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Abstract—An adaptive approach to minimize acquisition time in
planar near-field antenna measurements is described. In contrast to the
traditional planar near-field scanning, the presented technique acquires
the near-field in form of rectangular rings and skips sampling points
in smoothly varying near-field regions. Abrupt changes in the near-
field are detected by comparing extrapolated and measured near-field
values at coarser sampling points. A decision function based on the
signal-to-noise ratio (SNR) of the measured value is used to determine
the threshold difference between the measured and the extrapolated
near-field values for skipping the sampling point. Near-field data thus
collected on the resultant irregular grid is processed using the multilevel
plane wave based near-field far-field transformation algorithm. The
multilevel transformation algorithm is computationally efficient and
capable of handling data collected on irregular grids. A rigorous
analysis of the adaptive data acquisition approach is then performed
in terms of transformed far-field accuracy, decision factor, and test
time reduction. Several test cases covering a variety of antennas are
shown using synthetic as well as measured data for realistic results.
Afterwards the acquisition time for the worst case scenario is compared
with the traditional planar near-field measurement technique.

1. INTRODUCTION

The radiation pattern of an antenna under test (AUT) can be
characterized by determining the radiating near-field on a spherical [1],
cylindrical [2], planar [3], or any other arbitrary surface [4, 5] and
processing the acquired near-field using a near-field far-field (NFFF)
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transformation algorithm [6]. Near-field antenna measurements provide
a suitable alternative to expensive compact ranges and space-limited
far-field measurements for large antennas. However, the accuracy of
the transformed patterns is greatly dependent on the accuracy of the
near-field along with the suitable transformation algorithm.

Planar near-field (PNF) antenna measurements are appropriate
for medium and high gain antennas and ideally require measurements
on an infinite plane. Reducing the scan plane size, due to practical
limitations, reduces the reliable region of the far-field pattern and
also introduces truncation errors within the reliable region [7]. On
the other side, increasing the scan plane size would directly result
in an increased testing time. Several methods have been proposed
in the recent past to cope with the truncation effects. This would
allow a larger reliable region while keeping the smaller scan size, hence
reducing the measurement time. One method [8] uses a set of equivalent
magnetic currents over a fictitious planar surface to characterize the
antenna. The near-field is related to the equivalent magnetic currents
using integral equation. This method provides a larger reliable region
as compared to modal expansion methods in which radiated antenna
fields are expanded in terms of planar wave functions [9]. As stated by
the author, the method is not suitable for highly directive antennas [8]
dissolving the major benefit of PNF measurements. Another method
in [10] utilizes a priori information, i.e., the size of the antenna and
“recovers” the lost information content due to the area truncation
by employing the sampling theory. However, the effectiveness of this
method depends on the fact that the probe can also move in a direction
perpendicular to the measurement plane which eventually increases
measurement time. The Gerchberg-Papoulis iterative algorithm is
applied in [12] to extrapolate the plane wave spectrum of the field
radiated by the antenna to overcome the truncation problem. Back-
projections and re-adjustments are recursively applied to the originally
determined plane wave spectrum until the given convergence criterion
is met. This method of projections is prone to so-called traps and
tunnels and may not converge [11]. In another approach in [15],
the near-field data is extrapolated outside the measurement region by
employing the optimal sampling interpolation (OSI) expansions instead
of cardinal series (CS) ones. The comparison between OSI and CS
based approach is performed afterwards using numerical simulations
and significant enlargement of the valid far-field region is reported.
A similar non-redundant sampling representation in electromagnetic
field based approach is applied in bipolar scanning for extrapolating
near-field values outside the measurement plane in [17]. The external
data is estimated by employing singular value decomposition method
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and using OSI expansions. Significant decrease in the truncation error
occuring in near-field far-field transformation is reported for bipolar
scanning.

