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Abstract—In this investigation, scattering from a circular disk
with surface impedance has been studied rigorously. The method of
analysis is Kobayashi Potential (KP). The mathematical formulation
yields the dual integral equations (DIEs). These DIEs are solved by
using the discontinuous properties of Weber-Schafheitlin’s integral.
After applying the boundary conditions and projection, the resulting
expressions, finally, reduce to matrix equations for expansion
coefficients. The matrix elements are in the form of infinite integrals
with single variable. These are then used to compute the values of
expansion coefficients. The far field patterns of the scattered wave are
computed for different incident angles and surface impedances for both
FE- and H-polarizations. To verify the results, we have computed the
solution based on the physical optics approximation. The agreement
between them is fairly good.

1. INTRODUCTION

The circular disk is a canonical scatterer in the field of electromagnetics
and has been a subject of investigation since long time. It has a wide
range of application in radars, and antennas, etc.. Electromagnetic
field problems are generally defined by Maxwell equations and
boundary conditions. The surfaces with large conductivity can be
approximated with surface impedance boundary condition. The
impedance boundary condition relates the electric and magnetic field
components tangential to the boundary through a surface impedance
factor linearly. The use of surface impedance boundary condition
(SIBC) in problems where electromagnetic wave penetration is low,
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reduces the complexity of the problem to solve [1]. Even such surfaces
can be synthesized which follow SIBC [2]. The concept of SIBC is
not new and was introduced by Shchukin [3] and Leontovich [4] in
1940s [5]. A variety of methods may be used to analyze the present
problem [6-28].

In this paper, we have formulated the problem first time by
applying the KP [27,28] method to study the scattering from the
disk with surface impedance. The KP method is like eigen function
expansion and also is similar to the Method of Moments (MoM) [26]
in its spectral domain, but the formulation is different. The MoM
is based on an integral equation, whereas the KP method has dual
integral equations. In addition, the characteristic functions used in
the KP method satisfy a proper edge condition as well as the required
boundary conditions. The KP method has already been successfully
applied to perfectly conducting circular disk [20-22].

In formulation of the problem, first we introduced two longitudinal
components of the vector potentials of electric and magnetic types to
express the scattered field in the form of Fourier-Hankel transform.
By applying the boundary conditions, we derived the dual integral
equations (DIE) for the tangential components of the electric and
magnetic fields. The equations may be written in the form of the vector
Hankel transform given by Chew and Kong [29-32]. The expressions
for the field are expanded in terms of a set of the functions with
expansion coefficients. These functions are constructed by applying
the discontinuous properties of the Weber-Schafheitlin’s integrals [33—
35] and it is readily shown that these functions satisfy the required
edge conditions [36-38] as well as boundary conditions. By using
the projection, the problem reduces to the matrix equations for
the expansion coefficients of the electromagnetic fields. The matrix
elements are given in the form of an infinite integrals which converge
for all indices. Numerical computation is carried out to obtain the
far field patterns and the results are compared with those obtained
through physical optics method.

2. STATEMENT OF THE PROBLEM AND
EXPRESSIONS FOR INCIDENT WAVE

The geometry of the problem and the associated coordinates are
described in Fig. 1, where the radius of the disk is a and thickness
of the conducting plane is assumed to be negligibly small. Two kinds
of incident plane wave are possible and these are expressed by

Eiz(Ezé+E1d3) exp [jk®"(r)] , Hi:i’t)(—EﬁJrElé) exp [jk®(r)] . (1)
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Figure 1. Scattering of a plane wave by a circular disk with surface
impedance.

where
0 = cos Og cos ¢poT + cos By sin ¢y — sinbyz,
b = —sin ¢o& + cos o, (2a)
@ (r) = zsin by cos ¢y + y sin b sin ¢ + z cos . (2b)

where (g, ¢o) are the angles of incidence, and Yy = Z%) =, /% is the

free space intrinsic admittance. Since a disk has rotational symmetry
with respect to z-axis, we can assume without loss of generality that
the plane of incidence lies in xzz-plane (¢ = 0). We may split field into
two kinds of polarization namely E-polarization specified by Fy and H-
polarization specified by F», and discuss both cases simultaneously.

