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Abstract—In bistatic synthetic aperture radar (SAR) with one
stationary station, two-dimensional spatial variance is a major problem
which should be handled. In this paper, an Inverse Scaled Fourier
Transform (ISFT) imaging algorithm to deal with this problem is
proposed. The approach linearizes the two-dimensional spatially-
variant point target reference spectrum to derive the reflectivity
pattern’s spectrum. Based on this spectrum, an ISFT along range
direction and a frequency shift along azimuth direction are used to
achieve the two-dimensional spatial variance correction. This method
is efficient as it only uses phase multiplication and FFTs. Numerical
simulations verified the effectiveness of the method.

1. INTRODUCTION

Synthetic Aperture Radar (SAR) uses relative motion between an
antenna and its target region to provide high spatial resolution [1–
5]. Bistatic SAR has received considerable attentions and research
around the world recently [6–9]. Several airborne experiments have
been carried out and some spaceborne projects are scheduled as well.
One-Stationary bistatic SAR (OS-BSAR) refers to bistatic SAR where
azimuth aperture is synthesized by only one moving station, while
the other platform is nearly stationary. In this mode, the stationary
transmitter or receiver could be mounted on a geostationary satellite,

Received 15 February 2012, Accepted 21 May 2012, Scheduled 17 June 2012
* Corresponding author: Junjie Wu (jw358@duke.edu).



144 Wu et al.

a stratosphere low speed airship, or a ground-based high-altitude
platform.

Azimuth spatial variance is rarely an issue in traditional SAR
systems, because monostatic SAR and most bistatic SAR with
two parallel flying platforms are spatially invariant along azimuth
direction. Different from these systems, OS-BSAR is spatially variant
in azimuth, because the relative position between transmitter and
receiver varies with slow-time [9, 10]. Thus, the targets in a given
range bin suffer different Range Cell Migrations (RCM) and Doppler
reference functions. Consequently, imaging of OS-BSAR is severely
azimuth dependent. Hence, traditional imaging algorithms, like range-
Doppler, Chirp-Scaling [11], and Omega-K [12, 13] cannot be used
directly because they are all based on the assumption of azimuth
invariance.

To improve the OS-BSAR imaging, a Nonlinear Chirp Scaling
(NLCS) method has been utilized to equalize the different frequency
modulated (FM) rates in the same range bin [10, 14]. However, the
method neglects the RCM variation along azimuth direction. This
would lead to larger errors when azimuth variance gets large. In [9],
the dataset is segmented into several blocks, within which the spatial
variance can be neglected. But the approach is only suitable in the
specific case where the imaged scene has a small extension in azimuth.
In addition, the segmentation reduces the processing efficiency.

Inverse Scaled Fourier Transform (ISFT) is a frequency-domain
scaling approach. It uses chirp multiplications and FFTs to correct the
scaling in time domain which would be generated if traditional inverse
Fourier Transform is used for a linearly scaled signal in frequency
domain [15]. It has been used to correct the RCM of monostatic
SAR [16]. In this paper, an ISFT imaging algorithm for OS-BSAR
is proposed. After we obtain the point target reference spectrum,
we express it in terms of a normal spatial coordinate system by two-
dimensional Taylor expansion. Then the spectrum of the raw data
is expressed as the Fourier transform of the reflectivity pattern. In
addition, a range-frequency linearization operation is performed to
derive the range-frequency scaling factor. After that, ISFT operation
along range frequency and inverse Fourier transform along azimuth
frequency are carried out to get the final image.

The rest of this paper is organized as follows: Section 2 gives the
signal model of OS-BSAR. Section 3 includes the ISFT algorithm for
OS-BSAR. Simulation experiments are given in Section 4. Section 5
concludes this paper.
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2. SIGNAL MODEL OF OS-BSAR

In this paper, we always assume the transmitter is stationary. Fig. 1
gives the imaging configuration of OS-BSAR. The coordinate origin
O is set to be the scene center. P (x, y) is an arbitrary point target
in the imaging area. hT and hR are the heights of the transmitter
and receiver, respectively. rR(x) is the receiver slant range of closed
approach. RR and RT denote the receiver and the transmitter’s slant
ranges, respectively. The receiver moves above the y axis with a
velocity of V .