An effective planar spiral scanning technique described in [14]
utilizes ellipsoidal modelling of the source [13] instead of the spherical
one. The said technique gives the freedom of considering measurement
plane at distances smaller than one half of the antenna size, and
therefore increases the valid angle associated with the size of the scan
plane for quasi-planar antennas. The technique works well as long
as the decreased separation does not increase the multiple reflections
between the AUT and the probe. The planar wide-mesh scanning is
applied in [16] with sample spacing greater than half-wavelength when
moving away from the center of the scanning region. The amount of
required near-field data is significantly reduced without decreasing the
accuracy and no drastic change is required in existing plane-rectangular
facility. Although the number of sampling points are reduced but the
effect on the acquisition time is not reported.

Recently, an adaptive acquisition technique has been proposed
in [18] to reduce the measurement time by rectangular spiral scanning
of the probe. It considerably reduces the measurement time by
terminating the measurement process when a specific accuracy is
reached dependent on a decision factor. The decision factor, as
explained in [18], is based on either the first side lobe level pattern
difference or the directivity of the given AUT. It is shown that
considerable decrease in the acquisition time can be achieved if the
measurement process is terminated optimally. Nevertheless, if the
measurement is terminated at a smaller scan plane size the reliable
region is also reduced accordingly. Also, NFFF transformations after
each rectangular ring acquisition make it difficult to use transformation
algorithms employing integral equations which usually require long
computation times.

In this paper, we present a simple approach to reduce the
measurement time in PNF measurements. In contrast to the adaptive
acquisition in [18], the valid angle is not reduced and as such
no extra measurement step is required. The measurement system
adapts itself during the measurement process and based on a given
decision threshold, it concentrates mainly on the strongly changing
near-field regions while skipping data points from smoothly varying
locations. However, the extent at which the measurement time is
reduced depends on the near-field distribution. Best results have been
achieved for antennas with smoothly varying near-fields. The irregular
grid obtained as a result of adaptive scanning is processed using
the multilevel plane wave based NFFF transformation algorithm. We
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already showed earlier in [19] that the multilevel technique is more
robust against truncation error as compared to conventional two
dimensional Fast Fourier Transform (2DFFT) based approaches and
that it is suitable for electrically large antennas [20]. Furthermore, full
probe correction is accomplished without increase in complexity [20].

In Section 1, the adaptive approach used to acquire the near-field
in planar measurements along with composition of the decision factor
is described. The multilevel plane wave based NFFF transformation
algorithm is revisited in Section 2. Finally in Section 3, the
performance of the adaptive approach is evaluated for a variety
of antennas using both synthetic and measured data for realistic
results. Data generation for synthetic data is also explained in the
same section.

2. ADAPTIVE PLANAR NEAR-FIELD MEASUREMENT

2.1. General Formulation

The boundaries of the scan plane in the PNF measurement are defined
by selecting a valid angle for the reliable region of interest. A simple
relation

Θvalid ' tan−1

(
L− d

2s

)
(1)

involving length of the square shaped scan plane L, aperture size
of the AUT d , and measurement distance s, has been developed
from extensive measurements [22] and is derived from theoretical
analysis [21]. The size of the scan plane is usually chosen to provide
less than −35 dB truncation level at the edges for minimum error in
the valid region. In the traditional approach, data acquisition from the
defined area is achieved by linear motion of the probe in the vertical
direction while stepping in the horizontal or vice versa (as shown in
Fig. 2 of [18]).

We recognize that the distribution of the near-field on
the measurement plane is of prime importance containing more
information contents in suddenly changing regions compared to
smoothly varying locations within the scan plane. Therefore, avoiding
data points from smooth areas and thereby saving measurement time
will have a negligible effect on the radiation pattern of the AUT. To
determine sudden variations during the measurement process, we
propose a ring shaped data acquisition approach. The data acquisition
starts from the center of the scan plane and steps in the outward
direction away from the center. In the beginning, near-field acquisition
starts from the center of the scan plane and the main beam data
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Figure 1. Measurement plane dividing sampling points into
rectangular rings. Depending on difference in the extrapolated and
the measured values of (m + 2) ring points, selected points have been
measured in (m + 1) ring.

