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Abstract—The electromagnetic characteristic of the aperture located
on a PEC (Perfect Electric Conductor) cavity is an important and
challenging research in CEM (Computational Electromagnetics) and
practical applications. Researches have been done well when the
apertures located on a large flat surface. But the complex slots and
apertures are still difficult to analyze, such as a thin long slot. The
thin long slots present on different kinds of structures, such as missiles,
aircrafts, handset equipments, and computers. In addition, most of the
surfaces are non-flat. Furthermore, the multiscale characteristic of the
structure makes the modeling very difficult in such cases. It becomes an
increasing interesting research recently. A better result can be obtained
by generating much more denser meshes. Because of the complexity of
the algorithm and the ill-posed matrix problem, it is not an optimized
option. In order to get a better use of the aperture theorem in the
multiscale problems, a separation technique is developed in this paper.
By using the readjustment of the equivalent electric and magnetic
currents, a simplified model is proposed. Arbitrary shaped aperture
can be very well handled through this method, especially the thin long
slots.

1. INTRODUCTION

HE electromagnetic scattering of the multiscale structures attracts
great attention in the recent studies. The equivalence principle is a
useful theorem in these problems. The electromagnetic translation of
the aperture is also an important electromagnetic phenomenon in such
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a multiscale problem. The classical aperture theorem is used when
there are apertures. Using the aperture theorem, an aperture located
on the infinite large plane is solved by Harrington and Mautz [1] in
the beginning. Then, many other cases are studied [2–8]. The shape
and depth of the aperture are the main concern. But, the apertures
always present on an electric large and flat PEC surface. Wang et
al. [9] extends the aperture theorem to an arbitrary shaped aperture
on an arbitrary shaped PEC cavity. The fields change rapidly in
the vicinity of the aperture. And it changes faster when there are
multiscale apertures. Denser meshes are needed to capture the induced
electric and equivalent magnetic currents. The situations are worse
when the shapes are not regular. Sometimes it is hardly possible, such
as a thin long slot. Recently, the TSF(Thin-Slot Formula) [10–14]
technique is developed based on the FDTD method. As well-known,
the Yee cells cannot model the non-regular shapes very well. The TSF
technique is only for the long thin slot. It can be a problem when
it is used in the multiscale structures. The equivalence principle is
introduced to increase the accuracy of the results in [14]. But because
the denominators of the coefficient in the updating equations contain
the electric fields which are zero in some moments in the simulation,
it is not easy to use in practice. And the slot needs to be just in
the center of the Yee cell in the TSF technique. And the results
become inaccurate when the width of the slot equals the length of the
cell’s edge. When using other numerical methods alone, such as FEM
and MOM, much denser meshes are needed in the aperture region.
And it often results in an ill-posed matrix. The aperture theorem
which utilizes the equivalence principle is exact. But the numerical
manipulation will always bring errors. The equivalent currents are
discussed, and then a simplified model is proposed in this paper. The
method can be easily used in the multiscale structures. And the thin-
slot can be well handled by this method.

