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Abstract—In this paper, two dimensional multi-port method is
used to analyze substrate integrated waveguide by using Green’s
function approach to obtain the impedance matrix of equivalent
planar structure. Modes propagation constant of substrate integrated
waveguide, as a periodic structure, is calculated by applying Floquet’s
theorem on the impedance matrix of a unit cell. Field distribution
of the propagating mode is obtained by this method. Results
obtained by this method are verified, in a broad range of dimensions,
by comparing with published results and also those calculated by
commercial electromagnetic simulator, HFSS. Electromagnetic band
gaps and mode conversion phenomenon as properties of periodic
structures are also observed and investigated. Mode conversion in SIW
is reported for the first time by our proposed method.

1. INTRODUCTION

Substrate integrated waveguide (SIW) is a promising candidate for
circuits and components operating in microwave, millimeter wave
and terahertz regions. This waveguide-like structure preserves most
the advantages of conventional rectangular waveguides, such as high
quality-factor and high power-handling capability. SIW has been
widely used in planar microwave circuits in recent years [1–5], and
various numerical methods have been developed to analyze these
structures [6–10].
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Two dimensional multi-port method —- or planar circuit approach
—- involves determination of impedance matrix (Z-matrix) of the
planar structure by using Green’s function. In this method, Green’s
functions are employed to obtain multi-port impedance matrix of
the model by assuming several ports along the peripheries of the
structure. This numerical method with some changes was employed for
characterizing SIW, named H-plane planar circuit approach [9]. Since
this method contains some vagueness of the excitation region, TRL
calibration technique was applied to the calculation of propagation
constant of SIW [10]; also the model contains more than one period.
But since the SIW is a periodic structure, propagation characteristics
can be obtained from one period model and without any excitation.

In this paper, two-dimensional (2-D) multi-port is used to analyze
propagation characteristics of SIW, however with different procedures
as in [10], to calculate the circuit Z-matrix and also propagation
constant. In our work, the width of each port is taken to be much
smaller than the wavelength to make sure that the field distribution
is almost constant along the ports. Then, using Floquet’s theorem for
periodic structures, propagation constant of SIW modes is obtained
from a unit cell Z-matrix (ZU ). Field distribution of SIW modes is
also obtained by this method. The results of the proposed method are
valid in a broad range of dimensions [6].

Although the SIW structure has similar properties to conventional
waveguides, obviously there are some differences. Electromagnetic
band gaps (EBGs), as a property of periodic structures, is one
of these differences, reported by some numerical methods, such as
finite difference frequency domain (FDFD) [8]. Mode conversion is
another property of periodic structures, which is analytically and
experimentally investigated in photonic crystal channel waveguides
(PCCW), a periodic waveguide with a similar structure to SIW [11].
However, for the first time mode conversion in SIW is reported by the
proposed method [12]. As will be shown in numerical results, mode
conversion also causes non-propagating bands. Mode conversion and
differences between mode conversion with conventional EBG will be
discussed.

This paper is organized as follows. In Section 2, 2-D method is
used to model a unit-cell of periodic SIW. As explained in Section 3,
applying Floquet’s theorem leads to an eigenvalue problem that gives
propagation characteristics of SIW modes. EBG and mode conversion
phenomena in SIW, as properties of periodic structures, are discussed
in Section 4. Results obtained by this method are compared with
published results and also those obtained by electromagnetic full wave
simulator, HFSS, in Section 5.
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Figure 1. (a) Geometry of SIW structure. (b) Top view of a unit cell
of SIW.

2. STRUCTURE AND METHOD OF ANALYSIS

Figure 1(a) shows a SIW structure composed of two parallel rows of
conducting cylinders with period length “s” and diameter “d”, and
two conductor surfaces which cover top and bottom of the substrate.
In this structure, the height is much less than the wavelength so that
electromagnetic field is constant in the height of substrate. Moreover,
it is periodic, so propagation characteristics of SIW are obtained from
planar model of a unit cell, shown in Figure 1(b).