is obtained until the mth ring†. Using the acquired data, we then
extrapolate near-field values U(m+2)

ext at the measurement points of the
(m + 2) ring while skipping the (m + 1) ring. Afterwards, sampling
points of (m+2) ring are measured providing U(m+2)

meas . The logarithmic
differences between the extrapolated and the measured values

D(m+2) = 20log10

(
abs

(
U(m+2)

ext −U(m+2)
meas

))
(2)

determine whether the corresponding points from the (m+1) ring can
be skipped or not. The list containing sampling points is constantly
updated and once the probe finishes traversing the (m+2) ring, it steps
back to the (m + 1) ring and measures only the non-skipped points. It
is worth mentioning here that extrapolated near-field values are only
used to locate the unexpected change in the near-field and are not
used in the NFFF transformation itself so any standard extrapolation
technique can serve the purpose. We utilize Piecewise Cubic Hermite
Interpolation (pchip) to extrapolate out of range values. Fig. 1 shows
a measurement plane divided into a rectangular ring structure.

2.2. Decision Criterion

A suitable choice of decision criterion will determine the threshold
difference D

(m+2)
th for skipping the data point. Obviously, one cannot

use a fixed value for all the data points as it should vary with the
† It is assumed here for simplicity that the main beam lies in the center of the scan plane.
However, if the main beam does not lie in the center or the exact location of the main
beam is not known, data acquisition can be started from any other part of the scan plane
provided that the main beam would lie in that specific portion acquired in the beginning.
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Figure 2. Schematic of the proposed procedure.

near-field magnitude for reliable results. We introduce a unique way
to define the decision criterion based on signal-to-noise ratio (SNR) of
the received signal. An SNR of 60 dB‡ (can be varied) is assumed at the
maximum pattern level and is decreased down to 30 dB at 30 dB below
the maximum pattern level. The intermediate points can be linearly
‡ The SNR value is deduced empirically from practical measurements.
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interpolated and the threshold difference is empirically computed as

D
(m+2)
th = 20log10

(
1
3

(
1 +

√
0.5

10
SNR
10

))
. (3)

Afterwards, the threshold difference is compared with the computed
difference as

D(m+2) −D
(m+2)
th =

{
< 0 skip point
≥ 0 include point (4)

and the corresponding points from ring (m + 1) are skipped according
to the given condition. Fig. 2 shows the schematic of the designed
algorithm. The process is recursively repeated until the boundary of
the scan plane is reached when it terminates. The given procedure
is equally valid for square as well as rectangular grids. The only
difference occurs in acquiring the initial data from the center which
is in accordance with the shape of the grid.

2.3. Multilevel Near-field Transformation

An irregular planar grid data with non-uniform spacing between the
sample points is obtained by using the adaptive approach explained
in Section 2.1. The classical technique employing modal expansion of
plane wave functions can only handle the data collected on a regular
grid. We apply the multilevel plane wave based NFFF transformation
which is suitable for irregular grids. The multilevel technique has a
low computational complexity and full probe correction can also be
achieved without increase in the complexity. It has already been
validated using simulation as well as experimental results [5, 20].
Additionally, robustness against scan area truncation is observed as
compared to traditional techniques employing 2D FFT [19]. In this
section, we review the fundamentals of this technique.

