small
arms fire. Detection and tracking is by standard radar techniques,
but identification is carried out by exciting the projectiles Complex
Natural Resonances and using this aspect independent information
to assign a caliber to the incoming projectiles. The typical sizes of
small arms projectiles (calibers 5.56 mm through to 13 mm) imply that
ultra wide band illumination in the microwave region of the spectrum
between 1.5–5.5 GHz is required to excite these object’s fundamental
resonances. The authors give a discussion of the effects of motion
on the quality of the complex natural resonance data obtainable and
present both simulated and laboratory data for the radar cross section
of three different caliber projectiles (5.56 mm, 7.62 mm and 13mm).

1. INTRODUCTION

There is a current trend into the development of Hostile Fire Indication
(HFI) systems which can detect, track and locate firing position of
incident small arms fire. Such systems have widespread military
application and possible homeland security application. Example
military scenarios include protecting infantry troops from sniper fire
by revealing firing location and protecting both land and airborne
vehicles from incident fire. One possible homeland security scenario
is where one needs to be able to rapidly locate a sniper who has
fired at a target, for example to locate someone covertly firing on
a campus grounds or at a large event. At the present time most
proposed or commercially available systems are based on passive

Received 13 March 2012, Accepted 17 April 2012, Scheduled 21 April 2012
* Corresponding author: Stuart William Harmer (s.harmer@mmu.ac.uk).



168 Harmer, Cole, and Bowring

acoustic technology or on infrared imaging. Radar HFI systems are
still only in research and development phase. Radar HFI systems
offer considerable advantages over their passive rivals, being able to
detect and locate firing positions when acoustic muzzle blast and
optical flash are absent or when the projectile is travelling at subsonic
speeds. Additionally, with a radar approach, it is possible to utilize a
well known electromagnetic phenomenon to give reliable information
on the type and size of the projectile. Such capability is currently
lacking from passive HFI systems. The caliber of the projectile is
useful as it allows a better estimation of firing location when a partial
projectile trajectory is measured. Larger, heavier caliber projectiles
are decelerated less than smaller, lighter projectiles by air resistance.
Consequently an estimation of the caliber, and therefore mass, of a
projectile can assist in the accurate determination of firing location by
inputting an extra piece of relevant information to a ballistic model.
The caliber of projectiles is also useful in being able to assess enemy
capability and may also help to mitigate ‘friendly fire’ incidents where
friendly forces and enemy forces may use different caliber projectiles.

2. PROPOSED SOLUTION

It is well known that a highly conductive body possesses an infinite set
of electromagnetic Complex Natural Resonances or CNR [1–6]; and
that the fundamental resonance occurs when the wavelength of the
exciting radiation is approximately twice the length of the object’s
longest linear dimension [3, 4]. The most commonly known example
of this phenomenon is Mie scattering, which is the scattering of
electromagnetic waves from a conducting sphere. In this case the
Radar Cross Section (RCS) of the sphere presents oscillatory behavior
with frequency as the incident electromagnetic waves constructively or
destructively interfere around the sphere [7, 8].

Since an antenna only emits electromagnetic waves over a finite
bandwidth, only excitation of a partial set of CNR is possible. The
CNR allows the object’s signature to be mapped, in two dimensional
complex frequency space (i.e., the s-plane). Since the position of these
CNRs in complex frequency space is dependent only upon the size
and shape of the object’s conducting surface, they further allow an
aspect, or orientation, independent identification of the object to be
made based solely on the position of its partial set of CNR [9, 10].

Application of this phenomenon to the Radar detection and
recognition of airborne projectiles is useful, as the set of CNR can
be employed to give very valuable information on the dimensions
of the projectile whilst in flight — allowing the determination of
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projectile caliber. Additionally, the RCS of the projectile can be
significantly enhanced at the CNR frequencies and this important fact
makes detection, ranging and tracking the incident projectiles more
effective. Although this technique has been long applied to the Radar
identification of much larger airborne objects, such as aircraft and
missiles [11–15], the possibilities of detection and identification of much
smaller objects has been largely overlooked.

It is proposed that CNR excitation of the incident projectiles
within the transmitted radar beam can be achieved using frequency
modulated pulses, such as a linear chirp. This ultra wideband (UWB)
waveform will excite a useful subset of CNRs which are encoded within
the scattered signal. The scattered signal is then detected at the
receiving antennae array. Post reception signal processing, such as
conventional matched filtering (i.e., replica correlation implemented as
fast convolution), as is commonly employed within the processing of
FM radars to enhance SNR can be extended to include some other
analysis techniques which apply deconvolution algorithms to extract
the CNR information of interest. Various dedicated signal processing
and/or pattern recognition techniques may also be applied to extract
and analyze these characteristic signal components in order to identify
or classify the incident projectile.