The electric and magnetic vector potentials are defined by B =
V x A and D = —V X F, respectively. Therefore, the z-components
of the vector potentials F, and A, for the incident and reflected waves
are obtained as follows:

o Yo Eo

Al = T2 exp[jkx sin Oy + jkz cos 6],
jk sin 6
F! = ﬂex [jkx sin 6y + jkz cos O] (3a)
z = jksineo pj 0 .7 0]
YoE
AL = Mexp[jkwsin@o — jkz cos 6],
jk sin 6
r_ €k e
F] = Tsinfo exp[jkx sin Oy — jkz cos bp). (3b)
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We express a plane wave given above by the cylindrical coordinates
to facilitate imposing the boundary conditions. These are obtained by
using the formulas of wave transformation given by

expljkpsin by cos ¢] = Z J" I (kpsinOy) exp(—jma)

m=—0oQ

= Z emJ" Jm(kpsin6y) cosme (4)
m=0

where €, is Neumann’s constant given by €, = 1 form = 0 and €, = 2
for m > 1, and x = pcos ¢, y = psin ¢.

2.1. E-wave (Magnetic Field Is Perpendicular to the Plane
of Incidence)

The incident electromagnetic plane wave over the z = 0 plane are given
by

o

HF’; = YOE(; cosy = —jYyF1 cos by Z emi" JIm/ (kpsinfp) cosmae (5a)
m=0
Hé) = —YbE;coseo :j%EICOSH(:nz_:Oijmk:psinGO Jm (kpsinfp)sinme (5b)

where J,(z) and J), () are the Bessel function of the first kind and its
derivative with respect to the argument.

2.2. H-wave (Electric Field Is Perpendicular to the Plane of
Incidence)

In this case, the incident waves corresponding to Equations (5) are
given by

H} = j%Einz_:Oemjmkngl@oJm(kp sin 6g)sinme, Ej = Zocosto H, (6a)

o
H(; = Yo Es Zemjmﬂn(kpsin 0o)cos mao, El’; = —ZOCOSQOH;; (6b)

m=0

3. THE EXPRESSIONS FOR THE FIELDS SCATTERED
BY A DISK

We now discuss about our analytical method for predicting the field
scattered by an impedance disk on the plane z = 0.
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3.1. Spectrum Functions of the Fields on the Disk

We assume the vector potential corresponding to the diffracted field is
expressed in the form

AT (p,¢,2) = poarYn Y /0 h [FE.(€) cosmo + fi,(€) sinmo]
m=0
T (pa€) exp [ F /€ — k2z,)€ 7 deE (7a)

o 00
F*(p,¢,2) = eoa / [gfm@) cos e + s (€) sin mqﬁ}
m=0"0
Tnpa€) exp [ F V€ = K2z,] ¢ dg (7b)
where the upper and lower signs refer to the region z > 0 and z < 0,
respectively, and p, = 2 and z, = Z are the normalized variables

with respect to the radius a of the disk. In the above equations
f(&) and g(&) are the unknown spectrum functions and they are to be
determined so that they satisfy all the required boundary conditions.
Equations (7a) and (7b) are of the form of the Hankel transform for

= 0. First we consider the surface field at the plane z = 0 to
derive the dual integral equations associated with them. By using the
relation between the vector potentials and the electromagnetic field,
the tangential components of the electric field and the magnetic field
become

[Eg(z,qﬁ,o)} - Z [|:Epcm(p J cosmae + [ psm<,0 )] smmgb]

-5 [ [ g

—Z/ [ [g”" ]sinm¢+[§;mgg]c08m¢] é—J m(€pa)dE  (8a)
B (0,6,0)] _ N~ | [Eenle0) B, u(pe)]
[Eﬁ—m " oJ = mzo [ [Eic,mm)] cosmg+ [Eis,mwa)] sin m¢]

= ]Z/m\/m[ - [ﬁmgﬂ Slnqub—l-[fs m(ﬁ)} cosm ] m
m=0 0 "

fe, fam(€)

