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Abstract—High-accuracy pulse repetition interval (PRI) estimation
is meaningful for passive sensors to identify radar emitters. This paper
considers the problem of estimating the PRIs of motionless radars
in moving passive sensor systems. A modified method which based
on observation calibration is proposed. This method can efficiently
compensate the estimation bias induced by model mismatch, through
calibrating the pulse time of arrival (TOA) measurements with emitter
geolocation information. Performance analysis and simulation results
show that our method can improve the PRI estimation accuracy
significantly.

1. INTRODUCTION

Radar is an instrument that radiates electromagnetic waves is space
and detects the presence and location of objects from the reflected
waves [1–3]. Passive sensors, such as electronic intelligence (ELINT)
and electronic support measures (ESM) systems, represent a class
of important military sensors [4, 5], which intercept and analysis the
electromagnetic waves transmitted by radars to obtain information
about their capabilities. Because radars are mostly used for purpose
of remote sensing [6], passive sensors are also treated as the remote
sensors of remote sensors [7]. Nowadays, with the advancements
of radar technologies and the rapid deployment of vast radar units,
modern passive sensors confront ever more dense and complex
emitter environments [8]. Under this circumstance, an advanced
technology called specific emitter identification (SEI) was proposed to
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distinguish different radars. SEI identifies individual radars by using
the signal fingerprint features produced by the unideal components
in transmitters [7, 8]. The radar pulse repetition interval (PRI) has
been found to been an important fingerprint parameter, because it
reflects the period of the timer which controls pulse generation, and any
group of timers exhibits small differences in the mean period among its
members [7, 8]. Therefore, accurate PRI estimation is quite meaningful
for radar SEI.

The problem of accurate PRI estimation was firstly studied in [9],
where it was modeled as period estimation of a periodic point process.
Recent years, this problem has attracted many attentions due to the
increasing requirements of SEI [10–13]. A refined modified Euclidean
algorithm (MEA) was proposed in [10] for the circumstance when there
is not much prior knowledge of the range of the period. In [11] an
estimator called the separable least squares line search (SLS2-ALL) was
proposed, to search a quasi-maximum likelihood estimate (MLE) of the
sought PRI. Clarkson studied the problem based on lattice theory and
proposed a lattice line search (LLS) algorithm [12], which also can
not ensure yielding a MLE, however. Most recently, the maximum
likelihood (ML) estimation of the PRI was realized by McKilliam and
Clarkson in [13], where an estimator called the integer lattice line
search (ZnLLS) was proposed.

The above mentioned studies focus on the ML estimation of PRI
based on the periodic point process model, which implicitly requires
that there is no relative movement between the passive sensor and the
intercepted radar. In practice, there are many passive sensors which
are mounted on moving platforms such as aircrafts or satellites [5].
Due to platform motion, the data measurements inevitably dissatisfy
the static observation model. However, as far as we are aware, existing
studies have investigated neither the impact of the relative movement
on the PRI estimation nor the way to eliminate it.

In this paper, we will study the PRI estimation for moving passive
sensors. In Section 2, the moving observation model is derived based
on an assumption that the platform moves in a linear and uniform-
speed manner. Section 3 analyzes the estimation bias caused by model
mismatch, and presents a modified PRI estimation method which is
based on observation calibration. The performance is validated with
numerical simulation in Section 4, followed by the conclusions in the
last section.
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2. MOVING OBSERVATION MODEL

2.1. Static Observation Model and the Maximum Likelihood
Estimation

Using the Dirac delta function, the time of arrival (TOA)
measurements of a set of received pulses can be modeled as the
following point process signal [9]:

z(t) =
n−1∑

i=0

δ (t− ti) (1)

where ti is the TOA measurements of the ith pulse. For a passive
sensor mounted on a motionless platform, the expression of ti is given
by [9–13]

ti = t̄0 + ki T + εi, i = 0, . . . , n− 1 (2)

where T represents the radar PRI; t̄0 is the exact TOA of the first
pulse; εi’s are the white Gaussian noises with variance σ2; ki’s are
integers with k0 fixed at 0. If the observations are complete without
pulse missing, then ki = i and z(t) would be a complete periodic
point process [14]. However, in practice, due to a range of intercept
difficulties [7], pulse missing happens commonly. Under this condition,
PRI estimation is modeled as a problem of estimating the period of a
periodic point process from incomplete and noisy data [10–13].

