
Progress In Electromagnetics Research B, Vol. 40, 201–220, 2012

CONTOUR- AND GRID-BASED ALGORITHM FOR
MIXED TRIANGULAR-RECTANGULAR PLANAR MESH
GENERATION

T. A. Linkowski* and P. M. SÃlobodzian

Institute of Telecommunications, Teleinformatics & Acoustics, Wro-
claw University of Technology, Wyb. Wyspianskiego 27, 50-370
WrocÃlaw, Poland

Abstract—A mesh generation algorithm for the Method of Moments
(MoM) is described. The algorithm, named CGSM, can mesh arbitrary
planar shapes described with line segments and circular arcs into mixed
triangular and rectangular cells. CGSM creates contours of the meshed
shape and uses them to provide edge mesh (denser mesh near edges),
creates an adaptive grid and uses it to insert axis-aligned rectangles in
the interior, and finally, triangulates the remaining area (the Delaunay
condition is imposed on the triangulation). CGSM is compared to two
commercial applications (Designerr and IE3DTM) on the example of a
2-GHz hybrid ring coupler. The same simulation results are obtained.
However, with CGSM, simulation time is significantly reduced.

1. INTRODUCTION

The meshing algorithm described in this paper, named CGSM, was
already briefly described in [1], and a short comparison with Zeland
IE3DTM was given in [2]. Since then, the algorithm has been improved,
and here, it is described in detail and compared to commercial software:
Ansoft Designerr and IE3DTM.

A meshing algorithm for the MoM/SIE (Method of Mo-
ments/Surface Integral Equations [3, 4]) must, on the one hand, mini-
mize the number of unknowns N in the MoM matrix equation [5] (N.
B. for most basis functions, N is the number of internal mesh edges [4]).
On the other hand, the algorithm has to maintain certain minimum
density of cells. Specifically, the mesh should: a) match the meshed
shape and preserve its area [4]; b) contain cells whose size is not greater

Received 1 March 2012, Accepted 12 April 2012, Scheduled 19 April 2012
* Corresponding author: Tomasz A. Linkowski (tomasz.linkowski@pwr.wroc.pl).

202 Linkowski and SÃlobodzian

than 1/30–1/10 of the wavelength [6], and which do not overlap [7];
c) contain rectangles wherever feasible [7]; d) contain triangles without
very small or very large angles [8]; e) be denser near edges [9].

According to the best of our knowledge, there are few publications
concerning mesh generation for the MoM. There are several such papers
but only about triangular/quadrilateral mesh generation [3, 10, 11],
and there is truly extensive literature concerning triangular mesh
generation for FEM [8, 12–14]. There are also domain decomposition
methods other than mesh generation that are recently under
investigation, e.g., [15].

The techniques from FEM cannot be directly used in MoM, since
in FEM, the entire region under consideration has to be meshed,
while in MoM/SIE, we mesh only the boundary of the structure to
be analyzed. Moreover, some rules of mesh generation (e.g., mesh
density distribution) are different, which precludes direct application
of a FEM mesher in the MoM analysis. Yet, some of these techniques
can be adapted for MoM, and we try to do it here.

On the other hand, purely triangular meshes require higher
numbers of unknowns than mixed ones to represent the same
quantities. As to quadrilateral meshes, doublets (i.e., edge basis
functions) spanned over arbitrary quadrilaterals cannot approximate
constant charge distribution (see List of Desired Properties of
Doublets [3]), which both triangular and rectangular doublets can
do. This serves as the motivation for investigating mixed triangular-
rectangular meshes. Finally, note that doublets spanned over axis-
aligned rectangles will have only one non-zero vector component (either
X or Y), which can reduce the MoM matrix filling time.

As for the algorithms used in commercial MoM-based software
(FEKO, Ansoft, IE3DTM, WIPL-D), they are not open to public, and
they also generate only triangular or quadrilateral meshes (with the
exception of IE3DTMand, partly, Ansoft Designerr). Therefore, a
triangular-rectangular mesh generation algorithm for the MoM/SIE,
named CGSM, has been proposed and described.

2. FORMULATION

We begin with several definitions: 1) edge: a line segment or circular
arc defined in 2D, which has a source and target point/vertex ; 2) simple
figure: a planar simply connected list of edges; 3) complex figure:
a figure that may have holes, i.e., a list of simple figures, first of
which is the boundary, and the rest — holes; 4) structure: a set of
complex figures; 5) simple/complex polygon: a simple/complex figure
with segments only; 6) cell : a triangle or rectangle defined in 2D;
7) mesh: a set of non-overlapping cells covering the structure.

