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Abstract—In this paper, a new linear method for optimizing compact
low noise oscillators for RF/MW applications will be presented. The
first part of this paper makes an overview of Leeson’s model. It is
pointed out, and it is demonstrates that the phase noise is always the
same inside the oscillator loop. It is presented a general phase noise
optimization method for reference plane oscillators. The new method
uses Transpose Return Relations (RRT ) as true loop gain functions
for obtaining the optimum values of the elements of the oscillator,
whatever scheme it has. With this method, oscillator topologies that
have been designed and optimized using negative resistance, negative
conductance or reflection coefficient methods, until now, can be studied
like a loop gain method. Subsequently, the main disadvantage of
Leeson’s model is overcome, and now it is not only valid for loop gain
methods, but it is valid for any oscillator topology. The last section of
this paper lists the steps to be performed to use this method for proper
noise optimization during the linear design process and before the final
non-linear optimization. The power of the proposed RRT method is
shown with its use for optimizing a common oscillator, which is later
simulated using Harmonic Balance (HB) and manufactured. Then, the
comparison of the linear, HB and measurements of the phase noise are
compared.
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1. INTRODUCTION

Oscillators play a key role in every Radar, RF or microwave systems [1–
4]. The noise characterization of oscillators is essential for the system
engineers, because the device final performance is inherently defined by
it [5–7]. At the same time, oscillator design presents high difficulties [8–
10], although works by Randall and Hock [11] and Jackson [12], or
even later works as González-Posadas et al. and Jiménez-Mart́ın et
al. [13, 14] have tried to shed light on the conditions for proper oscillator
design. These three last works have tried to unify all linear design
methods by giving a global perspective, and they have characterized all
oscillators as a feedback system using the Return Relations (RR) [15]
and the Normalized Determinant Function (NDF) [16]. In fact, to
optimize the oscillator noise has been a great problem because its
linear optimization was difficult, or even impossible, for non-feedback
oscillators. A first attempt to solve this problem was developed by
Leeson in 1966 [17], which was improved and completed by many
other authors [18–20]. This way, the very first general noise model
was developed using a feedback scheme as it is shown in Fig. 1.

The used block diagram consists of an amplifier and a feedback
network. The amplifier is characterized by a gain function, “G (A,ω)”,
which depends on input amplitude (A) and frequency (ω), and
the frequency feedback network is characterized by its frequency
response “H (ω)”. The feedback network consists mainly of the
resonator/filtering, modelled by a serial or parallel circuit with losses
(B). This resonant circuit provides a frequency response as it is shown
in Eq. (1), where f0 is the oscillator carrier frequency (in Hz); ∆fm

is the carrier offset frequency (in Hz) and QL the loaded Q of the
resonator (dimensionless).

Filter / Resonator 

Amplifier

Figure 1. Leeson Oscillator Model employed for determining its phase
noise.
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H (∆fm) =
B

1 + j · 2 ·QL ·∆fm

f0

(1)

Using Eq. (1), Leeson’s oscillator phase noise model can be
rewritten as Eq. (2), where Lout(∆fm) is the phase noise spectral
density (rad2·Hz−1) defined as the ratio between the power density in
one phase modulated sideband and the power at the oscillator carrier
frequency (if logarithmic units are used it is given in dBc/Hz); Pin is
the carrier power level (in W ) measured at the input of the amplifier
loop; F is the noise factor of the amplifier loop, although, as it is
explained later, it also takes into account flicker noise up conversion
around carrier frequency and gain compression of the amplifier; K is
Boltzmann’s constant; T is the absolute temperature (Kelvin degrees);
and fc is the flicker cut-off frequency (in Hz).

Lout (∆fm) =
(

FKT

2Pin

(
1 +

fc

∆fm

))
·
(

1 +
(

f0

2QL ·∆fm

)2
)

(2)

Depending on the frequency offset, the main noise contribution
are different, and they can be modelled in a very simple way as in
Eq. (3), where Kα is a constant that depends on α, which can take
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Figure 2. Dependence law of oscillator spectral densities.



300 Jiménez-Mart́ın et al.

values from 0 up 4. Fig. 2 shows the phase noise of the oscillator, and
it points out the main noise contribution in each frequency region.