The difficulty of this problem arises from the fact that both the
integer set {ki}n−1

i=0 and the period T are unknown. Fortunately, after
plenty of studies (see e.g., [9–13] and the references therein), it has been
proved in [13] that the maximum likelihood estimation of T can be
realized based on an estimator called the the integer lattice line search
(ZnLLS). In addition, it has also been shown that under the condition
that the ratio T/σ is larger than a certain threshold (typically be about
10), the MLE of T can attain the so called ‘clairvoyant Cramer-rao
lower bound (CRLB)’, which is given by [11]

var
(

_

T
)

=
nσ2

n
n−1∑
i=0

k2
i −

(
n−1∑
i=0

ki

)2 =
σ2

2
n−2∑
i=0

n−1∑
j=i+1

(kj − ki)
2

, Bs (3)

where
_

T denotes the MLE of T , and Bs defines the bound. The bound
Bs is clairvoyant in the sense that it is derived under an assumption
that the exact {ki}n−1

0 is known. When
_

T attains the CRLB, it satisfies
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the following relation [11]

_

T =
_

T clair =

n−2∑
i=0

n−1∑
j=i+1

(kj − ki) (tj − ti)

n−2∑
i=0

n−1∑
j=i+1

(kj − ki)
2

(4)

where
_

T clair is the MLE of T under the same assumption that the
{ki}n−1

i=0 is known. Here we call
_

T clair the ‘clairvoyant MLE’.
It should be stressed that one can not estimate the T by directly

making use of (4) because in practice the set {ki}n−1
i=0 is unknown.

We just use this equation to show that the MLE
_

T yielded by the
estimator ZnLLS will be equal to

_

T clair, as long as T/σ is larger than
the threshold.

Furthermore, because the accuracy of
_

T diverge from the CRLB
rapidly as the ratio T/σ becomes smaller than the threshold, and
inaccurate PRI estimation is meaningless for SEI, in this paper, we
only consider the case when the MLE attains the CRLB. In fact, the
radar PRI is normally larger than 100 microsecond (µs), while the
TOA measurement noises are on the order of 10 nanoseconds (ns) [15],
T À σ and thus it is nature that

_

T attains the CRLB.

S 
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Figure 1. The scenario that a passive sensor mounted on an aircraft
intercepts a motionless radar in a short time.
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2.2. Moving Observation Model

During a short period of time (on the order of 1 second) within which
a pulse train is received, the platform can be assumed to be move in
the linear and uniform-speed manner. Fig. 1 depicts an aircraft that
receives a pulse train transmitted from a motionless radar (located at
the point S) during in a short time. The aircraft receives the first
and the ith pulses at the times t̄0 and t̄i, and at the points A and
B, respectively. Let d0 =

∣∣∣−→SA
∣∣∣ and di =

∣∣∣−→SB
∣∣∣ denote the distances

from the point S to the points A and B (|·| represents the length of a
directed line segment), it follows that

t̄i = t̄0 + kiT +
di − d0

c
(5)

with c representing the speed of light. Then the observation model
(see (2)) can be replaced by

ti = t̄0 + ki T +
di − d0

c
+ εi (6)