Progress In Electromagnetics Research B, Vol. 40, 2012 203

Table 1. Parameters of the CGSM mesh generation algorithm.

Symbol Name Range Default
cellsperλ cells per wavelength 5–50 20

kmax number of contour levels ≥ 0 2

r (CWk)
width of k-th contour

level (ratio)
0.01–1.0 0.1, 0.15

SWM shape-wise mesh on/off off
r (Lmin) minimum length (ratio) 0.01–0.5 0.2

r (CLmin)
min. conversion
length (ratio)

0.1–1.0 0.4

r (GLmin) min. grid eye length (ratio) 0.2–1.0 0.8
r (GLmax) max. grid eye length (ratio) 1.0–1.5 1.1

CAdflt default arc conversion angle 10–60 [◦] 30◦

CRAmin min. corner rounding angle 200–330 [◦] 271◦

The parameters of the CGSM algorithm are given in Table 1.
Many of the parameters p are ratios r (p) to the nominal length Lnom,
defined as

r(p) =
p

Lnom
, (1)

Lnom =
299.8

fmaxGHzcellsperλ
√

εreff
[mm], (2)

where εreff is the effective dielectric constant calculated from substrate
dielectric constant εr, substrate height h, and metallization width
w [16].

One test structure will be used throughout the paper — it is
constructed from segments and arcs, and contains one hole (Fig. 1). In
the next section, it will be meshed using the default parameters given
in Table 1 (for simplicity, εr = 1).

3. ALGORITHM

In this section, the four stages of CGSM are presented in detail:
1) Contour creation, 2) Grid creation, 3) Subdivision of edges, and
4) Mesh generation.

204 Linkowski and SÃlobodzian

Figure 1. Test structure (units:
mm).

Figure 2. First-level remaining
interior RI 1.

3.1. Contour Creation

Parameters used in this section: kmax, CW k, SWM, Lmin, Amin,
CRAmin.

Contour creation is also known as offsetting or buffering [17].
Offsetting, but only for polygons, is implemented in Computational
Geometry Algorithms Library (CGAL). CGSM uses contours to
provide edge mesh (i.e., denser mesh near edges). If no contours are
requested (kmax = 0), stage 3.1 is omitted.

We define what follows: an inner or outer contour (C) of a simple
figure (F) is another simple figure that is, respectively, inside or outside
of F and has an orientation opposite to F . Conversely, figure F will
be called a base figure for contour C. The distance between F and C
will be called a contour width (CW k).

Moreover, having an arbitrary complex figure (called base interior,
BI), remaining interior (RI) is a complex figure based on BI, i.e., RI
is composed of: 1) an inner contour of the boundary of BI, and 2) the
outer contours of holes of BI (Fig. 2). The area between them is called
a contour area (CA).

The initial contours of BI may require truncating, merging or
removing if they overlap, before they make final RI s. The distance
between BI and every point of final RI must be approx. the same.
Furthermore, for given BI and CW k, the number of created RI s is
nRI , where nRI ≥ 0 (Fig. 2). For next contour width (CW k+1), all
RI s become BI s (RI k = BI k+1), and the process is repeated (Fig. 3).
The boundaries and holes of all RI k are called k-level contours of the
structure.

Progress In Electromagnetics Research B, Vol. 40, 2012 205

Figure 3. Second-level remain-
ing interiors (RI 2).

Figure 4. Opposite contour
edges.

In conclusion, for every CW k, one or more contour areas (CAs)
and zero or more remaining interiors (RI s) are created. Moreover, if
SWM (shape-wise mesh) is on, additional contours with a width ratio
r(CW) = 1 are created.

A single iteration of contour creation consists of the steps
described in 3.1.1–3.1.7. After all iterations, we get a list of all
CAs and a list of final RI s. We denote the contours from the last
iteration (k = kmax) as top-level contours, and these from all previous
iterations [k = 0 . . . (kmax − 1)] as lower-level contours.

Finally, we need to define ancestry of edges (used in 3.3.4 and
3.4.6). Edge eA is an ancestor of edge eD (and conversely — eD is
a descendant of eA) if edge eD is a contour edge based on edge eA.
Note that edges store information about their ancestry (in our figures,
marked by tiny red arrows). Note also that an edge may have only one
immediate ancestor but many descendants (e.g., Fig. 3).