2. APERTURE THEOREM AND THE SEPARATION
TECHNIQUE

2.1. Classical Aperture Theorem

The aperture theorem is based on the equivalence principle. The detail
of the equivalence principle is described by Harrington in his book [15].
Because many surfaces can be the equivalent surfaces, there are lots
kinds of the equivalent currents. Theoretically, the different choices
do not lead to different results. Because of the numerical process,
bigger errors would present when the improper surface is chosen in
numerical simulations. The degree of accuracy depends on how exactly
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the equivalent currents on the imagine surface are modeled. A classical
configuration of the problem is shown in Fig. 1(a). The problem is to
solve for the fields in V1 and V2, which are separated by the surface
S. The V1 surrounds V2, and extends to the infinity. The constitutive
parameters are complex values, (ε1, µ1) in V1 and (ε2, µ2) in V2. The
sources inside region 1 (V1) are (J1, M1). And (E1, H1) are the total
fields in region 1. The quantities in region 2 (V2) are denoted by simply
changing the subscripts 1 to 2. The boldface characters represent
vectors in this paper. In order to get the matrix equations, the
procedure of the aperture theorem is divided into two steps. Each step
results in an equivalent problem. First step, by using the equivalence
principle once, the original problem is divided into two equivalent
problem as shown in Figs. 1(b) and (c). They are the outer and inner
problems. The equivalent surfaces are S+ and S−. It is zero fields
which are shown in Fig. 1(b) in region 2, but real fields in Fig. 1(c).
Then, the “short-circuit” technique is introduced in the second step.
The above two equivalent problems become two new problems. In
these new equivalent problems, the surface S becomes a completely
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Figure 1. Problems in aperture theorem.
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sealed PEC surface, under the real sources and equivalent currents’
illumination. But the equivalent electric currents are cancelled out,
leaving only equivalent magnetic currents. When the surface S is
electrically large and flat, the image theory can be used to further
simplify the problems. But the approximation is introduced when S is
finite or curved. Next, by utilizing the boundary conditions over the
aperture and using the equivalence principle again, integral equations
are derived. In fact, although the second step is an option when the
PEC surface is not infinite large and flat, it still works well except that
we can not use the image theory to further simplify the problems here.
In the aperture theorem, the equivalent magnetic currents which only
exist on the aperture surface are solved first, and then the outer and
inner surface electric currents.

2.2. The Separation Technique

The results are almost exact as mentioned above. The more precise
results are realized through introducing denser meshes in the multiscale
problems. But it is hardly enough in some special geometries, such as
the thin long slots. In order to overcome this difficulty, we introduce
a separation technique by analyzing the equivalent currents over the
aperture region. In the classical aperture theorem, the short-circuit
technique is used after the first step. Because of the PEC boundary
condition, the tangential electric fields need to be zeros on the surface.
But it is not true in the model. So, Booysen [16] questions the
procedure. And then he states that there should be a small gap
between S and the equivalent surface S+ and S− [17]. However, they
are treated as the same during the calculation in order to stick to the
boundary conditions. The published literatures adopt this concept,
using the model which states that the magnetic currents exit on the
PEC surface and the same meshes for both equivalent currents. The
validation of the calculation and experimental results can be found
in [7] and [17]. In these papers, the authors use the calculation methods
including FDTD and the MOM.

Following, as shown in the Fig. 2, we separate the equivalent
electric and magnetic currents just after the first step. Now, the same
or different meshes can be used. In Fig. 2, h means the distance of the
two equivalent currents over the aperture region, namely the distance
between S1 and SAP or S2 and SAP . And they are not necessarily
equal. The SAP is the surface of the aperture. The SPEC denotes
the PEC surface of the original problem. Now, the equivalent electric
currents are on SPEC and SAP , while equivalent magnetic currents
are on S1 and S2. However, the boundary conditions are broken
down. From another point of view, all sources including the real and



Progress In Electromagnetics Research M, Vol. 24, 2012 101

SAP S2

S1

a

b

c

hh

z
y

x O

SAP S1

S2

SPEC

c

a

b

hh

z
y

x O

(a) (b)

Figure 2. Separation of the equivalence currents.

equivalent sources are radiating in a free space in these equivalent
problems. The separation can be viewed as a perturbation of the
sources. There is a break of the equivalent magnetic currents over
the aperture region. The currents suddenly change from some finite
values to zero. This results in rapid changes of the fields in the vicinity
of the aperture. In turn, we conclude that the equivalent magnetic
currents would change drastically with different h. The evident results
are seen in the numerical simulations. It seems difficult to determine
the distance h here. In fact, h falls in a quite large range. Next,
we perform the second step. The final equivalent problem is shown
in the Figs. 2(a) or (b), with the aperture closed by a PEC surface
here. There are two ways to separate the equivalent currents. One
is just to move equivalent magnetic currents as shown in Fig. 2(a),
and the other is to move electric currents as shown in Fig. 2(b). No
differences of the results should be found between these two methods
theoretically. The magnetic currents move into the analyzing zone in
the first method. While moving the equivalent electric currents, the
analyzing zone is enlarged. Because of the bigger perturbation of the
resonant frequency of the cavity, it results in bigger errors in numerical
simulations when the frequency is near the resonant frequency. And
because the equivalent magnetic currents are h away from the PEC
surface in Fig. 2, there are image magnetic currents. These image
currents are distorted when the PEC surface is non-infinite or non-
flat. And these two currents always generate zero electric fields on the
PEC surface. This makes the value of h fall in a large range.
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3. FORMULATIONS AND MOMENT PROCEDURE