After extending the segment
−−→
AB to the point O such that−→

SO⊥−−→OB, the difference of distance di − d0 can be expressed by

di − d0 =

√(∣∣∣−→OA
∣∣∣ +

∣∣∣−−→AB
∣∣∣
)2

+
∣∣∣−→SO

∣∣∣
2
−

∣∣∣−→SA
∣∣∣

=
∣∣∣−→SA

∣∣∣





1 + 2

∣∣∣−→OA
∣∣∣

∣∣∣−→SA
∣∣∣

∣∣∣−−→AB
∣∣∣

∣∣∣−→SA
∣∣∣

+

∣∣∣−−→AB
∣∣∣
2

∣∣∣−→SA
∣∣∣
2




1
2


−

∣∣∣−→SA
∣∣∣

= d0





1 + 2 cos θ

∣∣∣−−→AB
∣∣∣

d0
+

∣∣∣−−→AB
∣∣∣
2

d2
0




1
2


− d0 (7)

with θ denoting the angle between
−−→
AB and

−→
SA such that cos θ =(−−→

AB · −→SA
)/(∣∣∣−−→AB

∣∣∣
∣∣∣−→SA

∣∣∣
)

(‘·’ represents inner product operation).

Define x =
∣∣∣−−→AB

∣∣∣
/

d0, then x is close to 0, because
∣∣∣−−→AB

∣∣∣ ¿ d0, under
the remote sensing conditions. Substituting this expression of x into
(7) and then expanding it in terms of its second Taylor expansion, we
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get

di − d0 = d0 (x cos θ) +
d0

2
(x sin θ)2

=
∣∣∣−−→AB

∣∣∣ cos θ +
1

2d0

(∣∣∣−−→AB
∣∣∣ sin θ

)2
(8)

Furthermore, let v = [vx, vy, vz]
T (the superscript ‘T ’ represents

transposition) denote the velocity vector of the platform and ‖v‖
denote the speed value, and define vR = ‖v‖ cos θ as the value of
the radial velocity (i.e., the component of v along the direction of−→
SA), and vT = ‖v‖ sin θ as the value of tangential velocity, then
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Figure 2. Comparison of the PRI estimations with original and
calibrated observations. (a) σs = 0.2 km. (b) σs = 0.5 km. (c) σs =
2km. (d) σs = 20 km.
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∣∣∣−−→AB
∣∣∣ = ‖v‖ (t̄i − t̄0) and (8) can be replaced by

di − d0 = vR (t̄ i − t̄0) +
[vT (t̄ i − t̄0)]

2

2 d0
(9)

Define dR = vR (t̄i − t̄0) and dT = vT (t̄i − t̄0) to represent the
radial and tangential displacements of the platform respectively, then
di − d0 = dR + (dT /2) (dT /d0). Because dT <

∣∣∣−−→AB
∣∣∣ ¿ d0, it is easy to

see that the variation of signal transmission distance is mainly due to
the radial movement of the platform.

Combining (6) and (9), the moving observation model is further
expressed by

ti = t̄0+kiT+
vR

c
(t̄i − t̄0)+

v2
T (t̄i − t̄0)

2

2cd0
+εi, i = 0, . . . , n−1 (10)

Let s = [x, y, z]T and sa = [xa, ya, za]
T denote the position coordinates

of the points S and A respectively, then the variables d0, vR and v2
T in

(10) can be calculated by using

d0 =
∣∣∣−→SA

∣∣∣ = ‖s− sa‖ (11)

vR = ‖v‖ cos θ =
vT (s− sa)
‖s− sa‖ (12)

v2
T = ‖v‖2 sin2 θ = ‖v‖2 −

(
vT (s− sa)

)2

‖s− sa‖2 (13)

3. CALIBRATION OF THE PRI ESTIMATION

3.1. Necessity of Calibration

For a moving passive sensor, if the PRI of an intercepted radar is
estimated by using the moving observation set {ti}n−1

i=0 directly without
calibration, bias would be induced by the reason of model mismatch.
This subsection analyzes this estimation bias. As it was stressed above,
we only consider the case when the MLE attains the CRLB, then the
MLE of T has the value as shown in (4).