3.1.1. Creation of Opposite Contour Edges

For each edge e of a complex figure F , a contour edge c is created
(Fig. 4). Edge c has a direction opposite to e and is moved: inward if
e belongs to the boundary of F , or outward if e belongs to a hole of
F , by the distance of CW k.

Specifically, if e is a segment, c is translated by CW k along the
direction perpendicular to e. If e is a circular arc, c is an arc with an
opposite orientation, the same center, and the radius altered by CW k.
The source and target points of c are at angles at which, respectively,
the target/source points of e are. Finally, if the angle between edges
exceeds CRAmin, a linking arc is added (Fig. 4).

206 Linkowski and SÃlobodzian

(a) (b)

Figure 5. Interconnection in, (a) intersection point, (b) convergence
point.

3.1.2. Interconnection of Edges

Consecutive edges are interconnected in this step, i.e., they are
modified to meet in common points. A pair of consecutive edges
f and g may be: 1) stretched to their intersection point, if there
is any (Fig. 5(a)); 2) stretched to their convergence point, i.e., an
intersection point of the supporting lines/circles of f and g, if there is
any (Fig. 5(b)); 3) otherwise, they are connected with an arc.

3.1.3. Subdivision in intersections

Thus obtained closed figures will be called the initial contours. They
may still intersect with themselves or with each other (see the close-up
in Fig. 4). If they do not, we proceed directly to 3.1.6. Otherwise, we
disassemble the initial contours into stand-alone edges e1 . . . en, find
all intersections p1 . . . pm between them, and subdivide edges e1 . . . en

in points p1 . . . pm.
An efficient algorithm for intersection checking (sweep-line

algorithm [17]) exists, but for now, we only check if the minimum
bounding rectangles of edges ei and ej overlap before calculating
whether and where they intersect.

3.1.4. Removal of Edges that Are Too Close

Here, we dispose of the edges whose distance d to base interior BI is
d < CWk. Edge f is removed if the bounding rectangles of f and BI
intersect, and if f is too close to any of the edges of BI. For each pair
of edges, we also remove: edges that are exact opposites, and any of
the doubled edges (Fig. 6).

3.1.5. Assembling of Remaining Contours

The remaining edges can finally be assembled into correct, non-
intersecting contours. We start with an arbitrary edge and find
consecutive edges until we come across this edge again. However, if at

Progress In Electromagnetics Research B, Vol. 40, 2012 207

(a) (b) (c)

Figure 6. An element and its initial contour, (a) correct — no
removal, (b) opposite edges — both removed, (c) doubled edges
(dashed blue arrow) — one removed.

some point, having found edge ei, there is more than one consecutive
edge possible, we choose the one that is at the smallest angle from ei

(measured opposite to the orientation of the contour).

3.1.6. Adaptation of Contours

In this step, we merge consecutive edges that lie on the same line
(segments) or circle (arcs). The following should also be removed
(however, it has not yet been implemented): a) edges shorter than
Lmin, b) gaps between edges smaller than Lmin, c) angles smaller than
certain minimum angle (e.g., < 2◦).

Note that if — after the above operations — a contour is not a
correct simple figure anymore (e.g., it consists of two segments), it has
to be removed entirely.

3.1.7. Assembling Remaining Interiors and Contour Areas

From a list of correct contours, those with the same orientation as the
base interior BI are treated as holes, and the rest — as boundaries.
We assign holes to appropriate boundaries (by a point-in-figure check),
thus obtaining RI s.

Having obtained remaining interiors (RI s), we also need to
assemble contour areas (CAs). Let us assume that for an arbitrary
base interior with n holes (of which nfar are farther from the boundary
than 2CWk, and nclose are the rest, so that n = nfar +nclose), there are
created nRI remaining interiors. In such case, we can assemble: a) nfar

hole contour areas (or even fewer than nfar, if some of the holes are
closer to each other than 2CWk); b) one boundary contour area: its
boundary is the boundary of BI, and it has nRI + nclose holes.

3.2. Adaptive Grid Creation

Parameters used in this section: Lnom, Lmin, GLmin, GLmax (cf.
Table 1).

208 Linkowski and SÃlobodzian

Adaptive grid is an axis-aligned grid whose vertical and horizontal
lines adapt to the vertices of edges. Its primary use is to facilitate
distribution of rectangles in the mesh. N.B. only one grid is created
for the entire structure.