3.1. Integral Equations

In this section, integral equations are derived using the equivalence
principle. It turns out to be that, it does not need such a compensated
current in [9]. It must be an electric current induced on the PEC’s
surfaces. And because the doubly image theory can not be used in
these cases when the PEC surface is electrically small or curved, we
derive the integral equations without using image theory below. The
magnetic current which is just outside an electric current sheet would
induce an image, no matter what shape of the electric current sheet is.
But the image is distorted when the sheet is electrically small or not
flat.

For simplicity, the sources (Einc, Hinc) are only in V1. n is
the outward unit normal vector of the surface S from V2. The two
equivalent problems are drawn in one figure, as shown in Fig. 3. In the
figure, equivalent electric currents are on the outer and inner surfaces
of the cavity surface. Equivalent magnetic currents are separated from
the cavity. We use the MOM (method of moment) in this paper. The
integral equations are used in the numerical analysis. Following the
process in [18], the electromagnetic fields on the inside and outside
surfaces of the PEC cavity are:

E1(r) = 2Einc + 2
∫

s+

[
−jωµ1Js1g1 −Ms1 ×∇′

g1

−(1/jωε1)(∇′ · Js1)∇′
g1

]
ds

′
(1)
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Figure 3. Geometry of equivalence currents on the aperture.
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H1(r) = 2Hinc + 2
∫

s+

[
−jωε1Ms1g1 + Js1 ×∇′

g1

−(1/jωµ1)(∇′ ·Ms1)∇′
g1

]
ds

′
(2)

E2(r) = 2
∫

s−
[−jωµ2(−Js2)g2

−(−Ms2)×∇′
g2 − (1/jωε2)(∇′ · (−Js2))∇′

g2]ds
′

(3)

H2(r) = 2
∫

s−
[−jωε2(−Ms2)g2 + (−Js2)×∇′

g2

−(1/jωµ2)(∇′ · (−Ms2))∇′
g2]ds

′
(4)

where gx = e−jkxR/4πR, R = |r − r′|, kx is the wave number of the
material in region 1 or 2, Js,1/2 and Ms,1/2 are the outside or inside
surface currents which are defined as:

Js1/2 = n×H1/2 (5)

Ms1/2 = E1/2 × n (6)

Note that, we use the same unit normal vector when the currents are
on the outer or inner surface in (5) and (6). By substituting the bellow
notations:

E(Js) =
∫

s

[
−jωµJsg − (1/jωε)(∇′ · Js)∇′

g
]
ds

′
(7)

E(Ms) =
∫

s

[
Ms ×∇′

g
]
ds

′
(8)

H(Js) =
∫

s

[
Js ×∇′

g
]
ds

′
(9)

H(Ms) =
∫

s

[
−jωεMsg − (1/jωµ)

(
∇′ ·Ms

)
∇′

g
]
ds

′
(10)

into (1)–(4), we get:

E1(r) = 2Einc + 2E1(Js1)− 2E1(Ms1) (11)
H1(r) = 2Hinc + 2H1(Js1) + 2H1(Ms1) (12)
E2(r) = 2E2(−Js2)− 2E2(−Ms2) (13)
H2(r) = 2H2(−Js2) + 2H2(−Ms2) (14)

Applying the boundary conditions of the electric fields on the outer
and inner sides of the cavity, we have:

0 = [Einc + E1(Js1)−E1(Ms1)]tan (15)
0 = [E2(−Js2)−E2(−Ms2)]tan (16)
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where [. . .]tan means the tangential components. There are four
unknown variables in the integral equations. Another two equations
can be derived using the electric and magnetic boundary conditions
on the aperture. When the aperture is thick and has complex shape,
the complexity of the equations increases greatly. A lot of simplified
methods are developed. The discussions and comparisons can be found
in [19]. An other classical method, which is called local transmission
line theory, is developed by Warne and Chen [8]. The mode matching
also is a useful technique for connecting the inside and outside region.
Most recently, the authors use this technique to analyze a rectangular
aperture located on a rectangular cavity in [20]. But it is limited to
regular shapes. Because we focus on the separation technique, a thin
aperture is assumed in this paper. However, it is necessary to introduce
the local transmission line theory in this technique in the next studies.
So, in the aperture region:

n×E1(r) = n×E2(r) (17)
n×H1(r) = n×H2(r) (18)