The field probe takes the weighted average of the field
strength around the measurement point together with the receiving
characteristics of the probe and the output signal

U (rM) =
∫∫∫

Vprobe

wprobe (r) ·E (r) dV (5)

is acquired at the measurement point rM. Vprobe is the volume and
wprobe contains the spatial weighting function of the probe. The

multilevel technique uses plane waves
(
Ī− k̂k̂

)
· J̃

(
k̂
)

as equivalent
sources to reconstruct the radiated fields of the AUT as shown in
Fig. 1 of [19]. Unlike the classical plane wave based approach, the
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multilevel technique utilizes the complete Ewald sphere of propagating
plane waves and relates the plane wave spectrum and near-field samples
using the diagonal translation operator TL

(
k̂, r̂M

)
(known from Fast

Multipole Method [23]) according to

U (rM) = −j
wµ

4π
©
∫∫

TL

(
k̂, r̂M

)
P̄

(
k̂, r̂M

)
·
(
Ī− k̂k̂

)
· J̃

(
k̂
)

dk̂2 (6)

where P̄
(
k̂, r̂M

)
contains the far-field pattern of the probe for probe

correction. For optimum computational complexity, measurement
points are grouped together to form a hierarchical structure similar
to Multilevel Fast Multipole Method (MLFMM). Fig. 3 shows cross-
section of the multilevel scheme with cubical box structure. In contrast
to the single level case, field translations can now be carried out on the
coarsest level. The plane wave spectra

J̃
iN
N

(
k̂
)

= TL

(
k̂, r̂box

)(
Ī− k̂k̂

)
· J̃

(
k̂
)

(7)

are received at the boxes on the coarsest level iN. Recursive
disaggregation and anterpolation is then performed to process the
plane wave spectra from coarsest to the finer level box centers according
to

J̃
in
n

(
k̂
)

= D̄in
n

(
k, rin

n

) ·
(
Ī− k̂k̂

)
· J̃in+1

n+1

(
k̂
)

(8)

using the combined disaggregation and anterpolation operator
D̄in

n

(
k, rin

n

)
. Disaggregation simply reflects phase shift from the parent

to the child box centers and finally to the measurement points while
anterpolation is a way of reducing the sampling rate from a higher to
a lower value, thus reducing the overall complexity. More details about
the said operator can be found in [20]. Once the anterpolation and

n  1

level

level

AUT

Figure 3. Multilevel measurement setup.
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disaggregation is completed, the probe output signal

U (rM) = −j
wµ

4π

∑

k̂

W
(
k̂
)

e−jr̃M·kP̄
(
k̂, r̂M

)
·
(
Ī− k̂k̂

)
· J̃i0

0

(
k̂
)

(9)

is computed by proper weighting the plane waves with their
respective probe co-efficients. Gauss-Legendre quadrature is used for
evaluation of the integrals and the algorithm is implemented in an
iterative manner by using the Generalized Minimum Residual Solver
(GMRES) [24].

3. PERFORMANCE EVALUATION

3.1. Near-field Data Acquisition

In order to assess the performance of the proposed procedure, we begin
by modeling the AUT using synthetic data. Electric dipoles are used
to model the AUT with proper magnitude profile and geometrical
arrangement as explained in [25]. A high gain parabolic reflector
(64λ) and a medium gain horn (4λ) are designed with source dipoles
arranged in concentric circles. The accumulative effect of all the source
dipoles determines the electric field

E (rM) = −j
ωµ

4π

iAUT∑

i=1

(
Ī +

1
k2
∇∇

)
· di

e−jk|rM−rd,i|
|rM − rd,i| (10)

at the measurement point rM by evaluating the Green’s function of free
space where rd,i represents the source dipole positions, ω is the angular

(a) (b)
[m]x[m]x

[m
]

z

[m
]

z

Figure 4. Near-field distribution (dB) of (a) high gain parabolic
reflector and (b) medium gain horn operating at 40GHz and 10GHz,
respectively.
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Figure 5. Adaptive near-field acquisition of (a) high gain parabolic
reflector and (b) medium gain horn. White rings denote the location
of skipped data.

Figure 6. Shaped-beam antenna mounted in an anechoic chamber.
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Figure 7. Adaptive near-field acquisition of (a) broad beam and (b)
shaped beam antenna. White rings denote the location of skipped
data.
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frequency, k is the wavenumber of free space, Ī is the unit dyad, and di

represents the amplitude, phase, and polarization information of the
source dipoles. The near-field distribution of both antennas collected
in the xz -plane and placed at y = −1.5m with half-wavelength sample
spacing is shown in Fig. 4. As observed, the near-field of the high
gain antenna varies smoothly but the medium gain horn contains
fluctuations.