The 2D grid (gXY) is, in fact, composed of two 1D grids gX and
gY spanned along the x and y axis, respectively. A routine for creating
such a 1D grid will be denoted cGrid1D — it takes a list of vertex
coordinates (either x or y) as an input, and returns a sorted list of
unique grid coordinates. These coordinates are separated by distance
d, where GLmin ≤ d ≤ GLmax (preferably, d = Lnom).

Routine cGrid1D stores three lists: IC, a list with unique input
coordinates; IW, a list with weights of input coordinates (equal to the
number of vertices with such a coordinate); and GC, a list with unique
grid coordinates.

In a loop inside cGrid1D, one input coordinate is added in each
iteration as a default — its value is IC new = GC$ + Lnom ($: the last
element), and its weight is IW new = 0. Then, the algorithm considers
only input coordinates IC j fulfilling

GLmin ≤ ICj −GC$ ≤ GLmax, (3)
and chooses for GC $+1 the IC j with the greatest desirability D
according to

D(ICj) = ICj −GC$ + 0.05 Lnom (IWj)3. (4)
The above procedure can be interpreted as follows: next grid

coordinate GC $+1 is moved by distance d from the previous coordinate
GC $. By default, d = Lnom. However, if this were to cause that the
distance between GC $+1 and the input coordinate IC k immediately
before or after it be very small, GC $+1 should be moved to IC k, but
only if max (dmin, GLmin) ≤ d ≤ GLmax, where dmin equals: 0.95Lnom

if IW j = 1 (i.e., for single vertex having such a coordinate), 0.6Lnom if
IW j = 2 (for two vertices) and 0, otherwise (three and more vertices).

Finally, cGrid1D can be used to create the x-axis grid gX (input:
x coordinates of all top-level contour edges) and the y-axis grid gY

(input: y coordinates of edges created by subdividing all the top-level
contour edges with the vertical lines of gX).

Thus obtained grid gXY (Fig. 7) is adapted only to the top-level
contours. Therefore, a secondary grid (g′XY) adapted to all contours is
created, and if gXY lacks horizontal or verticals lines in some region,
they are copied from g′XY .

3.3. Subdivision of Edges

Parameters used in this section: Lnom, CW k, Lmin, CLmin, GLmax,
CAdflt.

Progress In Electromagnetics Research B, Vol. 40, 2012 209

Figure 7. Adaptive grid gXY . Figure 8. Structure after subdi-
vision.

(a) (b)

Figure 9. Subdivision, (a) in grid nodes, (b) of horizontal and vertical
segments.

This stage consists in approximating each arc with one or more
segments, and dividing each segment that is too long into shorter
segments (Fig. 8). As a result, after this stage all figures will be referred
to as polygons.

Note that an edge (e) may be subdivided in point p, if p lies on
e and if the distances from p to the source and target points of e are
d ≥ dmin. If not stated otherwise, dmin = Lmin. The subdivision
takes place in the following order: 1) subdivision of top-level contours
(k = kmax), 2) subdivision of lower-level contours in the descending
order of contour levels, i.e., k = (kmax − 1) . . . 0.

3.3.1. Subdivision in Grid Nodes

The edges that contain one or more of the grid nodes (i.e., points where
the horizontal and vertical lines of grid gXY intersect) are subdivided in
those nodes (Fig. 9(a)). This step assures that if a grid-based rectangle
is to be added there, the vertex will be there also. Note that for lower-
level contours, dmin = 0.5Lnom.

210 Linkowski and SÃlobodzian

3.3.2. Subdivision of Segments

This step has two parts: subdivision of horizontal/vertical segments
(for lower-level contours, dmin = 0.5Lnom), and subdivision of oblique
segments.

The horizontal and vertical segments of the contour are subdivided
in places where, respectively, vertical or horizontal lines of grid gXY

intersect with them (Fig. 9(b)). Again, this enables grid-based
rectangle insertion (cf. Fig. 14).

The oblique segments longer than dmax = max(Lnom + Lmin,
GLmax) are uniformly subdivided into segments with length lnew.
Specifically, each segment with length lsegm, if lsegm > dmax, is
subdivided into n segments with length lnew = lsegm/n, where n =
dlsegm/Lnome.