The slant range of the moving receiver with respect to P (x, y) is:

RR(t; x) =
√

(x− xR)2 + (y − V t− yR)2 + h2
R (1)

where t is slow-time and t = 0 when the receiver’s wave beam center
radiates the scene center O. Differently, the transmitter range is a
constant for a certain point target, but changes with target location:

RT (x, y) =
√

(x− xT )2 + (y − yT )2 + h2
T (2)

Then the bistatic range history is: R(t; x, y) = RT (x, y) + RR(t; x).
The signal reflected from a single point target P (x, y) and after
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Figure 1. Geometry configuration of OS-BSAR.
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demodulation to baseband is (constants are neglected) [10]:

s(τ, t;x, y) = σ(x, y)rect
[
τ − τd(t;x, y)

Tr

]
wa

[
t− td(y)

Ta

]

× exp

{
jπKr

[
τ − RT (x, y) + RR(t; x)

c

]2
}

× exp
{
−j2πf0

RT (x, y) + RR(t;x)
c

}
(3)

where σ(x, y) is the surface reflectivity pattern, τ is fast time and
τd(t;x, y) is the two-way time delay from P (x, y); rect[·] and wa[·]
represent the fast-time and slow-time windows, respectively; td(y) =
y/V is the slow-time delay; Kr is the frequency modulated rate of
the transmitted signal; c is the velocity of light; f0 is the carrier
frequency; Tr and Ta are the window lengthes along fast-time and
slow-time directions, respectively.

By using the principle of stationary phase, the signal is
transformed into 2D frequency domain [9]:

S(f, ft;x, y) = σ(x, y)rect
[

f

Br

]
wa

[
ft − fdc

Ba

]
exp{jφ(f, ft;x, y)} (4)

where the phase factor in 2D frequency domain is:

φ(f, ft; x, y) =− πf2

Kr
− 2π

(f + f0)
c

RT (x, y)

− 2πrR(x)

√(
f + f0

c

)2

−
(

ft

V

)2

− 2πft
y

V
(5)

where f is range frequency, and ft represents azimuth frequency.
rR(x) =

√
(x− xR)2 + h2

R is receiver slant range of closed approach.
The first phase factor in (5) is range modulation phase. The second
one represents the range location influence caused by stationary
transmitter. It determines the azimuth variance as well. The third
part determines the RCM, azimuth compression and second range
compression (SRC). And the last term is the location difference along
y axis between P (x, y) and O.

3. ISFT ALGORITHM FOR OS-BSAR

The raw data spectrum can be expressed as an integral [16]:

H(f, ft) =
∫∫

S(f, ft;x, y)dxdy (6)
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The aim of focusing is to invert this integral and deduce σ(x, y), the
bistatic scattering coefficient for the whole scene. However, it is not
easy to solve this integral directly, because in OS-BSAR φ(f, ft;x, y)
has complicated nonlinear relationships with x and y.

3.1. Spatial Domain Linearization

Here we choose rR (rR is short for rR(x)) and y as final image
coordinates, because they are normal to each other and the nonlinear
part of (5) is linear with rR.

Firstly RT is expressed as a function of rR and y:

RT (rR, y) =

√(√
r2
R − h2

R + xR − xT

)2

+ (y − yT )2 + h2
T (7)

Then it is linearized in terms of (r = rR− rR0, y) at (rR = rR0, y = 0),
where rR0 is the receiver slant range of closed approach of the scene
center:

RT (rR, y) ≈ RT0 + ar + by (8)
where RT0 = RT (rR0, 0), a = ∂RT (rR, y)/∂rR|rR=rR0,y=0, b =
∂RT (rR, y)/∂y|rR=rR0, y=0.

By substituting (8) into (5), φ(f, ft; x, y) can be decomposed into
space-invariant component, range-variant and azimuth-variant terms:

φ(f, ft; x, y) ≈ φ0(f, ft) + φrg(f, ft; r) + φaz(f, ft; y) (9)
where φ0(f, ft) = φ(f, ft; rR0, 0), φrg(f, ft; r) = −2πrξ(f, ft),

ξ(f, ft) = a(f + f0)/c +
√

(f + f0)
2/c2 − (ft/V )2, φaz(f, ft; y) =

−2πyη(f, ft), η(f, ft) = b(f + f0)/c + ft/V . φ0(f, ft) is spatially
invariant in the whole scene. It includes the range compression, bulk
RCM correction, bulk azimuth compression and bulk SRC. So, it can be
compensated by a phase multiplication. φrg(f, ft; r) and φaz(f, ft; y)
are the range-variant and azimuth-variant components, respectively.