As can be seen in Figure 1(b), there are several ports along
periphery of the circuit. In 2-D method, the planar circuit is modeled
by the impedances between the ports [13]. Consider the arbitrary
planar circuit shown in Figure 2. In 2-D method, electric field Ey is
used to define a voltage “V” between the planar circuit conductor and
the ground plane. This voltage is obtained as

V = −Eyh (1)

where h represents the spacing between the two conductors. If the
planar component is excited by a current density Jy in the y-direction
at any arbitrary point (x0, z0) inside the periphery, the wave equation
can be written as(

∂

∂x2
+

∂

∂z2
+ k2

)
V = −jωµh Jy (2)

where k is the wave number of the spacing material. On the other hand,
when the planar circuit is edge-fed, the term Jy denotes a fictitious
current density injected normally into the circuit (n in Figure 2 shows
the unit vector normal to the circuit). In this case, the current density
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Figure 2. A planar circuit of arbitrary shape.

is as

Jn =
1

jωµh

∂V

∂n
(3)

and injected into the circuit at coupling ports located along the
periphery can be equivalently considered as fed normal to the circuit
(along the y-direction) with magnetic wall boundary condition being
imposed all along the periphery. The equivalent fictitious surface
current Js (in the y-direction) is obtained as

Js =
1

jωµh

∂V

∂n
−→ay (A/m). (4)

Thus for edge-fed excitation, we can consider the planar circuit as being
excited by y-directed line currents located at the coupling ports [13].

The solution for the wave equation given by (2) can be obtained
using Green’s function approach. The Green’s function G (r|r0) for (2)
is obtained by applying a unit line current source δ (r − r0) flowing
along the y-direction and located at r = r0, which is a solution of

(
∂

∂x2
+

∂

∂z2
+ k2

)
G (r|r0) = −jωµhδ(r − r0) (5)

With magnetic wall boundary condition. Since the source current is
present only at the coupling ports, the voltage V at the periphery can
be written as

V (s) =
∑ ∫

Wq

G(s|s0) Js(s0) ds0 (6)

where the summation is over all coupling ports; Wq indicates the width
of qth coupling port; s and s0 are the distances measured along the
periphery. From Equations (3) and (4), we see that the current Iq

fed at the qth coupling port can be written in terms of the y-directed
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equivalent line current as

Iq =
∫

Wq

Js(s0)ds0 (7)

If the widths of the coupling ports are assumed to be small so that the
line current density, Js, is distributed uniformly over the port width,
we have

Iq = WqJs(s0)|for the qth port (8)

The voltage at pth port, vp, is an average of voltage over the width
of the port p. Substituting (8) into (6) gives the elements of the
impedance matrix of the planar circuit as

zpq =
vp

Iq
=

1
WqWp

∫

Wq

∫

Wp

G(s|s0)ds0ds, [13]. (9)

So, for a given planar circuit, Z-matrix is obtained from the Green’s
function. Although Green’s functions are only available for some
regular shapes, segmentation and desegmentation methods can be used
for irregular shapes [14, 15].

2.1. Z-matrix of a Unit Cell

As shown in Figure 1(b), the unit-cell can be assumed as a rectangle
with four half-circles removed and electric wall on the curved
boundaries. Z-matrices of both rectangular and half-circle segments
are available [13], so desegmentation method [14], in four steps, is used
to calculate Zσ, as shown in Figure 3. Applying electric-wall boundary
condition on the curved boundaries of σ-segment gives ZU [6].

The unit-cell model shown in Figure 1(b) has ports at the lateral
edges on the right and left sides, but in low leakage condition,
propagation constant is not sensitive to termination impedance at these
ports. So, it can be assumed that the ports located at these edges are
open circuit (magnetic wall boundary condition). Hence, ZU reduces
to impedance parameters between the ports shown in Figure 4.

σ

Desegmentation

Figure 3. Desegmentation process for calculation of Zσ.
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Figure 4. Ports locations in a unit cell of the periodic SIW.

3. PROPAGATION CHARACTERISTICS OF SIW
MODES

Propagation characteristics of SIW as periodic structure are obtained
by applying Fluquet’s theorem on a unit-cell model shown in Figure 4.
For this purpose, the unit-cell ports are defined as input ports and
output ports located at z = z0 and z = z0 + s, respectively. By this
definition, the Z-matrix of Figure 4 is divided to four sub-matrices as



vin,1

...
vin,M

vout,1

...
vout,M




=




¯̄Zin,in(1, 1) . . . ¯̄Zin,in(1,M) ¯̄Zin,out(1, 1) . . .
...

. . .
...

...
. . .

¯̄Zin,in(M, 1) . . . ¯̄Zin,in(M,M) ¯̄Zin,out(M, 1) . . .
¯̄Zout,in(1, 1) . . . ¯̄Zout,in(1,M) ¯̄Zout,out(1, 1) . . .
...

. . .
...

...
. . .

¯̄Zout,in(M, 1) . . . ¯̄Zout,in(M, M) ¯̄Zout,out(M, 1) . . .