3.3.3. Approximation of Arcs with Segments

This step consists in converting each arc into one or more segments of
the same length. The number of segments n depends on the conversion
angle αconv (initially equal to default angle CAdflt). Having an arc
with length larc, radius r, and sweep angle αsweep, we will usually have
n = dαsweep/αconve segments. Yet, if this were to produce segments of
length lnew < min (CLmin, CW k) or lnew > Lnom, n must be decreased
or increased, respectively. Moreover, we define that we want to have
at least one segment per each 90◦ of the arc, so another requirement
is n ≥ αsweep · 2/π. Having found n, we obtain αconv = αsweep/n.

Furthermore, we want to make sure that the approximating
segments enclose an area (Asegm) equal to that enclosed by the arc
(Aarc). The preservation of this area improves the accuracy of the
MoM solution [4]. Therefore, the subdivision points are inserted not
within the original radius r, but within a modified radius R (Fig. 10),
obtained from the following formulas

Aarc = 0.5 αsweep r2, (5)

Figure 10. An arc with radius r and its four approx. segments.

Progress In Electromagnetics Research B, Vol. 40, 2012 211

Asegm = 0.5
(
r R + (n− 2) R2 + R r

)
sinαconv. (6)

By equating (5) and (6), we obtain a formula for the modified
radius R as

R =

1
2
γr n = 2

(
1−

√
1 + γ(n− 2)

) r

2− n
n > 2

, (7)

γ =
αsweep

sin(αconv)
. (8)

3.3.4. Descendant-based Subdivision of Segments

In this step, the subdivision is based on the descendants of each edge
(for definition, see 3.1). Since the edges of top-level contours have no
descendants, this step applies only to lower-level contours.

For a given contour Ck to be subdivided, we use an already
subdivided contour of higher level Ck+1, containing descendants of
edges in Ck. That is why we have to proceed in the descending order
of contour levels k = (kmax − 1) . . . 0, and apply this step before the
four steps described in 3.3.1–3.3.3. The general idea is similar to the
receding front method from FEM [14].

The minimum distance for this step is dmin = min(CLmin, CWk).
The procedure is: for each edge e from contour Ck such that e is
a segment, we project onto e the source and target points of the
descendants of e (i.e., edges from Ck+1). Then, e is subdivided in
each such projection point that lies on e within d ≥ dmin from the
source and target points of e. This assures that the contour area will
contain as many rectangles as possible (cf. Figs. 8 and 18).

3.4. Mesh Generation

In the last stage, only two parameters are used: Lmin and CLmin.
In the following subsections (3.4.1–3.4.5), a routine gen-

Mesh (P, dmin) is described, which generates a grid-based mesh for
an arbitrary complex polygon P , with dmin as the minimal distance
between cell nodes. We use it to mesh:
a) the final remaining interiors (RI s), consisting of the top-level

contours (Fig. 3); meshes for each RI are obtained as MRI =
genMesh(RI, Lmin),

b) all contour areas (CAs); meshes for each CA are MCA = Manc ∪⋃
MancRem, where each MancRem = genMesh(PancRem, CLmin),

and where the ancestor-based mesh Manc and the remaining
polygons PancRem are created in 3.4.6.

212 Linkowski and SÃlobodzian

Figure 11. Final mesh (no. of
cells: ¥ 77, N 152; unknowns:
N = 353).

Figure 12. Final mesh when
SWM is on (cells: ¥ 67, N 192;
N = 392).

(a) (b) (c) (d) (e)

Figure 13. Grid eyes suitable for insertion, (a) no (an edge too close
to the corner), (b) yes, (c) yes (edge exactly on the side), (d) yes (vertex
in the corner), (e) no.

The final mesh M is thereby a sum M =
⋃

MRI ∪
⋃

MCA

(Figs. 11, 12).

3.4.1. Insertion of Rectangles into Grid Eyes

Routine genMesh (P, dmin) begins with creating a mesh Mrect with
“full” rectangular cells, i.e., rectangles inserted into eyes of the grid
gXY (where grid eye is an area limited by two consecutive horizontal
and vertical lines of gXY). A suitable grid eye is one that is entirely
inside complex polygon P , does not contain any edge from P , and is
sufficiently far (dmin) from P (Figs. 13(a), (b)). However, a grid eye is
also appropriate, if it has an edge lying exactly on its side (Fig. 13(c),
or if it has a vertex of an edge in its corner (Figs. 13(d), (e)).

Progress In Electromagnetics Research B, Vol. 40, 2012 213

Figure 14. Rectan-
gular mesh and four
Prem’s.