Till now, the raw data spectrum of the scene can be written as:

H(f, ft) = rect
[

f

Br

]
wa

[
ft − fdc(x, y)

Ba

]
exp[jφ0(f, ft)]

∫∫
σ(r, y) exp [−j2πyη(f, ft)]×exp[−j2πrξ(f, ft)] drdy

= H0(f, ft)× Γ[ξ(f, ft), η(f, ft)] (10)
where

H0(f, ft) = rect
[

f

Br

]
wa

[
ft − fdc(x, y)

Ba

]
exp[jφ0(f, ft)] (11)
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Γ[ξ(f, ft), η(f, ft)] is the 2D Fourier transform of σ(r, y). If we perform
2D inverse FFT to Γ[ξ(f, ft), η(f, ft)], we can get the 2D scattering
pattern of the imaging scene, that is the final microwave image.
However, as we can find that ξ(f, ft) is nonlinear with f , the 2D inverse
FFT is not easy to be carried out directly.

3.2. Frequency Domain Linearization

In (10), η(f, ft) is linear with ft and is an azimuth frequency shift
which varies with range frequency. According to the frequency shift
property of Fourier transform, this frequency shift can be corrected via
phase factor multiplication in the domain of azimuth time and range
frequency. The phase factor for this correction is:

φazs(f, t) = −2π
b(f + f0)V

c
t (12)

In fact, this phase can also be viewed as a range frequency
domain phase factor at each azimuth time t. The result of this phase
multiplication is a location shift along bistatic range axis. The shift is
∆τ(t) = bV t/c.

In OS-BSAR, targets with the same rR fall in different range gates.
The difference between the range gates of P (rR, y) and P (rR, 0) is:

RT (rR, y)−RT (rR, 0) ≈ by = ∆τ(t)c (13)

Hence, the effect of exp{−jφazs(f, t)} multiplication is to align the
different range locations of the targets which have the same rR.

Differently, ξ(f, ft) is nonlinearly dependent on f . To use ISFT,
we further expand ξ(f, ft) in the first-order Taylor series in terms of f :

ξ(f, ft) ≈IRCM
rg (ft)f + IC

rg + IAZC
rg (ft) (14)

where IRCM
rg (ft) = a/c + 1/[cD(ft)], IC

rg = af0/c, IAZC
rg (ft) =

f0D(ft)/c and D(ft) =
√

1− c2f2
t /(V 2f2

0 ).
Some further comments concerning (14) are given as follows:

• IRCM
rg (ft)f is a linear term of f . It can be rewritten as:

IRCM
rg (ft)f ≈ 1

c

[(
a +

1
D(fdc)

)
f +

(
1

D(ft)
− 1

D(fdc)

)
f

]
(15)

where fdc is the Doppler centroid. [1/D(ft)− 1/D(fdc)] f is a
scaling of range frequency. Its scaling factor varies with azimuth
frequency and represents the residual RCMC. This is the same
with monostatic SAR [16, 17].
The constant scaling term [a + 1/D(fdc)]f involves a stretching
of the range frequency axis by a constant factor a + 1/D(fdc).
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This stretching in range frequency will lead to a linear scaling of
fast-time axis.
After the frequency shift correction in (12), the difference between
the range gates of targets which have the same rR and rR0 is:

∆Rbi(rR; rR0) = RT (rR, 0)−RT (rR0, 0)+
rR

cosθ(rR)
− rR0

cosθ(rR0)

≈ ar +
r

cos θ(rR0)
(16)

And we have D(fdc) =
√

1− c2f2
dc/(V 2f2

0 ) = cos θ(rR0), so

∆Rbi(rR; rR0) = r

(
a +

1
D(fdc)

)
(17)

Therefore, the effect of this constant scaling term is to scale the
range axis which was the bistatic range of Rbi to the receiver slant
range of closed approach of rR.
According to the frequency scaling method using chirp sig-
nals [15, 16], the scaling of IRCM

rg (ft) can be corrected by ISFT.