From (10), the difference of the exact TOA measurements of the
ith and jth pulses is given by

t̄j − t̄i = (kj − ki) T +
vR

c
(t̄j − t̄i) +

v2
T

2 cd0
(t̄j + t̄i − 2t̄0) (t̄j − t̄i) (14)
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i.e.,

t̄j − t̄i =
(kj − ki) T

1− vR

c
− vT

c

vT (t̄j − t̄0) + vT (t̄i − t̄0)
2 d0

(15)

Because the speed of the platform is much smaller than the light speed
(i.e., vR ¿ c and vT ¿ c), and the tangential displacements vT (t̄i − t̄0)
and vT (t̄j − t̄0) are both much smaller than the distance d0, we have
t̄j− t̄i ≈ (kj − ki) T . Substituting this relation into the right hand side
of (15) yields

t̄j − t̄i ≈ (kj − ki) T

[
1 +

vR

c
+

v2
T (kj + ki) T

2 c d0

]
(16)

Combining (4) and (16), we get the estimation bias as follows

bias
(

_

T
)

= E
(

_

T
)
− T

≈ vR

c
T +

v2
T T 2

2cd0

n−2∑
i=0

n−1∑
j=i+1

(kj + ki) (kj − ki)
2

n−2∑
i=0

n−1∑
j=i+1

(kj − ki)
2

, bR + bT (17)

where bR and bT are defined to represent the corresponding biases
caused by radial and tangential movements respectively.

The bias shown above is typically much larger than the estimation
error caused by TOA measurement noises. To show this, we assume a
Bernoulli pulse missing model with a parameter p, like that in [10–13].
Under this assumption, ki is expected to be about i/p, and the pulse
missing rate is expected be about 1 − p [10]. Typically, we assume
that the PRI T = 1 millisecond (ms), the noise standard deviation
σ = 5 × 10−5 ms, p = 0.1 and the total observation time is about 1
second (s) (thus kn−1 is about 1000). Under these conditions, from (3)
one can find out that the root mean square error (RMSE) caused by
the noise is on the order of 10−8 ms, i.e., σ

(
_

T
)
≈ O

(
10−8

)
T . As an

example, if the platform is a satellite, then its speed ‖v‖ is typically
about 7.8 km/s, and its distance to a radar on the ground is typically
longer than hundreds of kilometers (km). Under the above conditions,
from (17) we can have that bR = O(10−5)T and bT = O(10−7)T ,
which are both much larger than σ

(
_

T
)
. Therefore, the bias must be

compensated.
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3.2. Method of Calibration

Comparing the moving observation model (see (10)) to the static
observation model (see (2)), we see that if the moving observation
ti is calibrated using

t′i = ti − vR

c
(t̄i − t̄0)− 1

2 c d0
v2
T (t̄i − t̄0)

2 (18)

then the calibrated observations t′i’s agree with the static observation
model. In (18), the t̄0 and t̄i are both real TOA values, which
are impossible to know exactly. Since the radar PRI is normally
significantly larger than the TOA measurement noises [15], we have
t̄i − t̄0 À |εi − ε0|, and thus

t̄i − t̄0 = (ti − εi)− (t0 − ε0) ≈ ti − t0 (19)

i.e., the t̄i − t̄0 in (18) can be replaced by ti − t0.
On the other hand, from (11) ∼ (13) we see that d0, vR and vT

can be obtained provided the position of the radar (i.e., the vector
s), the position of the platform at the time t̄0 (i.e., the sa) and
the velocity vector v are all known. In practice, the position and
velocity of the platform can be accurately obtained with the help of the
carried navigation device, such as the global position system (GPS). In
addition, since a passive sensor normally has got the ability of emitter
geolocation [4, 5], the position of the radar can be estimated with
the emitter geolocation result. Therefore, we propose the following
observation calibration based PRI estimation method for the moving
passive sensors:

Step 1: Calibrate the original TOA observations by using the
position and velocity information of the platform and the geolocation
result of the observed radar emitter, according to (11)–(13) and (18)–
(19), to yield the calibrated observation set {t′i}n−1

i=0 .
Step 2: Estimate the PRI utilizing estimators such as the ZnLLS

based on the calibrated set {t′i}n−1
i=0 .