Figure 15. Division
into monotone poly-
gons.

Figure 16. Ini-
tial triangulation of
all Prem’s.

3.4.2. Subtraction of Rectangles from the Polygon

In this step, we “subtract” mesh Mrect from the complex polygon P . To
the list of edges of P (all of which are segments), we add all “outer”
edges of Mrect (i.e., edges present only in one cell, not shared with
others), with orientations opposite to that of P . Then, segments that
are exact opposites are removed.

Subsequently, we assemble the edges into correct simple polygons
(i.e., ones that are non-intersecting and without holes), which is
analogous to step 3.1.5 in contour creation. The simple polygons, then,
are assembled into complex polygons in a procedure analogous to the
creation of RI s in 3.1.7. This yields zero or more remaining complex
polygons Prem (Fig. 14).

3.4.3. Triangulation

In this step, the remaining complex polygons Prem are triangulated.
First, each Prem is divided into monotone polygons using an algorithm
described in [17]. The division into monotone polygons consists in
adding diagonals in both directions between certain points of complex
polygon Prem (Fig. 15). Having added such diagonals, we assemble
remaining monotone polygons like in 3.1.5. Then, mesh Mtri with the
triangulation of these polygons is created (Fig. 16) using an algorithm
for triangulation of monotone polygons from [17].

3.4.4. Delaunay Flipping

In this step, we will assure that the triangles in Mtri are of good
quality. For this purpose, the Delaunay condition [12, 17] is applied.
It states that inside a circumcircle C of every triangle T there can be
no vertices of any other triangle T ’ (however, a vertex of T ’ may lie

214 Linkowski and SÃlobodzian

on the boundary of C). If the condition is violated by some pair of
triangles T and T ’, their common edge must be flipped.

3.4.5. Insertion of Additional Nodes and Merging into Rectangles

Here, mesh Mtri is further manipulated. In each grid node (i.e.,
intersection point of the lines of grid gXY) that is located: a) inside a
triangular cell T (within d ≥ dmin from the edges of T), T is divided
into three smaller triangles; b) on the common edge e of two adjacent
triangles T and T ’ (within d ≥ dmin from the vertices of e), T and T ’
are each divided into two smaller triangles.

Often, there is no need for the above node insertion, yet it is
required to assure that oversized cells are not created. Finally, for
each pair of adjacent right triangular cells T and T ’ whose vertices
form a rectangle, we merge them into one rectangular cell by removing
their common edge. The final mesh MP for the entire polygon P is
MP = Mrect ∪Mtri (cf. Figs. 16 and 11).

3.4.6. Ancestor-based Meshing

In this step, the meshing is based on the ancestor-descendant edge pairs
(for definition, see 3.1). Since such pairs can be found only in complex
polygons made of contours with levels k and k + 1, this step applies
only to contour areas, and it is applied before the already described
steps 3.4.1–3.4.5.

The step consists in creating a mesh Manc with rectangular cells
based on pairs of edges eA and eD, where eA is an ancestor of eD.
For each contour area CAk to be meshed, we will look for edges eD in
contours with level k (i.e., contours Ck).

For example, in the first contour area of the test structure (CA1,
Fig. 17), only one hole is a first-level contour C1, while the boundary
and the other hole are “zero” contours C0 (i.e., they are parts of the
original structure — cf. Fig. 2).

Now, for each edge eD from Ck, we find its ancestor eA in Ck−1,
and if their vertices form a rectangle, we add such rectangle to mesh
Manc. Then, we apply step 3.4.2, i.e., we subtract Manc from CAk and
assemble remaining complex polygons PancRem, which together with
Manc are the output of this step (Fig. 18).

3.5. Implementation

CGSM has been implemented using an object-oriented approach (C#,
.NET 2.0). No external libraries, apart from those present in .NET,
were used. However, some classes (Point, Vector, etc.) are based

Progress In Electromagnetics Research B, Vol. 40, 2012 215

Figure 17. First-level contour
area CA1, (a) boundary: C0 (light
gray), and holes: C0 (dark gray)
and C1 (black).

Figure 18. Rectangles of the
ancestor-based mesh Manc and
two remaining complex polygons
PancRem.

Figure 19. Mesh of a “CGSM” text (¥ 120, N 804; N = 1300).

Figure 20. Mesh of the text in a box (¥ 267, N 1125; N = 2034).

on those described in the CGAL Manual. A separate floating-point
number type (named Real) was also developed in order to overcome
rounding-error problems. In Real, the difference between two values
a− b is calculated as zero if |a− b| ≤ |a| × 10−10.