Lout (∆fm) =
N∑

α=0

(
Kα ·∆fm

−α
)

(3)

Unfortunately, this model is only useful when a feed-back loop
is recognised, it shows a great agreement between simulations and
measurements [9, 20, 21]. On the other hand, reference plane oscillator
are analysed using negative resistance, negative conductance or
reflection coefficient [12, 13], and it is not possible to identify a feed-
back loop to apply Leeson’s model.

2. GENERAL CONSIDERATIONS ABOUT LEESON’S
MODEL

Many authors [18–20] have taken Leeson’s model as start point to
model the noise as a transfer function of the input and output noise
of the oscillator amplifier. This model is shown in Fig. 3. The input
model of the phase noise is the one in Eq. (4), where the first term is
the noise of the amplifier and the second one is the noise due flicker
up-conversion.

Lin (∆fm) =
(

FKT

2 · Pin

(
1 +

fc

∆fm

))
(4)

When Eq. (4) is considered as the input noise, the output phase
noise is the multiplication of it with the passive transfer function as it
is shown in Eq. (5). Gcl is the closed-loop gain as it is shown in Eq. (6),
where DG is the amplifier Direct Gain between input and output; OLG
is the Open Loop Gain; G0 is the amplifier gain; and B is the loss of

Filter / Resonator
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Figure 3. Oscillator phase noise Leeson classic model.
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the resonator.

Lout (∆fm) = Lin (∆fm) · |Gcl|2 (5)

Gcl =
DG

1−OLG
=

G0

1− G0 ·B
1 + j

2 ·QL ·∆fm

f0

(6)

When Eq. (6) is applied to Eq. (5) the output phase noise is as it
is defined by Eq. (7).

Lout (∆fm) =
(

FKT

2 · Pin

(
1 +

fc

∆fm

))
·

∣∣∣∣∣∣∣∣

G0

(
1 + j

2QLfm

f0

)

1 + j
2QLfm

f0
−G0B

∣∣∣∣∣∣∣∣

2

(7)

The Eq. (7) differs from the intensive tested and corroborated
Leeson’s expression (Eq. (2)). To obtain Leeson’s expression it must
be considered that G0 · B = 1 (oscillation condition) and also that
G0 = 1. The last condition is only true when the loaded quality factor
of the oscillator is much lower than the unloaded one (QL ¿ Qo). As
in a general case G0 is determined by the insertion loss of the resonator

Figure 4. AWR schematic used for checking the phase noise using
Leeson’s/Everard’s model.
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(1 − QL/Qo) = B = G0
−1, so G0 must be considered for phase noise

calculation.
When G0 is considered for input to output oscillation powers

(Pout = P in ·G0
2) the output phase noise is defined by Eq. (8).

Lout (∆fm)=
1

(
1−QL

Qo

)4 ·
(

FKT

2 · Pout

(
1+

fc

∆fm

))
·
(
1+

(
f0

2·QL ·∆fm

)2
)

(8)

The expression on Eq. (8) is different from the one by Everard [22],
which is is experimentally tested and corroborated, so it must be
assumed that the Eq. (7) and the used model (3) are wrong for G0 6= 1.
Besides, this equation has another big problem, if it was right, the
phase noise will be function of the chosen measurement point inside
the loop. The Direct Gain (G0) is measured between signal input and
output points, so it will be different for different input and output
positions, but the Open Loop Gain (OLG = DG · H(jω)) will keep
invariant.

It is possible to simulate an oscillator circuit, Fig. 4, and to
measure the phase noise at different points of the loop. The simulation
results in Fig. 5 show that the phase noise is the independent of the
chosen point for the measurement. The authors propose the scheme in
Fig. 6 in order to mend the disagreement between previous expressions,
Eq. (7) and Eq. (8), and the simulated phase noise results.

If a signal is injected at any point of the loop, its phase noise
will change. So, to measure the phase noise the input and output

phase_noise

Frequency (MHz)

dB
c/

H
z

Figure 5. Simulated phase noise of the loop points of Fig. 4.
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Figure 6. Proposed model.

must be the same point. Then the changes on the loop gain will affect
numerator and denominator of the feed-back system function, so the
phase noise result will be constant. In the Fig. 6, the chosen point is
the amplifier input port, this way the DG is 1 and the OLG is Eq. (9).
The values of DG and OLG will be the same ones whatever the chosen
point to open the loop was.