3. THEORETICAL BASIS

The impulse response of the projectile is given by the well known
equation, which was formalized by Baum in his treatise on the
Singularity Expansion Method or SEM [1],

h (t) =
1
2

M∑

m=1

(Cm exp (Zmt) + C∗
m exp (Z∗mt)) (1)

In the frequency domain the impulse function is,

H (ω) =
1
4π

M∑

m=1

(
Cm (Z∗m − iωm) + C∗

m (Z−miωm)
ω2 − ω2

m − α2
m + i2αmωm

)
(2)

where Zm = αm + i2πνm are the aspect independent CNR frequencies
of the object, and M is the number of CNR’s excited. The complex
amplitudes Cm depend upon the form of the illuminating pulse and
the orientation of the target and therefore are not useful for target
identification purposes, but are useful for ranging to target and in
flight tracking using conventional radar methods. The model order
M depends on the bandwidth of the microwave illumination, and the
target’s shape.
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The projectile impulse response, convolved with the transmitted
radar waveform, the impulse response of the transmitter and receiver
antennae, constitutes the Late Time Response (LTR) of the system.

S = P ⊗ T ⊗R⊗ h + N (3)
Here ⊗ denotes the discrete one dimensional convolution operation,
and P and h are the radar waveform before transmission and the target
impulse response, respectively. T and R denote transmitter and the
receiver impulse responses respectively, and N is the noise term.

The effect of projectile motion upon the impulse response,
see Equation (1), is an important consideration for the intended
application. Two effects of motion are possible: Doppler shift of the
CNR frequencies and the alteration of aspect during the radar pulse
duration. The first effect is very small; the maximum magnitude of the
Doppler shift, ∆ν = u

c ν (where u = 1000ms−1 and ν is the incident
frequency). The Doppler shift is less than 13 kHz for the fundamental
CNR frequency of a 7.62 mm caliber projectile (ν = 3.52 GHz, see
Figure 1) travelling at 1000ms−1 relative to the radar. The second
effect can be more significant and, not being quite as obvious or widely
known as the Doppler effect, requires a more detailed explanation. The
CNR of projectiles are excited by the transmitted radar waveform,
for example a linear chirped pulse, and during the pulse duration
the projectile will move, and in general will alter aspect with respect

(a) (b)

Figure 1. The CNR of three different caliber projectiles (5.56 mm,
7.62mm and 13 mm) as (a) simulated in a finite time domain
electromagnetic solver package and (b) obtained experimentally in an
anechoic chamber in the laboratory. There is good agreement between
prediction and experiment suggesting that the CNR approach will
allow indentification and discrimiation of the caliber of incoming small
arms fire.
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to the radar. The alteration of aspect does not explicitly affect the
CNR frequencies present (Zm in Equation (1)) but does affect the
amplitude of the CNR (Cm in Equation (1)). This effect can blur
the position and width of the CNR and in extremis may prevent the
accurate determination of projectile caliber. The extent of this motion
induced blurring will depend on the time duration of the exciting radar
waveform, the velocity of the projectile and the orientation of the
object during the excitation phase.

Equation (1) is now written as

h (t) =
1
2

M∑

m=1

(Cm (r (t)) exp (Zmt) + C∗
m (r (t)) exp (Z∗mt)) (4)

We have now written the complex amplitudes Cm explicitly in terms
of the time dependent position vector of the incoming projectile,
r (t) = x (t) x̂+y (t) ŷ+x (t) ẑ. Therefore, when the impulse response is
convolved with transmitter and receiver impulse responses and with the
radar pulse, as is done in Equation (3), the detected signal is modified
by the fact that the complex amplitudes Cm now vary with position,
and hence with time.

S (t) =
1
2

M∑

m=1

P (t)⊗ T (t)⊗R (t)

⊗ (Cm (r (t)) exp (Zmt) + C∗
m (r (t)) exp (Z∗mt)) + N (t) (5)

The Cm terms can be expanded as a Taylor series in time, where we
assume that we will only require terms up to those linear in time to
adequately describe the variation in the amplitude terms Cm over the
time period of the pulse. This assumption is likely to be a very good
one for incoming small arms projectiles as they have a speed which is
≤ 1000ms−1; whereas a reasonable chirped radar pulse might last for
a millisecond — giving a total displacement of ≤ 1 meter. At a range
of 100 meters this displacement results in an angular change of less
than 0.5 degrees, meaning that the alteration of aspect is likely to be
very minor under such conditions.