¯̄Zin,out(1,M)
...
¯̄Zin,out(M, M)
¯̄Zout,out(1,M)
...
¯̄Zout,out(M,M)







Iin,1

...
Iin,M

Iout,1

...
Iout,M




(10)

where vin,m and Iin,m are voltage and current of mth input-port, and
vout,m and Iout,m are similarly defined. If the port width is assumed to
be small enough compared with wavelength, then the voltage at each
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port located at z = z0 can be written as

vin,m
∼= V (xm, z0) = −hEy(xm, z0) (11)

where Ey (xm, zm) is the electric field, at point (xm, ym = h, zm) in
y-direction, so we have

v̄in =




vin,1
...

vin,M


 ∼= −h




Ey(x1, z0)
...

Ey(xM , z0)


 (12)

In the same way, by replacing z0 with (z0 + s ) in (12), v̄out is defined.
If widths of all ports are equal, current vector Īin will be written as

Īin =




Iin,1
...

Iin,M


 ∼=

(
W − d

M

)


Hx(x1, z0)
...

Hx(xM , z0)


 (13)

where “(W − d)/M” is the width of each port. Employing Floquet’s
theorem [16] leads to the following system

{
v̄out = e−γsv̄in

Īout = −e−γsv̄in

(14)

where, γ is the characteristic propagation constant. Circuit shown in
Figure 4 is symmetric and reciprocal. Substituting (14) into (10) yields
the following matrix eigenvalue system(

¯̄Z−1
in,out

¯̄Zin,in − cosh(γs) ¯̄U
)

Īin = 0 (15)

where ¯̄U is an M × M identity matrix. The system in (15) has M
eigenvalues (cosh(γms); m = 1, 2, . . . , M). For real eigenvalues, if
cosh(γms) < 1 then γm = jβm, in which βm is the phase constant of
the propagating periodic wave and its related eigenvector, Īin , which
leads to field distribution of corresponding propagating wave, at the
ports.

Since the propagating modes are TEn0, the non-zero field
components are Hx, Hz and Ey. Substitution of Īin to (13) gives Hx

(at the ports shown in Figure 4). Ey is calculated from (10) and (12).
And Hz can be obtained using Maxwell equations as Hz(x) = −jωµ
(∂Ey \∂x).

According to (9), in lossless structure, all the Zij are pure
imaginary. So ( ¯̄Z−1

in,out
¯̄Zin,in) is a real matrix. For this reason, the

eigenvalues must be real or conjugate pairs. For example, for the
modes under the cutoff frequency, cosh(γms) is real and bigger than one
(γm = αm, where αm is real and positive). However, the SIW analysis
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shows that we cannot consider it as a propagating mode neither under
cutoff frequency, in some narrow frequency bands. When cosh(γms)
becomes real and negative, or when eigenvalues are conjugate pairs,
these phenomena happen. In the first case, γm = αm + j(2k + 1)π/s
(k = 1, 2, . . .) is related to EBGs of periodic structure of SIW. In the
second case, γm = αm + jβm and γn = αm + j(2kπ − βm)/s. In this
case, there is a non-propagating region for both “m” and “n” modes,
which will be shown in the numerical results. This gap, also observed
in PCCWs, is reported as characteristics of the SIW in this paper for
the first time. In Section 4, the band gaps of the SIW will be discussed.

4. EBG AND MODE CONVERSION IN PERIODIC SIW

All periodic structures are subject to electromagnetic band gaps, in
which small reflection from discontinuities interfere constructively, and
the wave does not propagate. In periodic structure with period s, band
gaps of the ith mode appear with following condition:

βi × s = kπ; k = 1, 2, 3, . . . (16)
where βi is propagation constant of the ith mode. Another property
of periodic structures is mode conversion. In periodic structures, if

(βi + βj)× s = 2kπ; k = 1, 2, . . . (17)
then the ith mode will be coupled to the opposite propagating jth
mode leading to energy transfer from ith to the jth mode, i.e., mode
conversion [17].

As the simple periodic structures shown in Figure 5, it is obvious
that all modes propagate without cross-coupling in the first structure,
because there is not any discontinuity in all dimensions. But in the
second one, modes with different longitudinal wave vectors will be
coupled in dimensional discontinuities; this causes mode conversion
at specified frequency presented in (17). In other words, EBGs
happen in both structures, but mode conversion affects propagation
characteristics only for the structure that shown in Figure 5(b) because
of dimensional discontinuities in this structure [12].

rAz

x

a unit cell Grounded Walls

rA rAµ rB µ rB
z

x

Grounded Walls

rA rA rAµ rB µ rB
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Figure 5. Two simple period structures, structure without dimen-
sional discontinuities (a) structure with dimensional discontinuities (b).
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Figure 6. Propagation phase constant of SIW.