3.3. Performance Analysis

Because the position and velocity information of the platform
obtained from the navigation system are very accurate, for simplicity,
they are assumed to be known exactly. Then according to the
moving observation model, only the geolocation error and the TOA
measurement noises result in the PRI estimation error. Denote the
geolocation error by ∆s = [δx, δy, δz]

T , whose mean and covariance
are 0 (a vector whose elements are all zeros) and C respectively.
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From (11)–(13) and (18)–(19), we can get the calibrated observation
t′i expressed by

t′i (s + ds) = ti − ti − t0
c

vT (s + ds− sa)
‖s + ds− sa‖

−(ti − t0)
2

2c

(
‖v‖2

‖s + ds− sa‖ −
(
vT (s + ds− sa)

)2

‖s + ds− sa‖3

)
(20)

Expanding t′i (s + ds) in terms of its first Taylor expansion [16], it
follows that

t′i (s + ds) ≈ ti − vR

c
(ti − t0)− 1

2cd0
v2
T (ti − t0)

2

− ti − t0
c

(ds)T ∇sf (s)− (ti − t0)
2

2c
(ds)T ∇sg (s) (21)

where

∇sf(s) , ∂

∂s

(
vT (s− sa)
‖s− sa‖

)
=

1
‖s− sa‖

[
v− 2vT (s− sa)

‖s− sa‖2 (s−sa)
]

(22)

∇sg (s) , ∂

∂s

(
‖v‖2

‖s− sa‖ −
(
vT (s− sa)

)2

‖s− sa‖3

)

=
(s− sa)
‖s− sa‖3

(
3

(
vT (s− sa)
‖s− sa‖

)2

− ‖v‖2

)
− 2vT (s− sa)v

‖s− sa‖3 (23)

According to the relation ti − t0 ≈ (t̄i − t̄0) and the expression for ti
(see (10)), t′i (s + ds) can be further expressed by

t′i (s + ds) ≈ t0 + kiT + εi − t̄j − t̄0
c

(ds)T ∇sf (s)

−(t̄j − t̄0)
2

2 c
(ds)T ∇sg (s) (24)

For presentation simplicity, we assume that the geolocation error
and the TOA measurement noises are uncorrelated to each other. From
(4) and (24), we get the estimation variance as follows

var
(

_

T
)

=

E




(
n−2∑
i=0

n−1∑
j=i+1

(kj − ki)
(
t′j − t′i

))2



(
n−2∑
i=0

n−1∑
j=i+1

(kj − ki)
2

)2 (25)
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where

t′j − t′i = (kj − ki) T + (εj − εi)− t̄j − t̄i
c

(ds)T ∇sf (s)

−(t̄j − t̄i)
2

2c
(d s)T ∇sg (s) (26)

Using the relation t̄j− t̄i ≈ (kj − ki) T , (26) can be further replaced by

t′j − t′i = (kj − ki) T + (εj − εi)− (kj − ki) T

c
(ds)T ∇sf (s)

−((kj − ki)T )2

2c
(ds)T ∇sg (s) (27)

Substituting (27) into (25), the estimation variance becomes

var
(

_

T
)

= Bs + BR + BT (28)

where Bs is the bound shown by (3), which is caused by the TOA
measurement noises εi’s, and BR and BT are the corresponding error
terms for the radial and tangential movements respectively, which are
shown as follows

BR =
T 2

c2
(∇sf (s))T C (∇sf (s)) (29)

BT =
T 4

4 c 2




n−2∑
i=0

n−1∑
j=i+1

(kj − ki)
3

n−2∑
i=0

n−1∑
j=i+1

(kj − ki)
2




2

(∇sg (s))T C (∇sg (s)) (30)

When C = σ2
sI (I is the identity matrix), from (22)–(23) and (29)–(30),

we have

BR =
‖v‖2

c2

σ2
s

d 2
0

T 2 (31)

BT =
T 4

4c2




n−2∑
i=0

n−1∑
j=i+1

(kj − ki)
3

n−2∑
i=0

n−1∑
j=i+1

(kj − ki)
2




2 (
‖v‖2 + 3v2

R

)
v2
T

d4
0

<
(vT kn−1T )2

d2
0

(
‖v‖2 + 3v2

R

)

4 c 2

σ2
s

d 2
0

T 2 (32)

Normally the geolocation error is much smaller than the remote sensing
distance and the relative geolocation error σs/d0 is typically on the
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order of 1%. Under this condition, by comparing BR and BT with bR

and bT (see (31) ∼ (32) and (17)), it is easy to see that the model bias
can be significantly reduced.