Assuming, without loss of generality, that the radar pulse is
incident upon the projectile at a time t = 0, and expanding the Cm

terms as a Taylor series up to those terms linear in time, Equation (5)
can be written approximately as,

S (t) ≈ X (t)⊗ (h0 (t) + h1 (t)) + N (t) (6)
where, X (t) = P (t)⊗ T (t)⊗R (t), and

h0 (t) =
1
2

M∑

m=1

(Cm (r (0)) exp (Zmt) + C∗
m (r (0)) exp (Z∗mt)) (7)
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is the impulse response for a stationary object, and the contribution
to the impulse response from the object’s motion is given by,

h1 (t) =
1
2

M∑

m=1

(Dmt exp (Zmt) + D∗
mt exp (Z∗mt)) (8)

and

Dm =
∂Cm (r (0))

∂x

dx (0)
dt

+
∂Cm (r (0))

∂y

dy (0)
dt

+
∂Cm (r (0))

∂z

dz (0)
dt

= ∇Cm (r (0)) · dr (0)
dt

(9)

where the symbol · is used to denote the scalar product.
Equation (6) suggests, perhaps unsurprisingly, that the effects of

motion on the impulse response of the projectile can be considered
as a linear perturbation to the stationary impulse function. The
frequency domain representation of the part of the impulse function
related to motion effects, i.e., h1 (t), is given by the Fourier transform
of Equation (8),

H1 (ω) =
1
4π

M∑

m=1

Dm
(1− exp ((Zm − iω) τ)) (1− (Zm − iω) τ)

(Zm − iω)2

+ . . . D∗
m

(1− exp ((Z∗m − iω) τ)) (1− (Z∗m − iω) τ)
(Z∗m − iω)2

(10)

Clearly, if the components of the velocity of the projectile are small and
the change of complex amplitude with position is also small relative
to the stationary amplitudes, then the effects of the motion of the
projectile on the impulse function will be minimal. These conditions
are only expected not to apply where the projectile is near to the radar
system, and hence the aspect will alter significantly during illumination
by a single pulse. Or where the projectile is traversing the radar beam,
rather than heading radially toward the radar. However, provided
the product of pulse duration and velocity of projectile is small, only
projectiles passing very near to the radar system will have significant
blurring of CNR due to motion effects.

4. INITIAL RESULTS

The experimental data presented in Figure 1 was taken with an
Agilent E8363b PNA, connected with two 1–18GHz Vivaldi horn
antennae. The projectiles were mounted on an expanded polystyrene
stand within an anechoic chamber and illuminated by stepping the
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Figure 2. Photograph of the projectiles used for RCS measurement
within an anechoic chamber, a quarter dollar coin is included for scale.
The projectiles were made of steel and are representative of the shape
and size of similar caliber military projectiles classed as small arms
fire.

frequency between 1 GHz and 10 GHz in 801 discrete steps. The aspect
of the projectile was adjusted so as to maximise the received signal,
the optimum aspect was found to be with the projectile’s axis of
symmetry parallel to the direction of the electric field transmitted form
the antenna, see figure Figure 3.

The projectiles (see Figure 2) were placed, stationary, one meter
from the transmitter/receiver setup and the transmitted power was
set at −17 dBm. Application of the well known radar equation, where
received power ∝ P

R4 (where P is the transmitted power and R is the
range), suggests that similar results could be obtained at a range of 15
meters with a 1 W pulsed transmit power or at a range of 85 metres
with a 1 kW pulse power. Figure 1 shows that there is a clear similarity
between the normalised RCS predicted in simulation and that obtained
in our laboratory measurements. The raw frequency domain data
from the UWB sweep was subject to deconvolution with the antenna
response to attempt to remove the frequency response of the antenna
and source. The experiemental data has then been smoothed by
application of a low pass filter to remove some unwanted high frequency
ripple that is probably caused by mismatch between antenna and
source and by standing waves between antenna and target. The data
presented in table one was obtained by application of the Generalized
Pencil Of Functions (GPOF) method to the time domain signals. This
technique is very succesful at decomposing signals that are of the
form given by Equation (1) into their constituent resonances [10, 16].
Although there are two CNR predicted by simulation within the
frequency sweep taken (1–10 GHz) for the 13 mm projectile, the second
CNR is not well resolved experimentally (see Figure 1).
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The Radar Cross Section presented by projectiles of different
calibers is highly dependent upon the aspect of the projectile with
respect to the radar and the polarization of the incident radar pulse
with respect to the projectile orientation (see Figure 3). The RCS
was calculated for a pulse that contains equal power density at all
frequencies over the range 1.5–5.5 GHz, thus the RCS here represents
a broadband RCS that is consistent with an expected return of a
broad band pulse. In reality the RCS is dependent on the frequency of
incident radiation and this dependence is oscillatory as the projectile
is within the Mie scattering regime. In order to evaluate the possibility
of detection of an object that presents such as small RCS (maximum
9 cm2 in optimum configuration, see Figure 3) an example antenna
consisting of a phased array of patch antenna is postulated for both
the radar transmit and receive functions. The antenna will be sensitive
to frequencies in the 1.5–5.5 GHz region of the microwave spectrum and
consists of 1000 elements equally spaced 5 cm from each other in the
array; the area of each element is assumed to be 4 cm2. Such electrically
small antenna will radiate in a near isotropic fashion; and the gain of
each individual element is assumed to be 0 dB. This postualted phased
array is just capable of radiating over the 4 GHz bandwidth without