SIW is a periodic structure with dimensional discontinuities,
so both EBG and mode conversion phenomena affect propagation
characteristics.

5. NUMERICAL RESULTS

5.1. Propagation Characteristics of Fundamental Mode

In Figure 6, we compare propagation constants calculated by our
method with equivalent rectangular waveguide [8], for different values
of d. The dimensions are considered as: s = 2mm, W = 7.2mm,
h = 0.508mm and εr = 2.33. The results, obtained by HFSS simulator,
are also depicted for comparison. All results are in good agreement as
shown in Figure 6.

Figure 7 shows transverse variation of Hx (x, z0) and Ey (x, z0) for
the fundamental mode, when d = 1.4mm, at 17 GHz. As seen, Ey (x)
satisfies boundary conditions at x = 0 and x = 5.8mm, and also it
is symmetric around x = 2.9. According to Figure 7, characteristic
impedance is Zc = 708.1717Ω, (Zc = −Ey/Hx) which agrees with
that obtained by effective width, Zc = 707.2Ω.

5.2. Mode Conversion in SIW

As we have mentioned earlier, periodic dimensional discontinuities of
SIW affect propagation characteristics. Figure 8 shows phase constant
of the SIW fundamental mode over a wide frequency band. The
dimensions of the SIW are considered as: d = 0.8mm, s = 2.8mm,
W = 7.6mm, h = 0.508mm and εr = 2.33. Phase constant of
a rectangular waveguide with the same cut-off frequency, filled with
εr = 2.33, is also depicted. As shown in Figure 8, propagation constant
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of the SIW deviates from that of the rectangular waveguide at two
frequency bands. Attenuation constant also peaks in these bands
shown in Figure 9(a). The first stop band, also depicted by FDFD [8],
is an electromagnetic band gap. In the band gap, attenuation constant
reaches a maximum value of 20.1 m−1, at 35.2 GHz, which agrees with
those obtained by FDFD [8, Figure 19].

Since SIW is symmetric in x axis, fundamental mode couples with
only odd modes. Figure 9(b) shows complex propagation constant
of the third mode. As shown in Figures 9(a) and 9(b), propagation
characteristics of both first and third modes deviate from their usual
route at 43.2GHz to 45.2GHz, in which they have exactly the same
attenuation constant. Phase delay per unit-cell of fundamental mode
ϕ1 (ϕ1 = β1×s), third mode ϕ3, and ϕ1+ϕ3 are depicted in Figure 10.
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(a) (b)

Figure 9. Complex propagation constant of SIW modes; fundamental
mode (a) third mode (b).
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The results shown in Figure 10 confirm that EBG and mode conversion
happen in 35 GHz to 35.4GHz and 43.2 GHz to 45.2 GHz frequency
bands, respectively. In the first frequency band, where ϕ1 = π,
wave does not propagate because small reflections from discontinuities
interfere constructively, so that α 6= 0 in this frequency band. In this
band, there is not any interfering of high order modes. However, in
the second gap, where ϕ1 + ϕ3 = 2π, the first and third modes affect
each other. In this frequency band, the energy of the fundamental
mode propagating in z-direction is transferred to the third mode in
the opposite direction. Thus, the first mode cannot propagate in this
frequency band. In the same way, energy of the third mode propagating
in z-direction is transferred to the first mode. So, attenuation constant
of both 1th and 3th modes peak when ϕ1 +ϕ3 = 2π. Mode conversion
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in PCCWs is observed, in the same way, by a dip in the experimentally
transmission spectra of the fundamental mode where the energy is
transferred to the high order mode which propagates backward [11].
As shown in Figures 8–10, fundamental mode characteristics of SIW
deviate from the rectangular waveguide, at high frequencies, due to
weak dimensional discontinuities in this periodic structure.

6. CONCLUSION

This work presents an approach for the analysis of SIW, based on two-
dimensional multi-port method. Propagation constant of SIW modes
is obtained by applying Floquet’s theorem on the impedance matrix of
the unit cell. The results for fundamental mode are in good agreement
with that in [8] and also verified by HFSS.

EBG and mode conversion phenomena as the properties of
periodic structures with dimensional discontinuities are investigated
by employing two simple periodic structures and their differences are
discussed. The numerical results, compatible with other published
results, show conventional EBGs. Additionally, mode conversion is
also observed. Mode conversion in SIW is reported for the first time,
by our proposed method.
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