OLG =
1

1 + j
2 ·QL ·∆fm

f0

(9)

When DG and Eq. (6) are substituted in Eq. (9) the Leeson’s
expression is obtained. Now it seems that it can be considered that
the phase noise does not have any dependence with G0, but it is not
true. The F is strongly dependent of the amplifier gain, G0, as it takes
into account the large signal noise. The flicker noise up-conversion and
the compression gain are factors that modifies the F factor, by making
it greater.

3. CLASSIC OPTIMIZATION METHODS

There are only a few linear methods for phase noise optimization, and
maybe the most commonly and widely used is the one by Everard [20–
22]. Only if the oscillator is modelled as a feedback system, the Leeson’s
model [17] can be used to optimize the phase noise.

Substituting Pin with its equation as function of the amplifier
gain (G0) and the loaded and unloaded quality factors in Leeson’s
noise model equation, it gets Everard’s condition for phase noise
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optimization. With these substitutions it is obtained Eq. (10).

Lout (∆fm)=




FKT

2·Pout

(
1−QL

Q0

)2

(
1+

fc

∆fm

)

·

(
1+

(
f0

2·QL ·∆fm

)2
)

(10)

The Eq. (10) can be approximated for a white frequency noise
region as Eq. (11).

Lout (∆fm) ≈ FKT

8Q0
2 · Pout

(
QL

Q0

)2 (
1− QL

Q0

) ·
(

f0

∆fm

)2

(11)

When QL = Q0/2 is achieved, Eq. (11) has a minimum, so the
minimum phase noise is defined by Eq. (12).

Lout (∆fm) =
2FKT

Q0
2 · Pout

(
f0

∆fm

)2

(12)

The main conclusions that can be obtained from Everard’s
equation are:

• Noise factor (F ) must be minimized, but to minimize the noise
factor of the active device is very difficult because it is near to the
lowest thanks to current manufacturing techniques [23].

• Flicker corner frequency must be the lowest to get a good phase
noise feature for frequencies near to the carrier. To chose the
most suitable transistor is a key to reduce the up-conversion of
the flicker noise [24].

• Q0 must be as big as it is possible to get the biggest QL.
• The output power of the amplifier (Pout) must be as big as it is

possible. But now at days it is not always possible due to power
consumption restriction on lots of applications as mobile ones.

• QL

Q0
=

1
2
, then the S21 of the resonator must be −6 dB for an

optimum QL condition. In this case, the availability of accurate
techniques for calculate the QL are really useful for the optimized
design of oscillators [25].

These conditions and the proposed model, Fig. 6, are suitable
when it is possible to define a feedback loop. It is easy to define a
feedback loop when the oscillator is designed as a cascade set of “boxes”
(amplifier, resonator, coupler for signal sampling, phase shifter, . . . ),
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but, most of times, it is not designed on this way. The space
limitation and the use of high frequencies techniques make difficult, or
even impossible, to define a feedback loop as the feedback sometimes
includes internal “elements” of the amplifier.

There are other works [18–22, 26], but none of them is a general
method for linear optimization of phase noise. They are not suitable
for optimization when the reference plane or reflection coefficient
techniques are used and loop gain method cannot be used. In the
next section, a new and general method is shown, which generalizes
Everard’s equation and is suitable for noise optimization, even if loop
gain method cannot be used.

4. TRANSPOSE RETURN RELATIONS METHOD

There are two main groups of methods for oscillator analysis, they
are loop gain method [9, 11] and reference plane methods [9, 27]. The
main methods of the second group are negative resistance, negative
conductance and reflection coefficient methods. These methods use a
reference plane [13, 27] to divide the circuits into active and resonator
sub-circuits, Fig. 7. It is not obvious to divide the oscillator into the
resonator and active parts, as some times the resonator is not easily
identified. There is a similar problem on the loop gain method, the
feedback is not easily identified as sometimes the feedback includes
the active device (really it includes some parasitics effects of the active
device). All these makes really difficult to use the engineers preferred
method, the loop gain method [9].