(€pa) d5+2 / ” ]cosm¢+[gsmﬁg)]sinm¢]J;n<spa)ds (80)
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H;)i+( 7¢70) _ S Hpcm( ) PSS, m( a) 1
[HMZ, . oJ =2 {Hmm( )] cosmg + [H (Z)] sin o)

m=0
o [T ] Fhm(©) m
nYOmZ:O/O [[ e ]smmqﬁ—i—[f;M ](:osm(ﬁ]§ QJ m(Epa)dE
—l-'Ei ?@ g () cosmao—+ G:m(€) sinme |J}, (£pq)dE(9a)
T 2 o ~Gern(£) ~Gem(€) Pa
o] = X i) cosmo (o] sinmo]
m—0 c,m s,m
:/@Y()i/oo [f:m(g)]cosmgb%—[ fsm(g)]smmgb g} (Epq)dE
= Jo fem () fem(€) "
+ Yomz_:o /0 3752—7/12 [_%r m((g))]smmqﬁ
=+
+[95~:f()§)}cosm¢ gg T (€pa)dé (9b)

The required boundary conditions for the problem under investigation
are given by (1) The tangential components of electric and magnetic
fields are continuous on the plane z = 0 for p, > 1 (2) Ef = —ZjH;‘,

E, =Z;H;,E; = ZfHf, E; = —Z;H, for p, <1 where Z and
Z are assumed to be surface 1mpedances of upper and lower surfaces
respectively.

The boundary condition (1) gives

E% 0 (pa) — B(pa)] [Ty GVE—RZ| fa(E)+fam(€)
[Ei:m<p> E G )]_/0 LaC )}[ [a:m@[)'gsm(e]g} ]55 ’

- /OOO [ (ep0)] [ﬁ;m }ﬁdﬁ—o pu>1 (10a)

B (pa) - Eﬁsmmz/‘” b PVER @ T ©] €
[ , , ] | (ép“)}[ i@ -] "0

- | [ ] [ﬁjm }sds—o p> 1 (10b)
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H o (pa) = Hig o (pa)

R IVE =2 [Gin(e +gcms}n£ B
_Yo/o g (fp“)” [ Fin(©) = Fon(©)] € ]fd€_0

[H;w pa) — Hi(p a]

_ [Ty Hpern(€)| ¢ e _
= [T o] | eae =0, gz (10¢)
sm(p(l Hgs_m
[H$:m< = Hy o (p }
SONCCE) A b Ly TR
:/ 1 €pa)] [~ g}fdﬁ—() pa>1 (10d)
0

where the kernel matrices {H s pa)] and {H (& pa)] are given by

i) = L, e
The boundary condition (2) gives

i) = v i) -

Gl —wap e <0 p<1 2

] =22 () <o

el =z [l <o pes1
where )

i) = )+ )

] =[] 4[] (120

] = (Bt + [Ent]

o)) = [ lo] o+ [t (120
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In the above equations, H;',Qm, H,Zs,m and Epcm, psm denote the

cosm¢ and sinmg¢ parts of the incident wave H, i and EZ respectively,
and same is true for Héqm and H;S,m and Eéqu and Eé)sm The
expressions for these factors are given by

H'.. (pa) = —jYoE cosOpenmi™J! (Kpq sinfp),

pc,m
Hf)s,m pa) = jYoEo€m,j™ Im (Kpg sin bp) (12e)

o) Rposindo
Hn(pa) = jYoE2emj™ Jy, (kpasinby),
(Pa)

Héﬁs,m pa) = jYoE1 cosOpemj™ Jm(Kpasinfy)  (12f)

ipq sin O

(pa) = —jE2cosOpemj™J;, (kpasinby),
—J in 6 12

(Pa) o sin Oy m(Kpa sinfp) (12g)

Elyn(pa) = —iErémi™ I}y (pasin bo)
(Pa)

= jE5cosOpenj™ Im(kpgsinfy)  (12h)

Kpq sin 6y
Equations (10) are the dual integral equations to determine the
spectrum functions f,,(£) and g,,,(§). The solution of the equations
must satisfy the Maxwell equations and edge conditions. Such
functions can be found by taking into account the discontinuous
properties of the Weber-Schafheitlin’s integrals. Thus we can set