• IAZC
rg (ft) = f0D(ft)/c is a constant shift of range frequency. It

represents the residual azimuth modulation.

3.3. Processing Procedures

This subsection gives the processing steps of the algorithm:
(1) Transform raw data into two-dimensional frequency domain.
(2) Reference function multiplication (RFM) by the conjugate of

H0(f, ft) in (11). It can remove the spatial-invariant phase modulation.
(3) Azimuth inverse FFT. It is formulated as:

H1(f, y) =
∫

Γ[ξ(f, ft), η(f, ft)] exp(j2πftt)dft

= Γ[ξ(f, ft), y]× exp{jφazs(f, y/V )} (18)

(4) Azimuth-variant term correction and azimuth FFT. The
compensation phase factor is exp{−jφazs(f, y/V )}. After azimuth
FFT, we get Γ[ξ(f, ft), ft/V ].

(5) Range frequency scaling. This step employs ISFT to achieve
the frequency scaling. It can also be finished by Chirp-Scaling.

H2(r, ft) =
∫

Γ[ξ(f, ft), ft/V ] exp{j2πIRCM
rg (ft)ft}df

= σ(r, ft/V )× exp
[−j2π

(
IAZC
rg (ft) + IC

rg

)
r
]

(19)
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Figure 2. Block diagram of the ISFT algorithm for OS-BSAR.

(6) Residual azimuth compression. In the domain of (r, ft/V ),
the residual azimuth compression can be performed by multiplying
exp

[
j2πIAZC

rg (ft)r
]
. After that, by using the traditional inverse

Fourier transform, the final image can be generated.
Figure 2 shows the flowchart of the ISFT algorithm for OS-BSAR

in this paper. This method just needs phase multiplication and FFT
operations. So the computing efficiency can be guaranteed.

The above algorithm uses 4 times of FFT and IFFT on azimuth
direction, and 4 times of FFT and IFFT on range direction. The
residual operation is the 5 times of 2D phase factor multiplication.
Suppose the range sample number is Nr while the azimuth sample
number is Na. The total number of real floating-point operations would
now be:

20NaNr log2(Na) + 20NaNr log2(Nr) + 30NaNr (20)

So the computational complexity is of order O(N2 log2 N), where N is
one dimensional size of the data.

3.4. Limitations and Error Analysis

The proposed ISFT algorithm for OS-BSAR is based on the
linearization of the 2D spectrum phase factor. When the stationary
transmitter’s beam direction is nearly vertical to the moving receiver’s
flight path, if we choose the scene center to be the reference point, b in
(8) will nearly be zero. The target displacement along range direction
which is caused by the stationary transmitter will be quadratic with y.
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So the phase factor in (12) cannot achieve the location correction. In
addition, when the receiver works with the forward-looking mode [18],
a in (8) will be infinite. So if the algorithm is applied in the two cases
discussed above, the performance will not be as good as that in other
one-stationary bistatic cases.

Here based on the residual error analysis, we will give the
limitations of the proposed ISFT algorithm. In OS-BSAR, the
azimuth spatial variance would lead to the different azimuth frequency
modulated rates and RCMs along azimuth direction. Because the
quadratic terms in the Taylor series expansion is the most dominant
component, the truncated error term can be approximately determined
by the quadratic term:

∆RT (rR, y) = a′r2 + b′y2 (21)

where a′ and b′ are the second order Taylor coefficients of RT (rR, y)
with respect to r and y, respectively. In the same range gate, the
residual error of receiver’s central slant range equals to ∆RT (rR, y):

∆rR(rR, y)
cos(θ)

= ∆RT (rR, y) (22)

where ∆rR(rR, y) is the residual error of receiver’s closed range, θ is
the squint angle of receiver.

To neglect the influence of linearization, the quadratic phase error
(QPE) resulted from the linearization should be less than π/4. At
the same time, the error of RCM should be less than one slant range
resolution cell.

The limitation of QPE can be written as:

QPE = πT 2 |(−fR/rR0)∆rR| /4 <
π

4
(23)

where T is the synthetic aperture time and fR the azimuth modulated
rate of the reference point.

So we have

|∆rR| < λr2
R0

V 2T 2cos(θ)3
=

D2
aper

λ
cos(θ) (24)

where Daper is the receiver’s antenna aperture length in azimuth
direction.