The use of reference methods has problems in some cases, but
Jiménez-Mart́ın et al. [14] and González-Posadas et al. [13] propose
to verify an additional condition to assure that the plane reference
methods provide right solutions. This additional condition is to apply
the NDF to assure that the characteristic functions (ZT = Zosc + Zres,
YT = Yosc + Yres or ΓT = 1− Γres · Γosc) have only a pair of conjugates
poles in the Right Half Plane (RHP). The NDF is applied to the active
sub-circuit loaded with the proper load for each case. The suitable load
is an open circuit for the ZT , a short circuit for the YT and Z0 for the
ΓT , Fig. 7. The validity of the reference plane methods can only be
assured when the NDF analysis is satisfied.

Jiménez-Mart́ın et al.’s method [14] is based on the Transpose
Return Relation (RRT ) and Normalized Determinant Function (NDF).
This method makes possible to represent and analyse any oscillator as
a feedback system similar to the one on Fig. 3. Then Everard’s method
for phase noise optimization can be used for any oscillator topology.

On the other hand, the loop gain method [9, 11] (which is



306 Jiménez-Mart́ın et al.

Ref. Plane

Figure 7. Schematic of oscillator divided by reference plane.

equivalent to use the RRT Nyquist traces to analyze the circuit) allows
to get some very useful parameters as gain margin, loaded quality
factor (QL), which in fact is directly related to phase noise, and the
possibility to assure the necessary and sufficient condition for a proper
start-up of the oscillator. This condition is the existence of only a
pair of conjugated complex poles in the RHP. This way, the Nyquist
analysis of the open loop gain is correctly calculated and the poles of
the network are located, but only way if the NDF of the open loop
quadrupole of the oscillator with both ports loaded with Z0 and some
other additional conditions are verified [14]. The direct use of the
NDF in designing stage is proposed. It is possible thanks to the NDF
relation with the Return Relation, which makes this NDF method a
powerful tool for rightful design of lay-out of oscillators.

The NDF is defined as the quotient of the determinant of the
network and its normalised determinant, which can be obtained by
“disabling” all active devices of the network, Eq. (13). An interesting
property of the NDF is that it has an asymptote to +1, which is useful
for determining the upper analysis frequency.

NDF =
∆(s)
∆0(s)

(13)

A most suitable way to calculate the NDF is to use of the
Return Relations (RR) defined by Bode [15] as pointed by Platzer
and Struble [16]. their NDF definition is in Eq. (14), where RRi is he
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return relation of the ith dependent generator when all the “previous”
generators have been disabled.

NDF =
n∏

i=1

(RRi + 1) (14)

Obviously, it is necessary to have the linear model of the transistor
to use this method. If the linear model is not available, it can be
extracted using any simulation software. Having the linear model, it
is possible to have access to the “internal” ports of the dependent
generator to use the Bode expressions to calculate RR.

The Transpose Return Relation (RRT ) is defined as the Return
Relation (RR) with negative sign, Eq. (15). This way the RRT

represents a “True Open-loop Gain”, Fig. 8, which is useful for Nyquist
analysis.

“True open− loop gain”=RRT =−RR=RRosc ·RRres =gm ·H(ω) (15)

The use of RRT expression as design tool makes possible to
determine the number of poles of the network without any additional
issue. The RRT also provides the oscillation frequency (poles location)
for Kurokawa’s first harmonic approximation, it is when only the gm

is compressed. But the RRT does not required the transistor gm

compression.
The RRT is split into the active part, RRosc = gm, which is

only depended on linear transistor model; and the resonator part,
RRres = H(ω), which does not only includes the resonator but it
also includes all the parasitic elements. The proposed RRT method
is also suitable for calculate de the “true” loaded quality factor of the
network, Eq. (16).

QL = −ω

2
· d

dω
Arg(RRT (ω)) = −f

2
· d

df
Arg(RRT (f)) (16)

When the first harmonic approximation or descriptive function
is applies to the RRT , the minimum noise condition can be defined.
This condition is when the AM-PM conversion is the lowest, it is
when the cross of −1/RRosc(V ) and RRres(ω) is π/2 counter-clockwise
for increasing values of V and ω, where V is the control variable.
The control variable is always the control variable of the dependent
generator when the RRT is used. In a general case the Q can be
increased making RRres to change quickly with the frequency and
considering RRosc as frequency independent. But the RRT is used, as
RRosc is exclusively the transistor transconductance, it is a constant
value.
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Figure 8. Schematic of oscillator for RRT calculus.