E/—)’_c m( ) - Ep_c,m(pa) = Z - AnEv,nFntn( )+ BEmG;m(pa) ,(13&)
n=0

Ep+s m( )_E;s,m(pa) = Z CfmFrzn( )+D Gmn(pa) ’ (13b)
n=0

EQ—S’—S m( )_Eg;&m(pa) = Z AT%TL ’T;n( ) anGmn(pa) ) (13C)
n=0

E}. (Pa) = Egupn(pa) = D CnEln Frn(pa) + DynGriin(pa) |- (13d)
n=0

and
&)

Hon(pa) = Hon(pa) = D | = Al Ff(pa) + Bl Grn(pa) |, (14a)
n=0

iy n(p0) = Hin(pa) = 3 [ClFyfapa) + DitGran(pa) |, (140)

n=0
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HY, (pa) = H3, lpa) = D2 [ A, Fron(pa) = Bl Gron(pa) |, (140)
nO:OO

Y (p0) = Hi(pa) = D [ O Fran(pa) + DitGin(pa) |- (144)

where :

Frin(pa)

:/0 [J|m—1|(ﬁpa)J|m—1|+2n+1(77) + Jm+1(npa)Jm+2n+2(n)]77_1d77(15a)
G'r:i:ln(pa)

o0
:/0 [J|m—1|(ﬁpa)J|m—1|+2n+2(77) + Jm+1(npa)Jm+2n+3(77)]77_2d77(15b)

These integrals are of the form of the discontinuous Weber-
Schafheitlin’s integral. The edge conditions for the present problem are
Ey, Hy ~ O(1) [36-38] and it may readily be verified that F (p,) =
GE (pa) = 0 for p, > 1, and F= (ps) ~ O(1) and G (p ) o(1)
near the edge p, ~ 1. To derive the spectrum functions f(§) and
g(&) of the vector potentials we first determine the spectrum functions
of the electromagnetic field, since they are related to each other. We
substitute (13) and (14) into (10) and perform the integration, then the
spectrum functions of the surface electromagnetic field are determined.
The result is

Egum(§) = Z = ALERa(©) + BRI

Epon(€) = Y |CE,Z () + DT 8)]

Epen(€) = Y [CEESn(©) + DE T (6)]. (162)

Hypem(€) = Y | Al Zmn () = BT (6)]

n=0
oo

Hys() = > | = AR EEa(©) + BETL(6)],

n=0
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Hyom(§) = 3 |CrtnZn (&) + DI T, (9)].

n=0
e¢]
Hoem(€) = Y [CHZha(€) + DiTn(@)]. (172)
n=0
In the above equations the functions = (¢) and 'z, (€) are defined
by
(€)= | Tms2n(©) £ Tmsansa(€) €7,

TE(8) = [mr2ns1(€) & Jmsansa(§) €72 (17b)

It is readily found that the spectrum functions fcm(f) ~ gsm(§) can be
expressed in terms of spectrum functions of electromagnetic field, that
is,

=3 mz[ () = BT n(€)]
:FZ;’M (CHEhn(©) + DI,T mn@)}]f (182)
Fol)=3)- mz [CEnZin(©) + DTS (€]
:FZ;’FD[ AL B () + BILT mn@)}]& (18b)
ZIGETIE J;_Wi[flﬁn% - BI1T,(0)
ii (CEZ5n(©) + DEaTrn(©)] |€ (18¢)
(=5 mz[ Ol Z€) + DTS (€)]
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3.2. Derivation of the Expansion Coefficients

The equations for the expansion coefficients can be obtained by
applying the second boundary condition for p, <1 which is given

by (12).
/ Totoa) [ (V& =2 ncy)

" noa) | 22| (1= 5 VEE) e

(cosbp — 4 )E2i™ Jp (Kpa sin 6p) :|

= J2 [(1 — (4 cos o) Erj™ Jom (K pa sin Gg) (19a)

_m
Kpq sin O

* Fom (€) :
—/0 Jm(paé-) |:J§m(§):| (] 52 — K2 — /ﬁ<7>
Inpo) | 52 6| (1= B2 =) a

_m
§Pa
(19b)

_m
Kpq sin g

/0 N gma ' (Paf) [ f}nffg)} NGRS

walead) 2§ (1 L vE =) ae

9 (cos o + (- )E2j™ J;, (Kpa sin o)
=J (14 ¢-cosbo)E1j™ Jm (Kpa sin )

(19¢)