The limitation of RCM can be written as:

∆rR

(
1

D(ft)
− 1

)
< δr (25)

where δr is the slant range resolution. In OS-BSAR, δr = c/Br. Then
we can get the receiver range difference which is computed by the
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residual RCM criterion:

∆rR = δr min
(

D(ft)
1−D(ft)

)
(26)

So the limitation condition of the algorithm in this paper can be
written as:

max{a′r2 + b′y2} < min

{
D2

aper

λ
,

δr

cos(θ)
min

(
D(ft)

1−D(ft)

) }
(27)

For side-looking or squint looking OS-BSAR, the linearization of
RT with r generally is satisfied. The applicability of this algorithm for
OS-BSAR mainly depends on b′. As for forward-looking OS-BSAR, a
is infinite. The linear relationship between RT and r does not establish
at all. So, the method in this paper can not be applied in forward-
looking mode of OS-BSAR.

As for the linearization of the frequency, this approximation
neglects the spatial variance of the second range compression. This
is the limitation of the algorithms based on ISFT, Chirp-Scaling and
range-Doppler.

4. NUMERICAL SIMULATION

4.1. Imaging Performance Simulation

To verify the effectiveness of the proposed algorithm, we carry out
numerical simulations of two geometry cases in this section. In case
I, we simulated the focusing performance of the proposed algorithm
for the mode in which the transmitter is on a near-space airship with
the coordinates of (−50, −10, 36) km. To present the generality of
the algorithm, the receiver works in squint mode. Its coordinates at
t = 0 are (−12, −10, 10) km. The carrier frequency is 9.6 GHz and
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Figure 3. Target area used in the simulation.
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Figure 4. Imaging results of Case I. (a) Time domain result after
RFM. (b) Time domain result after azimuth frequency shift. (c) Final
imaging result.

the bandwidth of transmitted signal is 70 MHz. PRF is 400 Hz and
the velocity of the moving platform is 200 m/s. In order to highlight
the capacity of processing and the 2D spatially variant feature, in the
scene we set 9 point targets, which are located on the vertices of a 3×3
matrix as shown in Fig. 3. The imaging results in this case is shown in
Fig. 4. Figs. 4(a)–4(c) give the time domain results after RFM, azimuth
frequency shift and azimuth residual compression, respectively.

In case II, the transmitter is on a geostationary satellite with the
coordinates of (−200, −200, 36000) km, while the receiver works in
side-looking mode with the coordinates of (−12, 0, 10) km. The other
parameters are the same with those in case I. The imaging results are
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shown in Fig. 5.
In addition, the performance of this algorithm is also compared

with that of back-projection algorithm. To quantify the precision of
the presented processing method, the impulse-response width (IRW),
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Figure 5. Final imaging result of case II.

Table 1. Imaging quality parameters for Case I.

Range
IRW (m) PSLR(dB) ISLR(dB)

Target A 3.84 −12.72 −10.10
ISFT Target O 3.80 −13.32 −10.17

Target B 3.86 −12.80 −10.12

Target A 3.80 −13.30 −10.15
BP Target O 3.80 −13.32 −10.19

Target B 3.82 −13.31 −10.18

Azimuth
IRW (m) PSLR(dB) ISLR(dB)

Target A 1.52 −12.98 −10.13
ISFT Target O 1.53 −13.33 −10.22

Target B 1.58 −13.10 −10.15

Target A 1.51 −13.30 −10.25
BP Target O 1.52 −13.34 −10.19

Target B 1.56 −13.32 −10.20
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Table 2. Imaging quality parameters for Case II.

Range
IRW (m) PSLR(dB) ISLR(dB)

Target A 3.80 −13.27 −10.19
ISFT Target O 3.80 −13.27 −10.17

Target B 3.81 −13.28 −10.18

Target A 3.80 −13.27 −10.19
BP Target O 3.80 −13.27 −10.18

Target B 3.80 −13.28 −10.18

Azimuth
IRW (m) PSLR(dB) ISLR(dB)

Target A 1.04 −13.29 −10.17
ISFT Target O 1.08 −13.32 −10.18

Target B 1.12 −13.02 −10.05

Target A 1.04 −13.29 −10.16
BP Target O 1.08 −13.32 −10.18

Target B 1.12 −13.28 −10.17

peak sidelobe ratio (PSLR), and integrated sidelobe ratio (ISLR) are
used as quality criteria. These quality parameters are shown in Table 1
and Table 2.