5. PRACTICAL EXAMPLE

An oscillator, which is usually analyzed by reference plane methods,
has been chosen as example. The oscillator example is a common
collector [13] with a capacitive feed-back, Fig. 9. Even the simulations
consider all parasitic and micro-strip elements, they have been omitted
on the schematics for a better readability and comprehension. All the
simulations that are presented in this paper have been performed using
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Figure 9. Schematic of common-base oscillator with reference plane.

AWR Microwave Office. The chosen transistor is a low cost, medium
noise BJT, BFR380F from Siemens Technologies. It is important to
remark that the feed-back includes the transistor and the use of micro-
strip elements (they only have two terminals instead of four) make
impossible to redraw the circuit as a chain system of an amplifier and
a resonator. All these characteristics cause that this classic oscillator
is always analyzed by the impedance characteristic function (reference
plane method). The use of this method makes the loaded Q not to
be available, so neither the Leeson’s noise model can be used for this
oscillator, nor the gain margin can be estimated. Without these two
parameters, gain margin and loaded Q, neither the phase noise nor the
start-up time can be calculated.

With the traditional reference plane method, the result is the total
impedance, Fig. 10. As pointed out, these impedance results cannot
provide information about the loaded Q or the gain margin.

The circuit in Fig. 9 can be analyzed by the proposed RRT

method. The proposed method is defined in Fig. 8 and explained in
deep detail by Jiménez-Mart́ın et al. [14]. The obtained Nyquist plot
from the RRT analysis is in Fig. 11.

The RRT Nyquist plot predicts pair of conjugated complex poles
in the RHP, it is the necessary and sufficient condition for a proper



310 Jiménez-Mart́ın et al.
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Figure 10. Impedance plots of the oscillator (without optimization).
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Figure 11. RRT Nyquist plot (without optimization).

oscillation. These poles are at 1.955 GHz, it is next to the reference
plane predicted oscillation frequency. An other advantage of the RRT

method over the reference plane ones is that the obtained frequency is
the poles frequency and it is not required to compress the transistor to
optain the poles frequency as it is required with the reference planes
methods. This is true for the first harmonic approximation when only
the gm compression is considered. The main advantage of the RRT
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method for low noise oscillators design is that the loaded Q can be
estimated and then the Leeson’s equation [17], or any of the improved
ones as the Everard’s expression [20–22], can be used for phase noise
optimization.

The non optimized loaded Q of the proposed example which has
been estimated using the RRT is in Fig. 12. The loaded Q at the
oscillation frequency is 16.

The oscillator is simulated using the Harmonic Balance (HB)
technique. This oscillator model, without being optimized, has been
manufactured, Fig. 13. This unit has been measured using a HP
E4446A spectrum analizer, the comparison of its spectrum with the
HB simulated one is in Fig. 14, and the comparison of the phase noises
is in Fig. 15. The HB simulated phase noise and the measured one
have a good match. The difference at hight frequencies is due to the
measurement equipment noise floor.

Frequency (GHz)

1.955 GHz
15.97

Figure 12. Estimated loaded Q using the RRT (without
optimization).

Figure 13. Oscillator picture.
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dB
m

Frequency (GHz)

Figure 14. Simulated and measured spectra (without optimization).

Sim.
Oscillator

Meas.
Oscillator

Figure 15. Simulated and measured phase noises (without
optimization).

The QL can be calculated with Eq. (17) from the HB simulation of
the phase noise, Fig. 15, where the fQ is 0.07 GHz. The QL is similar
to the one estimated by the NDF/RRT method, which is shown in
Fig. 12.