Then, the other two equations are:

Ms1=Ms2 (19)
n×[Hinc+H1(Js1)+H1(Ms1)]=n× [−H2(Js2)−H2(Ms2)] (20)

3.2. The Moment Procedure

Firstly, the cavity and aperture’s surfaces are divided into many
triangular patches. Then equivalent currents Js and Ms are expanded
by the same basic functions Jn over the patches. And the equivalent
magnetic currents are expanded as:

Ms = Ms1 = Ms2 =
NA∑

n=1

vnMn (21)

where NA is the number of basic functions on the equivalent surface SA

(the aperture surface), Mn = Jn, and the vn is the unknown coefficient.

Js1 =
N∑

n=1

I1
nJn (22)

Js2 =
N∑

n=1

I2
nJn (23)

where N is the number of basic functions on the sealed PEC surface, In

is the unknown coefficient. The electric currents are continuous across
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the whole surface, and the magnetic currents are still considered to be
continuous but changes rapidly from nonzero to zero when crossing the
edge of the aperture. Define the vector symmetric inner product as:

< a,b >=
∫

s
(a · b)ds (24)

where a and b are vectors. Substituting (21) and (22) into (15), and
testing with Jm, we have:

0=< Jm, Einc >+
N∑

n=1

I1
n <Jm, E(Jn)>−

NA∑

n=1

vn <Jm,E(Mn)> (25)

where m = 1 . . . N . The tangential subscripts of the fields are dropt.
Similarly, testing (16) with Jm, we get:

0 = −
N∑

n=1

I2
n < Jm, E(Jn) > +

NA∑

n=1

vn < Jm, E(Mn) > (26)

where m = 1 . . . N . The cross product of Equation (20) can be changed
to dot product by introducing an arbitrary tangential vector t(r) on
the aperture surface:

t(r) · [Hinc + H(Js1) + H(Ms1)] = t(r) · [−H(Js2 −H(Ms2)] (27)

Now, testing (27) with Jm, t(r) can be replaced by Jm. Then:

<Jm,Hinc >+
N∑

n=1

I1
n <Jm,H(Jn)>+

NA∑

n=1

vn <Jm,H(Mn)>

=−
N∑

n=1

I2
n < Jm,H(Jn) >−

NA∑

n=1

vn < Jm,H(Mn) > (28)

Because (27) is only correct on the aperture, in (28) m = 1 . . . NA.
With Equations (25), (26) and (28), the unknown coefficients can be
solved. Matrix representations are:

0 = [V E
m ]N + [ZEJ

mn]N×N [I1
n]N − [ZEM

mn ]N×NA
[vn]NA

(29)

0 = −[ZEJ
mn]N×N [I2

n]N + [ZEM
mn ]N×NA

[vn]NA
(30)

[V H
m ]NA

+ [ZHJ
mn ]NA×N [I1

n]N + [ZHM
mn ]NA×NA

[vn]NA

= −[ZHJ
mn ]NA×N [I2

n]N − [ZHM
mn ]NA×NA

[vn]NA
(31)

The elements of (29), (30), (31) are:

V E
m = < Jm,Einc > (32)
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V H
m = < Jm,Hinc > (33)

ZEJ
mn = < Jm,E(Jn) > (34)

ZEM
mn = < Jm,E(Mn) > (35)

ZHJ
mn = < Jm,H(Jn) > (36)

ZHM
mn = < Jm,H(Mn) > (37)

Because Mn = Jn in this paper, and noticing (7)–(10), so that:

ZHM
mn = ZEJ

mn/η2 (38)

ZEM
mn = ZHJ

mn (39)

where η is the intrinsic impedance of the medium. The matrix
equations can be used to solve for vn firstly, and then In can be obtained
through (29) and (30). In the above equations, we no longer distinguish
the inside or outside surfaces. And it should be aware of the evaluation
of the elements when the sources are separated. Two types of matrix
elements need to be evaluated.