(a) (b)

Figure 3. Graphical illustration of the simulated broadband (1.5–
5.5GHz) RCS in cm2, as measured with a co-polarized receiver, for a
7.62mm caliber projectile with aspect angle (0 degrees being along the
length of the projectile). The upper plot is for the scenario where the
polarization of the incident radar pulse has the electric field component
parallel with the projectile axis; the lower plot is the case where the
electric field is perpendicular to the projectile axis.
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Figure 4. Examples of predicted beam patterns for the phased array
outlined for detection of projectiles. The beams are shown for the
highest (5.5 GHz) and lowest (1.5GHz) frequencies transmitted.

Figure 5. A graph showing the simulated minimum detectable RCS,
for a SNR of 10 dB, versus range for the 1000 element phased array
antenna discussed. The total power transmitted is 100 W, giving a
radiated power of 100 mW per array element. The RCS of a 7.62 mm
caliber projectile presenting different aspects to the radar is marked.
A noise figure of 10 dB is assumed for the receiver and the projectile
is in irradiated at the maximum gain of 30 dBi (see Figure 4).

grating lobes giving rise to multiple beams. An aperiodic phased array
would have better performance over a wider bandwidth [17] but is far
more complex to design. Each element radiates 100 mW of power,
giving a total radiated power for the array of 100 W. The radiation
pattern of the main beam for this array of antenna is shown in Figure 4.
The beam can be electronically scanned give a spatial sweep and the
location of the projectile found to an accuracy of ∼ 0.1 degree (see
Figure 4). A 7.62mm projectile could be detected and identified
even when travelling directly along the axis of the radar beam, thus
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Table 1. Fundamental CNR from three different caliber rounds;
the results obtained by numerical simulation and by experimental
measurement in the laboratory are compared. The data was converted
to a time domain trace and subject to the GPOF algorithm to
decompose into CNR [16].

Projectile

Diameter

(Caliber)

Fundamental

Resonant

Frequency ν1

Experimental in

bold type,

simulation in normal

Fundamental

Resonance

Lifetime − 1
α1

Experimental in

bold type,

simulation in normal

13mm 2.06GHz, 2.13GHz 0.444 ns, 0.35 ns

7.62mm 3.78 GHz, 3.52GHz 0.182 ns, 0.149 ns

5.56mm 4.61GHz, 5.01GHz 0.143 ns, 0.125 ns

presenting the lowest possible RCS (−14.77 dBcm2), by the phased
array described at ranges below 27 metres (see Figure 5). For more
favourable aspects the effective range of detection and identification
increases up to a maximum of 109 metres when the projectile is
orientated at a right angle to the radar beam and the radar beam
is polarised such that the electric field is aligned along the length of
the projectile. If the projectile is aligned such that the electric field is
perpendicular to the length of the projectile then the RCS is smaller
and the effective range is reduced to 41 metres. Interference from
flying insects is unlikely as insects typically have a smaller RCS [18],
2×10−3−1×10−1 dBcm2, than that of a metallic man made projectile
of the calibers discussed and would not posses any well defined CNR.

5. SUMMARY

The detection and identification of in flight projectiles by measurement
of their CNR is entirely feasible. The RCS of projectiles in flight
is sufficient in magnitude, at the microwave frequencies where these
objects have their fundamental resonances, to allow the detection,
tracking and identification of such objects at considerable ranges of
up to ∼ 100 meters, see Figure 5. A possible method of realizing
such a system is outlined using a phased array of antenna elements to
spatially steer an ultra wide bandwidth radar beam; identification is
achieved by transmission of microwave frequencies which encompass
the fundamental complex natural resonances of a range of typical
caliber projectiles (1.5–5.5GHz). Analysis of the frequency content



Progress In Electromagnetics Research M, Vol. 24, 2012 177

of the scattered radar waveforms provides the signature that enables
the caliber of the projectile to be identified. Although the detection
of in flight projectiles is not necessarily enhanced over other possible
HFI systems the robust identification of projectile calibers provides
valuable information which is not available at other radar frequency
bands. It is this ability to identify the type of projectile which is novel
and distinctive for the discussed application, although the use of CNR
to identify objects is very well known [19–22].
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