9 (1 — {4 cos HO)EU’"J (Kpa sinbo)
=J —(cosBg — C4)Eag™ o gn Im (kpa sin Bp)

< m Fan@© | ( ;
- /0 ¢, Im(pat) [fm @] NGRS
+ 3 (Paf) ggg] (1 - Jf;m) d¢

. (14 ¢—cosbo)E15™ ), (kpa sin bp)
—(coslp + (- )E2j™ —2—— Ju (Kpasin )

Kpgq sin O

(19d)

+
where (£ are the normalized impedances given by (+ = Zg with an

intrinsic impedance Zj in free space. Now we substitute the spectrum
functions and project the resulting equations into the functional space
with elements P!". If we substitute (18) into (19), and apply the
projection of P m, We get the relations for expansion coefficients

(AE  BE ~CH DH Yyand (AX BH CE ~DE . We take surface

mn? mn? mn? mn? mn? mn?
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impedances of upper and lower surfaces equal, i.e., (+ = (_ = (, to
simplify the equations.

o0

e T (€)= 3 2mA2n+ 1) 5 (;(T;;;(lel) J’"*z’g“ € pm

n=0

m_ Pm+DI(n+1) 5 [
P = Tlm+n+1) z /OJm(fx/E)JmHnﬂ(ﬁ)df

Equations for (AZ BI ~CE = DE ) are given below.

mn? mn?

vi(6) = (1—.“>, val€) = 2 (jV/E@ R~ k().

PN
¥s(§) = Zo (jgf_/_{Q—C)a Ya(§) = (1—]5\/52—7/'f2>

/ U1 (O Znn () = BT )0 T 20(€) = (0 +2) Ty 2p2(€)|
—u(€) [ AL Z )+ BT (©)][2m (1) Tmsap 41 (€067 €
= —4Fy¢j ™t [aZ‘JmHP (ksinfp)

- (O‘gl + 2) Jm+2pt2(ksin 90)} (ksin 90)_1 (20a)

/ 02(8)| Ol Zh () +D T ()0 20(€) = (0 +2) Ty 2p2(€)|
~3(€) [Cﬁmn@) + DI T ()] [2m (0 4+ 1) Jimsapa ()67 de

m+1[

= 4F5 cosfyj ' Jmt2p (K sin )

— (@) 4+ 2) Jmyopr2(ksin 00)} (K sinfp) ! (20b)

/ wl Agfbn:;’m Brlrcmr;rmn (6):|[2m (O‘gl + 1)Jm+2p+1 (5)5_1
{(agb) Im+2p(&) = (' +2) Jm+2p+2(§)] d§
= 4E,(jm Tt [Qm (a;” + 1) Im+2p+1 (K sin 00)} (K sin 00)_2 (20c¢)
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| 00|z ) + DI (@] [2m 0+ 1) Jrsnpia(@)E ]
+03(€) [ Ol &) + Dl T ()]
[(Oé;n) Jimy2p(€)— (o) +2) Jm+2p+2(§)} dg§

= —4F5 cos fpj ™! [Qm (o' +1) Jimyops1(rsin 90)] (ksinfp)~2 (20d)

These are equations for (AZ BI CE DE ) are given below.

[T O A )
[ Tt 20(€) = (0 +2) T 2p 2 )
+{w3<£> A Zn(©) —Bn’{nmn@]} 2 (g 4+ 1) a1 (€) | €1

— 4E,j™T! [2m (Ozz1 +1) Jm2p+1(ksin 90)] (ki sin ) > (21a)

/0 {wm |G Z () + DELT,(9)] }

[a;”Jm+2p(§) = (0" +2) Jmtapta(§ )}

F04(6) | ChinZin(€) + DhaTrun(©)] [2m (0 +1) Jinsapa ()] €7 de
= —4F;( cos Hoij{Qm (o' + 1) Jimy2ps1(rsin 90)}(5 sinfy) 2 (21b)
/0 ~2(6) |~ A E () Bit T (€] 2m (a7 41) T ()67
03 (€ At Zrn (€) ~ Bt T ()]0 T 429(€) (0 +2) o 2+ 2(€)] €
:4E1jm+1[a21«7m+2p(’f sin 00) —(op'42) Sy 2p42 (6 sin@o)] (s sinfp) ~'(21¢)
| o€l DET ] 2m (0 + 1) Tnsapr (67
FOAE)| Ol Z il DI Do (€)oo 2p(€) = (0 +2) o 2 42(6) |
= —4F( cos o™ [ozz"” m-+2p (K sin )

— (a3’ +2) Jmy2p2(ssin 90)} (rsin o)~ (21d)
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where ' = m + 2p. Through simple manipulations, the
Equations (20) and (21) are reduced to matrix equations.