4. RESULTS

4.1. Example Meshes

Meshes of two example structures are given in Figs. 19 and 20. The
data defining the structures and the parameters are not specified due
to lack of space. For each, the generation time (on a 2-GHz Intelr
CoreDuo) was below 1 s.

216 Linkowski and SÃlobodzian

4.2. Comparison with Commercial Software

In this section, we consider a 2-GHz hybrid ring coupler that has been
designed, fabricated and measured in [18] (Fig. 21). This coupler is
simulated using three different meshes: two generated by commercial
applications (Ansoft Designerr, v. 6.1, and Zeland IE3DTM, v. 12.21),
and one — by CGSM. The simulation results are then compared to
the measurements reported in [18].

The coupler is simulated on RT/Duroid 5880 (h = 1.57mm,
εr = 2.2). It has radius R = 26.6mm, widths: w1 = 2.77 mm (in
the three 90◦ sections) and w2 = 2.25 mm (in the 270◦ section), and
arms that are 15.1-mm long (Fig. 21(b)).

The following has been simulated/measured: insertion loss
(S34/S21, S24, S31), isolation (S41), and reflection (S11, S44). The
frequency range is 0.5–3.5 GHz (step: 10 MHz), and max. relative
interpolation error for S is 0.1%.

Mesh generation parameters are: a) common: fmax = 3.5GHz,
cells per wavelength = 20, edge mesh = 0.1; b) Designerr: lambda
target = 1/20, arc step size = 10◦, max. number of arc points =
16; c) IE3DTM: segments per circle = 36, meshing scheme =
contemporary, AEC layers/ratio = 1/0.10; d) CGSM: CAdflt = 10◦
(see Table 1). All remaining parameters are default.

The summary of the simulations is given in Table 2. CGSM
provided 39% fewer unknowns than Designerr (which reduced
the simulation time by 50%), and 32% fewer unknowns than
IE3DTM(simulation time reduced by 42%). The created meshes are
presented in Fig 22, and the simulation results — in Fig. 23.

(a) (b)

Figure 21. Hybrid ring coupler, (a) photograph of the circuit
fabricated in [18], (b) simulation model in Ansoft Designerr.

Progress In Electromagnetics Research B, Vol. 40, 2012 217

(a)

(b)

(c)

Figure 22. Fragments of meshes generated by, (a) Ansoft Designerr,
(b) Zeland IE3DTM, (c) proposed algorithm (CGSM).

218 Linkowski and SÃlobodzian

(a) (b)

(c) (d)

(e) (f)

Figure 23. Comparison of measured and simulated results, (a)–(c)
insertion loss, (d) isolation, (e)–(f) reflection. (a) S34/S21, (b) S24,
(c) S31, (d) S41, (e) S11, (f) S44.

Table 2. Summary of the simulations (20 cells per λ, edge mesh: 0.1).

Mesh

generator
Rectangles

Triangles
tmesh N ts

all < 2◦ < 1◦ > 176◦

Designerr 192 638 26 0 0 1 s 1202 220 s

IE3DTM 231 511 102 58 0 1.5 s 1076 190 s

CGSM 74 453 0 0 0 0.5 s 735 110 s

Key: < α — cell with an angle smaller than, tmesh — mesh generation time
(rounded to 0.5 s), N — number of unknowns (internal mesh edges), ts —
simulation time (two significant digits).

5. CONCLUSIONS

In the paper, a planar mesh generation algorithm for the MoM/SIE has
been described. The algorithm (CGSM) first creates contours (offsets)
of the meshed shape and a rectangular grid adapted to its edges,
then subdivides the edges and the contours, and finally generates a
triangular-rectangular mesh that is contour-based near the edges and
grid-based in the remaining interior.

Progress In Electromagnetics Research B, Vol. 40, 2012 219

CGSM has been compared to two commercial applications:
Designerr and IE3DTM. The comparison shows that all the generated
meshes (Fig. 22) provide almost identical simulation results (Fig. 23).
However, CGSM outperforms the other generators by yielding smaller
number of unknowns (Table 2), which reduces the simulation time (for
Designerr, even by 50%). Finally, CGSM does not introduce any
triangles that would have an angle smaller than 2◦.