Afterwards, the proposed adaptive approach is applied considering
20 dB SNR at maximum amplitude in the decision threshold and is
decreased down accordingly, as explained in Section 2.2. The resulting
near-field distribution is shown in Fig. 5. Apart from part of the
main beam acquired in the beginning, it can be seen that every
alternate near-field ring for the parabolic reflector is skipped making
a full-wavelength sample spacing. Sudden changes in the horn near-
field distribution are successfully detected at run time, hence data is
acquired accordingly. For realistic comparisons, we also use measured
data of a broad beam and a shaped beam antenna (see Fig. 6) operating
at 4GHz and 12 GHz, respectively. The proposed procedure is applied
to the measurement data and the adaptive near-field distribution is
shown in Fig. 7. Significant reduction of data points can be seen in
the field distribution of the broad beam antenna while less reduction
of data points is observed for the shaped beam antenna.

To get more insight into the effect of changing the SNR in the
decision criterion, the SNR is varied from 80 dB to 20 dB at the
highest near-field amplitude. On decreasing the SNR the number
of measurement points also decreased. However, less reduction of
measurement points is observed for the shaped beam antenna due to
abrupt changes in the near-field distribution.

3.2. Far-field Accuracy

Adaptive and regular near-field data of both synthetic and real
antennas are processed using the multilevel transformation. The
transformed far field of all the AUTs is obtained by considering
various SNR values in the decision threshold. The transformed
pattern obtained using regular near-field data is compared with the
transformed pattern using adaptive acquisition and the error level is
computed as

Error level = 20log10 (|Ereg (θ, φ) | − |Eadap (θ, φ) |) . (11)

Fig. 8 shows the transformed E-plane pattern cuts of the broad-
beam antenna with lowest 20 dB SNR at maximum pattern level. As
observed, good results have been obtained even with approx. 45%
decrease in the number of measurement points. To clearly show the
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Figure 8. E-plane transformed far-field pattern cut ((a) co-pol and
(b) cr-pol) using regular and adaptive processing of measured near-field
data of broad-beam antenna.
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in the transformed E- and H-plane pattern cut of broad beam antenna
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Figure 10. Traditional versus adaptive scanning technique (worst
case). Black spots mark the position where the probe has to stop and
change direction, thus causing an additional delay.
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Table 1. Maximum error level in the valid region of transformed
E- and H-plane pattern cuts with adaptive acquisition of near-field
assuming 20 dB SNR at maximum pattern level.

AUT
Maximum Error Level [dB]
E-plane H-plane

Co-pol. Cr-pol. Co-pol. Cr-pol.
Medium gain −67.3 −98.99 −64.77 −105.4

High gain −68.18 −131.7 −67.17 −93.76
Broad-beam −52.15 −75.36 −46.23 −68.42
Shaped-beam −48.54 −65.8 −44.5 −58.8

effect of varying SNR in the decision threshold, maximum error in
the transformed E- and H-plane pattern cut versus SNR at maximum
pattern level is shown in Fig. 9. The percentage reduction in the
number of measurement points is also shown on the right side of
Fig. 9. As expected, accuracy of the transformed pattern increases by
increasing the SNR value which in turn also increases the measurement
points. Similar behavior is seen for all the antennas under test. The
lowest accuracy at lowest SNR, i.e., 20 dB is tabulated in Table 1 for
both E- and H-plane pattern cuts. The SNR can be increased for
higher accuracy at the expense of more measurement points.