Furthermore, since vT kn−1T ¿ d0 and v2
R < ‖v‖2, from (31) and

(32) we know that BR ¿ BT . Then the estimation variance (28) can
be approximated as

var
(

_

T
)
≈ Bs + Br , Bm (33)

It is easy to see that Bs represents the corresponding theoretic error
bound when the observations are perfectly (or exactly) calibrated,
while Bm is the theoretic error bound for PRI estimation when the
observations are calibrated with geolocation information.

4. SIMULATION RESULTS

As an example, we assume the platform of the passive sensor is a
satellite whose orbit height and speed are about 600 km and 7.8 km/s
respectively. When the sensor receive the first pulse, its position and
velocity in the earth-fixed coordinate system are (0.568, 6.912, 7.862)×
106 m and (1.567, 0.746, 6.033) × 103 m/s respectively. The radar
emitter is on the earth surface, it locates at a point whose coordinate
is (0.934, 6.344, 0.529) × 106 m. The total observation time is 1 s, the
exact PRI is 1ms, the integers ki’s are generated pseudorandomly from
the Bernoulli model with p = 0.1. It means that the pulse missing rate
is about 90% and 100 pulses are received in total. The covariance of
the emitter geolocation can be written in the form of C = σ2

sI. Under
these conditions, from (17) we can see that the theoretic bias will be on
the order of 10 ns if the PRI is estimated directly based on the original
observations.

Four sets of Monte Carlo simulations are performed to test the
efficiency of the calibration against the geolocation error and the TOA
measurement noise. The values of the σs for the four sets of trials
are 0.2 km, 0.5 km, 2 km and 20 km respectively, and in each set of
simulations, the TOA measurement noise standard deviation σ varies
from 10 ns to 150 ns. PRI estimation errors are measured by root mean
square error (RMSE). The theoretic bounds Bs and Bm are used as
the benchmarks.

The experimental results are shown in Fig. 2, where ‘ZnLLS-
original’ and ‘ZnLLS-calibrated’ represents the PRI estimates yielded
by ZnLLS from the original and the calibrated observations
respectively. As expected, it can be seen that PRI estimation without
calibration leads bias which are significantly larger than Bs, which
represents the estimation error induced by TOA measurement noises
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or the corresponding theoretic error bound when the observations are
perfectly calibrated, as it was pointed out. These estimation biases are
shown to be obviously reduced after calibrating the observations. By
comparing Figs. 2(a)∼ (d), one can see that the efficiency of calibration
depends upon the accuracy of the used emitter geolocation information,
as expected. If the geolocation error is relatively too large (e.g., 2 km or
larger), it will result in a dominant PRI estimation error. Under these
cases, improving TOA measurement accuracy can not obviously reduce
the estimation error (see Figs. 2(c) ∼ (d)). This shows the importance
of accurate geolocation information for PRI estimation with moving
observations. Furthermore, we can also see that the theoretical and
simulated performance curves for the proposed method are almost
overlapped under all the four cases, which validates result of theoretical
performance analysis.

5. CONCLUSION

In this paper, a method was proposed for moving passive sensors
to realize accurate emitter PRI estimation. By estimating the PRI
from observations calibrated with emitter geolocation information, the
proposed method was shown to achieve significant estimation error
reduction with respect to estimation without calibration. Theoretic
analysis and simulations have shown that the efficiency of the
proposed method relies on the accuracy of the used emitter geolocation
information, which suggests us to improve geolocation accuracy to
enhance the PRI estimation performance in moving passive sensors.
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