It has been proved that arbitrary shape objects can be modeled
by planar triangular patches very well. The typical expansion function
named RWG [21] is used, in which Jn is defined on each inner edge
between two patches:

Jn(r) =





ln
2A+

n
ρ+

n , r in T+
n

ln
2A−n

ρ−n , r in T−n
0, elsewhere

(40)

where ln is the nth edge’s length; T+ and T− are the plus and minus
triangular patches of the nth edge respectively, and A+ and A− are the
triangle’s area. Let v+ and v− are defined as the free vertex vectors
of the edges. So,

ρ+
n = r− v+ (41)

ρ−n = −r + v− (42)

Since the accuracy of the results in MOM simulations closely depends
on the evaluation of the matrix elements, we consider the process
carefully. In fact, the significant factor is the accuracy of the elements
which are located on the diagonal line of the matrix. They are highly
affected by the calculation method as shown in a lot of published
literatures. It occurs when the testing and source points are in a
same triangular patch. The analytical and numerical evaluations of
the singular term in the testing procedure are extensively studied [22–
27]. Typical singularity extractions can be found in [22–23]. And they
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are used in this paper. Suppose the incident fields (Einc, Hinc),

Einc = E0e
−jk·r (43)

Hinc = (1/η)k̂×Einc (44)

where k is the propagation vector.

3.3. Numerical Example

For no loss of generality, the magnetic currents separation is used in
following example. The shape of the aperture is circle. Obviously, it
goes the same way when the separation technique is used in the thin
long slot case. A cubic PEC cavity is assumed to have the edge length
of 0.0796 m. And the shape of the aperture is a circle with 0.0398 m
as its diameter. And the thickness of the cavity is 0.002 m. The points
A and B are selected as the testing fields’ points which are shown in
Fig. 4. The equivalent magnetic currents are pulled away from aperture
surface SAP . It is supposed that a plane wave illuminates from +z,
and +x polarizing in this simulation.

The scattering electric fields and the RCS are compared in Fig. 5
and Fig. 6. And h = dlmin, where lmin is the minimum length of triangle
patch’s edge, which is 0.0031 m in this simulation. From the figures, we
can see that the fields and the RCS are almost the same when d is at
different values. The results agree well with that calculated by CST.
But there is big difference between results calculated by HFSS and
our codes. The difference is mainly due to the thickness of the cavity

Aperture

SPEC

z

y
x O

A

B

(0.0,0.0,0.0)

a

a

(0.0,0.0,0.0)

a

Figure 4. Configuration of the aperture and cavity.
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we used in the HFSS’ simulation. The inner scattering electric fields
tend to far from each other for different value of d when the frequency
increases. But it converges when h tends to zero as shown in Fig. 6.
It is expected that the divergence arises since the equivalent currents
can be viewed as a perturbation when the scattering fields inside the
cavity are calculated. The bigger the perturbation the larger difference
appears. In order to get an accurate result, the distance d is selected
at a proper value. But it falls in a relatively large range as discussed
above. A deeper discussion of the performance and applications of the
method is included in the coming paper. In the contrary, the electric
fields outside the cavity vary little with different value of d.

4. CONCLUSION

The procedure of the aperture theorem is studied in this paper.
And the equivalent currents are discussed, especially that over the
aperture region. Then, a separation technique is used and analyzed.
The technique utilizes the approximation of the boundary conditions.
Owing to the images of the equivalent magnetic currents, the value of
the separating distance falls in a large range. And it can be different
values in different regions. Because of the separation of the equivalent
electric and magnetic currents, the meshes of the closed PEC surface
and the equivalent magnetic currents can be considered separately.
This makes the implementation of the thin long slot easily. The PEC
cavity can be viewed as closed, while the thin long slot can be modeled
as the thin line in a worst case. It is worth mentioning that when
the separation distance becomes zero, the classical aperture theorem
is revised.
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