3.3. Data Acquisition Time

In a traditional measurement setup, the near-field is acquired by
linear motion of the probe in vertical direction while stepping in the
horizontal, or vice versa. Assuming the same scan speed v of the probe
in the vertical and the horizontal direction, the total acquisition time
ttot can be expressed as

ttot =
L
v

+ Ntmp + ntdelay (12)

where L is the total length traversed by the probe in the vertical and
the horizontal direction, N is the total number of measurement points,
tmp is the acquisition time at one measurement point, n is the number
of times when the probe changes its direction while stepping, and tdelay

represents the delay due to a single change. The black spots in Fig. 10
mark the position of the probe when it changes its direction.

The ring shaped adaptive data acquisition can be achieved by
traversing the probe in a rectangular spiral locus while starting from
the center of the scan plane and stepping in the outward direction
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away from the center. The total acquisition time for the adaptive
approach can also be expressed using Eq. (12) but with varying L
and N according to the given decision threshold. The state-of-the-
art RF equipment allows data acquisition by moving the probe in
an on-the-fly manner due to negligible processing time at one single
point. Therefore, one can neglect the term (N tmp) from Eq. (12)
as it is considerably less than that of the other two factors. The
length L traversed by the probe in the traditional measurement can
be calculated as Ltrad = (length of one vertical column) (no. of vertical
columns), whereas for the adaptive measurements it can be expressed
as

Ladap =
∑
x

length of the ring x

where x is a vector containing the number of the rings skipped during
the measurement. Since all the rings have different lengths, the right
knowledge of the skipped ring must be known for the correct length
L. It is worth mentioning here that even if measurement is required at
few points in one ring, it is assumed that the whole ring is measured
for computing measurement time.

Table 2 summarizes the length traversed by the probe during
traditional and adaptive measurements considering 20 dB SNR at
maximum pattern level. Due to simplicity, we assume that the delay
arising from changing the probe direction is the same for both cases, as
can be seen from Fig. 10. However, less delay is expected in adaptive
measurements if many measurement rings are skipped.

The efficiency in the measurement time is also shown in Table 2.
As observed, best results have been achieved for the high gain antenna
with smoothly varying near-field distribution while the worst case with
zero efficiency is seen for the shaped beam antenna. The probe has to
traverse the whole scan plane for the shaped beam antenna as not a

Table 2. Comparison between traditional and adaptive measurement
in terms of number of measurement points and length L traversed by
the probe assuming 20 dB SNR at maximum pattern level.

AUT
Meas. Points Length L [m] Meas. Time
Tradi. Adap. Tradi. Adap. Efficiency

Medium gain 70756 36847 1068 655.45 38.63%
High gain 34969 18329 131.6 69.94 46.85%

Broad-beam 6889 3772 251 154.88 38.29%
Shaped-beam 23345 16596 290 290 0.00%



Progress In Electromagnetics Research, Vol. 126, 2012 495

single ring can be skipped according to the given decision function.
Nevertheless, no extra time is needed as compared to the traditional
technique and since the whole scan plane is traversed one can utilize
the whole near-field information for the maximum accuracy.

4. CONCLUSION

An adaptive planar near-field measurement technique is described to
optimize the data acquisition time. The multilevel plane wave based
near-field far-field transformation algorithm is used for the processing
of the acquired near-field data. The multilevel approach gives the
freedom of using irregular data with different sample spacing. Full
probe correction and stability against measurement errors compared
to traditional transformation algorithms are the major advantages of
multilevel technique. The near-field data are acquired by traversing
the probe in a rectangular spiral locus and obtaining the near-field
in the form of rings. After covering a certain portion of the scan
plane from the center, alternate rings of sampling points are measured
and compared with already extrapolated values. A decision threshold
based on the SNR of the acquired signal then determines whether the
previous ring should be skipped or not. The proposed procedure is
applied to both synthetic and real measurement data covering a variety
of antennas. The acquisition time analysis showed that almost half
of the measurement time can be saved for antennas with smoothly
varying near-field distribution by using the proposed procedure and
with a good accuracy. A worst case example with high fluctuations in
the near-field region is also examined and simple computations showed
no over-head time as compared to the traditional acquisition method.
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