QL ≈
f0

2 · fQ
≈ 2.003GHz

2 · 0.07 GHz
≈ 14 (17)

Considering the QL as a relevant factor of the phase noise, it is
optimized and the obtained phase noise values are registered in Table 1.
This table contains the lumped values of the oscillator, the loaded Q
(QRRT

), the gain margin (GM) and the oscillation frequency (f0 RRT
)
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that have been calculated using the RRT method. It also contains the
oscillation frequency (f0HB) and the phase noise at 10 KHz obtained
by the HB simulation. The phase noise of the oscillator improves with
the higher loaded Q, but when this factor goes above the optimum
value the phase noise start to increase as it is predicted by Everard’s
expression.

The values of the 4th column are used for the new phase noise
optimized oscillator. The Nyquist plot of the RRT analysis of this new
optimized oscillator is shown in Fig. 16 and the estimated RRT loaded

Mag Max
15

Swp Max
6 GHz

5
Per Div

Swp Min
0.1 GHz

NDF_RRT

Figure 16. RRT Nyquist plot (optimized oscillator).

Frequency (GHz)

Re (Eqn())
Q_RRT

Q_RRT

1.986 GHz
39.51

Figure 17. Estimated loaded Q using the RRT (optimized oscillator).
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Table 1. Oscillator phase noise vs. design lumped values.

Parameter 1 2 3 4 5 6
Cr (pF) 1.8 1.8 1.5 1.2 1.2 1.8
Cp (pF) 0.47 0.68 1 1.2 1.2 1.5
Cs (pF) 1.5 1.2 0.82 0.47 0.47 0.47
L (mm) 9 8.6 8.6 9 9 7.3

QRRT
15.98 20.08 31.59 39.03 43.04 43.41

f0 RRT
(GHz) 1955 2000 1996 1986 1982 1986

GMRRT
9.3 7.9 7.2 3.84 3.55 2.44

f0HB (GHz) 2163 2145 2058 2003 1999 1999
Ph. NoiseHB −90.45 −93.38 −99.02 −106.5 −103.1 −101.6

(dBc/Hz
@10KHz)

Sim (dBm)
Oscillator Opt.

Meas (dBm)
Oscillator Opt.

Frequency (GHz)

dB
m

2.046 GHz

-1.44

1.998 GHz
0.2084 dBm

Figure 18. Simulated and measured spectra (optimized oscillator).

Q is shown in Fig. 17. The QL of the optimized oscillator is nearly 40,
which is much larger than the one obtained from the oscillator without
optimization (16).

The HB simulated phase noise at 10 KHz of the optimized
oscillator is −106.7 dBc/Hz, which is much better than the one of the
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Frequency

dB
c/

H
z

phase noise

Figure 19. Simulated and measured phase noises (optimized
oscillator).

non optimized oscillator, −90.5 dBc/Hz.
The optimized oscillator has been manufactured, it has an

identical aspect as the one shown in Fig. 13, but with the optimized
values from the 4th column of the Table 1. The simulated and
measured output spectrum and phase noise are shown in Figs. 18 and
19. The simulated and measured data have a good match, and the
slight differences are caused by the tolerances of the components. So,
the oscillator can be considered as phase noise optimum, or at least
it is very close to be (Phase noise = −103.4 dBc/Hz @ 10 KHz). As it
has previously pointed, the noise floor for upper frequencies is due to
the noise figure of the spectrum analyzer (≈ −153 dBc/Hz).

6. CONCLUSIONS

This paper is focused on a new method for designing oscillators, which
allows to optimize the output phase noise. This method is suitable for
topologies that have been, so far, analyzed using the reference plane
methods. When these methods are used, it is very difficult, or even
impossible, to optimize the phase noise. The proposed new method
uses the RRT expression, which allows to use the loop gain concept,
and so to use the Leeson’s equation for optimizing the output phase
noise of the oscillator.

The phase noise is proportional to the inverse of the square of the
loaded Q, when the resonator Q is high enough. But it is only valid, if
the topology limit is not reached, as it was explained by Everard. This
value limit together with the optimization possibility of the Q of the
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network, whatever topology is used, make this RRT method a powerful
and interesting tool for optimizing and designing low noise oscillators.
Besides, The RRT is required to verify if the classic methods (reference
plane or loop gain), so its use is required for any method.

In this way, the new RRT linear method is a general method
for phase noise optimization of any oscillator topology, and the good
matching between simulated and experimental results has been proved
with examples.
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