Notwithstanding these results, CGSM requires further work. First
of all, the authors plan to address the special cases concerning contour
creation (3.1.6). It would assure that no edges are shorter than Lmin

(unless such edges occur in the meshed shape) and that no angles
are smaller than certain minimum angle. We also plan to improve
mesh generation for contour areas (3.4) so that no cells larger than the
contour width are created (as is not the case in Fig. 20).

In conclusion, the authors believe CGSM to be a valuable tool
for the MoM/SIE. This seemingly simple algorithm is capable of
generating meshes that — in the given example at the very least
— have fewer unknowns than the meshes generated by Designerr or
IE3DTM, thus reducing the simulation time.

REFERENCES

1. Linkowski, T. A. and P. M. Slobodzian, “Automatic mesh
generation for planar structures based on contours, adaptive
grid and the delaunay condition,” EuCAP: 5th Eur. Conf. Ant.
Propag., 1562–1566, Rome, 2011.

2. Linkowski, T. A. and P. M. Slobodzian, “Comparison of automatic
planar mesh generation schemes facilitating edge meshing,”
CEM: 8th Int. Conf. Computation in Electromagnetics, 170–171,
Wroclaw, Poland, 2011.

3. Kolundzija, B. M. and A. Djordjevic, Electromagnetic Modeling
of Composite Metallic and Dielectric Structures, Artech House,
Norwood, 2002.

4. Peterson, A. F., S. L. Ray, and R. Mittra, Computational Methods
for Electromagnetics, IEEE Press, New York, 1998.

5. Harrington, R. F., “Matrix methods for field problems,” IEEE
Proceedings, Vol. 55, No. 2, 136–149, 1967.

6. Rao, S., D. Wilton, and A. Glisson, “Electromagnetic scattering
by surfaces of arbitrary shape,” IEEE Trans. on Ant. and Propag.,
Vol. 30, No. 3, 409–418, 1982.

220 Linkowski and SÃlobodzian

7. Newman, H. and P. Tulyathan, “A surface patch model for
polygonal plates,” IEEE Trans. on Ant. and Propag., Vol. 30,
No. 7, 588–593, 1982.

8. Lindholm, D., “Automatic triangular mesh generation on surface
of polyhedra,” IEEE Trans. on Magn., Vol. 19, 2539–2542, 1983.

9. Sercu, J., N. Fache, F. Libbrecht, and D. de Zutter, “Full-wave
space-domain analysis of open microstrip discontinuities including
the singular current-edge behavior,” IEEE Trans. on Microwaves
Theory and Tech., Vol. 41, No. 9, 1581–88, 1993.

10. Tsuboi, H., T. Asahara, F. Kobayashi, and T. Misaki, “Adaptive
triangular mesh generation for boundary element method in 3D
electrostatic problems,” IEEE Trans. on Magn., Vol. 34, No. 5,
3379–3382, 1998.

11. Moreno, J., M. J. Algar, I. Gonzalez Diego, and F. Catedra,
“A new mesh generator optimized for electromagnetic analysis,”
EuCAP: 5th Eur. Conf. Ant. Propag., 1734–1738, Rome, 2011.

12. George, P.-L. and H. Borouchaki, Delaunay Triangulation and
Meshing: Application to Finite Elements, Hermes, 1998.

13. Lo, S. H., “Finite element mesh generation and adaptive
meshing,” Progress Struct. Eng. Mater., Vol. 4, No. 4, 381–399,
2002.

14. Ruiz-Gironez, E., X. Roca, and J. Serrate, “The receding
front method applied to hexahedral mesh generation of exterior
domains,” Engineering with Computers, published online, 1–18,
2011.

15. Martini, E., G. Carli, and S. Maci, “A domain decomposition
method based on a generalized scattering matrix formalism
and a complex source expansion,” Progress In Electromagnetics
Research B, Vol. 19, 445–473, 2010.

16. Balanis, C. A., Antenna Theory: Analysis and Design, 3rd edition,
John Wiley & Sons, New Jersey, 2005.

17. Berg, M., O. Cheong, M. Kreveld, and M. Overmars,
Computational Geometry: Algorithms and Applications, 3rd
Edition, Springer, Berlin, 2008.

18. Okabe, H., C. Caloz, and T. Itoh, “A compact enhanced-
bandwidth hybrid ring using an artificial lumped-element left-
handed transmission-line section,” IEEE Trans. on Microwaves
Theory and Tech., Vol. 52, No. 3, 798–804, 2004.