The matrix equations for expansion coefficients (AZ . BE ~cCH DH
are

[e.9]

Z ArEnan(npr)z BrJrEer(r%pQT)z} = HV(V?P’

n=0

[e.9]

S [ A, 20+ BE, 222] - B, (220)
n=0

[e.9]

> |Cmzin + D 2GR = 5,

n=0

[e.e]

S [ch.zen + D, 2,22 - B (220)
n=0

1 1,2) (1
Z AOn Op n H(g p)7 Z DOnZO; n HOfp)

_1,2,3,...; p:0,1,2,3,... (22(:)
The matrix equations for expansion coefficients (A B2 CE DE
are
oo
n=0
oo
S (a2 - Bﬁnznsz@] _ K, (250
n=0
oo
S [cE 20 + DEZika) = KW,
n=0
oo
> |CE.Z30 + DE.ZED| = K, (23b)
n=0
1,2) 2
ZA Opn - Op’ ZDO%Z(()pn K((Mz
_1,2,3,..., _0,1,2,3,... (23¢)

These matrix equations can be solved using standard numerical tech-

niques. The elements Zr(r}plz ~ 7(,3,32% and ZW(L n) ~ Z;,(L?,’%) contains
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integrals of the form given below.

/ ”2_’"2 J5(€)de,
1
G/\(Oé>ﬁ):/0 W%x(ﬁ)lﬁ(g)d&
Iafa, ) = [ g (24)

These integrals converge when v+ 3 > A — 1 and A > 1 for K(«, f3)
and a + 3 > A —1and A > —1 for G(a,3) and are discussed in
detail in appendix B of [21]. The L(a, 3, ) is a special case of the
Weber-Schafheitlin’s integral.

3.3. Far Field Expression

Here we derive the far field expressions of A? and FZ given in (7)
directly by applying the stationary phase method of integration.
Application of the standard process of the method yields the result
given by

(25)

<,m—|—1 ) exp(—jrR) ~ cos 0
Ly=exp|J T

2 kR P(K sinf) sin

If we apply this formula to the vector potential given in (7) we have

exp(—jkR) 1
R sin @

AL(x) = poa®Yy

S

n=0

5 Jonto(ksind)

A — 7 Dy
0 (ksin ) ocost

(ksin6)?

i Jon+3(Kksin ) ]

_ Z mHZ{[ E = (ksinf)— Bfmfjfm(nsinﬁ)]

+Zycos b [Cmn + L (ksin@) + Dy, T (K sin 9)} cos m¢
mn—mn mn— mn

—i—ZOCOSH[ Al =t (ksin@) + BE T (msin@)}

[an:;m(n sin@)+DE T (ksin 9)} sin }} (26a)
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sexp(—jkR) 1

Fi(r) = eou R sin ¢
Z ZoAll J2n+2(rsin6) J2n+2(/£ sinf) 0s0DE. Jan+3(Ksin )
7| 40 (ksinf) (ksin6)?

= Z jmtt Z {ZO [AgnE;m(msin 0) — BH T+ (ksin 0)}

—cosH[CE =t (mbln9)+DE | (ﬁSinG)} cos mao

mn=—mn mn=— mn

mn—mn mn— mn

+COS@|:AE =t (ksinf) — BZ T (ﬁsinﬁ)]

+Zy [Cmn a(rsin®) + DE TF (ksin 0)} sin mqb}} (26b)

In the far region we have the relations
Ey = —jwAy = jwsinbA,,
Hg = —ijg :jw sinfF, = —}/QE(b,
A¢ = ZO sin@Fz. (27)

3.4. Physical Optics Approximate Solutions

We consider here physical optics solutions for comparison with the KP
solutions.

3.4.1. E-polarization

The incident and reflected electromagnetic plane wave at the plane
z = 0 may be represented as follows.