To facilitate the quality analysis in the simulation, we do
not consider the influence of the bistatic geometry on resolution
measurement. Otherwise, some additional projection computation
should be made to get the resolution results on the ground plane.
That is, the theoretical range resolution is 0.886(c/Br) = 3.80m,
where Br is the transmitted signal bandwidth. The azimuth resolution
is 0.886(c/Bd) where Bd means the Doppler bandwidth. In our
simulations, we assume the synthetic aperture time is a constant.
So the theoretical resolution along azimuth direction is a function of
target location. In case I, the azimuth resolutions of A, O and B are
1.50m, 1.52 m and 1.55 m, respectively. As for the second case, the
theoretical azimuth resolutions of A, O and B are 1.04 m, 1.08 m and
1.12m, respectively. The Doppler bandwidth of these three targets are
158.6Hz, 163.9 Hz and 158.4 Hz, respectively.

From these two tables, we can find that, the focusing performance
along range direction of the proposed method is almost the same with
that of BP method and the theoretical result. As for the azimuth
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direction, only the PSLR and ISLR have little derivations from the BP
results. The measured azimuth resolution has a maximum broadening
of 2% and range resolution has a broadening of 1.6% in comparison
with the theoretical values.

4.2. Limitation Simulation

Because the frequency domain linearization used in (14) is accordant
with the algorithms based on ISFT [16], here we just carry on
simulations to discuss the spatial linearization made in (8).

Firstly, the transmitter’s beam direction is vertical to the flight
path of the receiver. It is on a ground-based platform with the
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Figure 6. Imaging results of Case III. (a) Time domain result after
RFM. (b) Time domain result after azimuth frequency shift. (c) Final
imaging result.
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coordinates of (−1.5, −0, 0.36) km. The receiver works in squint
mode as the same as in case I. In this mode, b in (8) is zero.
So the phase factor in (12) cannot achieve the location correction.
a′ = 3.58 ∗ 10−6 m−1, b′ = 4.9 ∗ 10−4 m−1, a′r2 = 1.8m, b′y2 = 123 m.
The right part of (26) is 27m, which is much less than b′y2. Then the
azimuth spatial variance will still exist. The imaging results for this
mode are shown in Fig. 6(a)–Fig. 6(c). Because of the severe azimuth
spatial variance and the failing of correction effect of (8), the result
shows displacement and a little defocus.

Secondly, the receiver works in forward-looking mode. In this
mode, the transmitter’s coordinates are (−12000, −5000, 20000)m

Bistatic range (m)

A
zi

m
u
th

 (
m

)

3.1 3.12 3.14 3.16 3.18 3.2 3.22
x 10

4

 800

 600

 400

 200

0

200

400

600

Bistatic range (m)

A
zi

m
u
th

 (
m

)

3.14 3.16 3.18 3.2 3.22

x 10
4

 800

 600

 400

 200

0

200

400

600

(a) (b)

(c)

_

_

_

_

_

_

_

_

500 1000 1500 2000 2500 3000

Receiver slant range of closed approach (samples)

500

1000

1500

2000

2500

3000

3500

4000

A
zi

m
u

th
 (

sa
m

p
le

s)

Figure 7. Imaging results of Case IV. (a) Time domain result after
RFM. (b) Time domain result after azimuth frequency shift. (c) Final
result.
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while the receiver’s coordinates are (0, −7000, 3000)m. As stated in
Section 3, a in (8) will be infinite. The imaging results for this mode
are shown in Fig. 7. Because of the ineffectiveness of this method for
forward-looking mode, it even can not get a reasonable image at all.

5. CONCLUSION

An ISFT algorithm for dealing with the two-dimensional spatial
variance in One-Stationary Bistatic SAR data was presented in this
paper. In this paper, the spectrum of the raw data is linearized
in space and frequency domain. Based on the linearization result,
azimuth correction phase factor and range ISFT factor were deduced.
Simulation results show that the proposed algorithm has an effective
ability to focus the data with one-stationary bistatic configuration.
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