E' = §E; exp[jk(zsinfy + z cos )] (28a)
H' = (Zcosfy — 2sinby) E1Yy expljk(zsinfy + 2 cos ) (28b)
E" = AgE; exp[jk(xsinfy — z cos )] (28¢)
H" = A(—&cosfy — zsinby) E1Ypexp[jk(zsinfy — zcosbp) (28d)

Applying surface impedance boundary condition(SIBC) at z = 0 plane,

we get the reflection coefficient A = %. The total field on the
disk is

_2E1(t cos by , ,
Etot — ym exp[jk(z sinby)],

. 2F1Yycos B

Htot —
wCJF cosfp + 1 ¢

xp[jk(x sinbp)]. (29)
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The corresponding currents will be

M=-nxE  J=nxH" (30)
In our case, unit normal vector n is 2. The far field expressions of the
vector potentials are given by

B wE1 Yy cos 6y . / . .
Ay = (T cosbo + 1R exp(—jkR) Sexp [jk (a: sin 90)] exp
[jk sinf (2’ cos ¢ + ¢/ sin ¢) }dq:’dy'
kuE1Yy cos b J1(kO)
A, = 1
Y (Ctcosby+1) Go(R) ) (31a)

. 6()E'1<Jr COS 90

~ 27m(¢tcosfy + 1
[jk sin 0(z' cos ¢ + v’ sin ¢)} dx'dy
kegE1¢T cos Oy J1(KkO)

F, = 001 TR
((tcosby+1) Go(R) )

where © = /(sin 6y + sin 6 cos ¢)2 + sin @ sin ¢ and Go(R) = M.

R exp(—jkR) /Sexp[jk(x' sin fy)] exp

(31b)

3.4.2. H-polarization

In this case, We got the far field expressions in a similar fashion as for
E-polarization. We are just writing the final results

4 - kuE2Yy cos QOG R J1(kO)
2= 70—~ Go(R) ;
(¢t + cosby) S}
F KEOEQC—’_ Go(R Jl(li@) 39
v = o Go(R) : (32)
(¢t 4+ cosbp) S)
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The far electric field is derived as
Eg ~ —jw[Ag + ZOF¢], Ed) ~ —jw[Ad) — Z[)Fg]. (33)
where Ag = A, cos 0 cos g+ A, cosOsin ¢ and Fyy = —F, sin ¢+ F, cos ¢.

4. RESULTS AND DISCUSSION

To study the scattering properties of impedance disk, expansion
coefficients Am ~ Dm are computed. We have taken m = 2 x k in
our numerical computations. The theoretical expressions for the far
field are given by (27) for the impedance disk. The patterns for FE-
polarization and H-polarization are shown by Fo = 0 and E; = 0
respectively. The plane of incidence is zz-plane (¢9 = 0,7). Fig. 2
to Fig. 9 show the far field patterns of circular disk in the ¢-cut
plane ¢ = 0,7. The normalized radii are kK = ka = 3, ka = 5 and,
ka = 7 respectively. In all these figures, the normal incidence is for
0o = 0. In all results, the value of surface impedance (¢ = 0.3—30.1) is
used except where the results are shown for different values of surface
impedances which are mentioned in figures explicitly. In these figures,
the field patterns obtained using the physical optics (PO) method
are also included for comparison. The PO results are obtained using
(28) ~ (33). It is observed from the comparison that the PO and
KP results agree well for normal incidence (g = 0) but the degree of
discrepancy increases as the angle of incidence becomes large. It is due
to the fact that the PO approximation inaccuracy increases for shadow
region contribution. The values of the normalized surface impedance
¢ (0.3 —50.1, 0.15 — 50.09, 0.12 — j0.07) are taken from [39] which
correspond to 5%, 10%, and 20% respectively gravimetric moisture
content in San Antonio Gray Clay Loam with a density of 1.4g/cm3.
We also observe that the scattered field increases as the surface
impedance of the disk decreases and it approaches to perfect electric
conductor(PEC) disk scattering [21] case as the surface impedance
leads to zero, as expected. Because PEC boundary condition is a
special case of surface impedance boundary condition. We observe
through Figs. 4 and 8 that the peak of the field patterns shifts as the
incidence angle changes.
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