
Progress In Electromagnetics Research B, Vol. 39, 281–299, 2012

ELECTROMAGNETIC VECTOR-SENSOR ARRAY PRO-
CESSING FOR DISTRIBUTED SOURCE LOCALIZATION

X. M. Shi* and Z. W. Liu

School of Information and Electronics, Beijing Institute of Technology,
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Abstract—We consider the problem of direction-of-arrival (DOA)
estimation for distributed signals with electromagnetic vector sensors,
of which each provides measurements of the complete electric and
magnetic fields induced by electromagnetic (EM) signals. In this
paper, we consider situations where the sources are distributed not
only in space with a deterministic angular signal density, but also in
polarization with partially polarized components. A distributed signals
general model with electromagnetic vector-sensor array (EMVS-DIS)
is established with some reasonable assumptions. Based on the EMVS-
DIS model, the minimum-variance distortionless response (MVDR)
estimators for distributed source DOA are derived. MVDR estimators
do not require the knowledge of the effective dimension of the
pseudosignal subspace. We compare our method with the distributed
signal MUSIC-like estimator in electromagnetic vector-sensor arrays.
The simulation studies show significant advantages in using the
proposed EMVS-DIS model with electromagnetic vector sensors.
Simulation results show that the new MVDR method outperforms
the MUSIC-like algorithm by reducing the estimation RMSE and
improving resolution performance for scenario with distributed sources.
A robustness study of MVDR localizer was also conducted via
simulations.

1. INTRODUCTION

In most applications of array signal processing, it is usually assumed
that the signals of interest are generated by far-field point sources,
which means that the source energy is concentrated at discrete point.
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Based on this assumption, several high resolution direction finding
methods have been proposed to estimate the source DOA, such
as MUSIC [1], ESPRIT [2–5], Maximum likelihood methods [6, 37],
Capon algorithm [7] and NSF [8] estimator.

Many practical scenarios can be found where the point source
assumption does not hold. For instance, in wireless communication in
the Arctic environment, the transmission of radio waves often undergos
ionospheric scattering, so that the signal reaching the receiver would
appear to form a distributed source. In the case of low-grazing-
angle propagation in maritime environment and under the situation
of passive estimation of source directions of arrival, signal arrives
at the radar receiver via both a direct and an indirect path, the
latter produced by reflections on the smooth and scatter of rough sea
surface [9]. In wireless communications, due to local scattering in the
vicinity of the mobile, the source is no longer viewed by the array as a
point source as it represents a spatially distributed source with some
central angle and angular spread [10]. Thus, the application of the
conventional point sources high resolution DOA estimation methods
to such problems mentioned above will show grave deterioration in
performance [11].

Distributed source models have been frequently investigated
in many works including [9–13]. Valaee et al. firstly proposed
distributed narrowband sources model with scalar-sensor array
in [12], then developed a high-resolution technique for localization,
which is distributed source parameter estimator (DSPE) [14].
Others proposed dispersed signal parameter estimator (DISPARE)
in [15], a class of weighted subspace fitting algorithms in [16],
the maximum likelihood (ML), and minimum-variance distortionless
response (MVDR) estimators in [17]. These methods gave consistent
parameter estimates, but all based on scalar-sensor array, so they can
not make use of all available electric and magnetic information of the
source.

Nehorai and Paldi firstly proposed vector-sensor array which
consists of six spatially colocated but diversely polarized antennas,
separately measuring all three electrical-field components and all
three magnetic-field components of the incident electromagnetic
waves [18, 19]. They have also developed direction for finding
algorithms exploiting all six electromagnetic components [19], which
show significant advantages in using the proposed Electromagnetic
Vector Sensors (EMVS). Wong and Zoltowski [20] and Li [21]
separately proposed DOA estimator with EMVS. These estimators are
assumed far-field point sources.

The present paper investigates both coherently distributed (CD)
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and incoherently distributed (ID) sources using EMVS. We can find
two types of distributed sources, i.e., CD and ID sources [14].
The CD source means that the signal components arriving from
different continuum directions can be modeled as the delayed and
proportioned replicas of the same signal [14]. On the other hand,
all signals coming from different directions are totally uncorrelated for
ID sources. In this paper, we propose a distributed signals general
model with Electromagnetic Vector Sensors (EMVS-DIS). To the best
of the authors’ knowledge, this is the first time that distributed
sources parameters estimation has been considered in both spatial and
polarization field distributions with Electromagnetic Vector array. In
this new model, both spatial field and polarization field distribution
have been taken account in. We also proposed the minimum-variance
distortionless response (MVDR) estimators for CD and ID source,
respectively.

The paper is organized as follows. In the following section,
we formulate the problem and propose the EMVS-DIS model. In
Section 3, we develop the MVDR parameter estimation technique for
the distributed sources with EMVS. The computer simulations are
presented in Section 4. Section 5 summarizes our findings.

2. PROBLEM FORMULATION AND MODELING

The unit vector rk is pointed from the origin in Cartesian coordinates
toward the source, as depicted in Figure 1. rk can be expressed as
follows:

rk =

[
uk

vk

wk

]
=

[sin θk cosϕk

sin θk sinϕk

cos θk

]
(1)

where 0 ≤ θk < π denotes the signal’s elevation angle; 0 ≤ ϕk < 2π
symbolizes the azimuth angle.

2.1. Point Sources Model

Uncorrelated transverse electromagnetic plane waves impinge upon
a three-dimensional (3-D) array of identically oriented L elements
electromagnetic vector-sensors. The L elements along the y-axis with
d (half wave length) inter-element spacing were chosen (see Figure 2).
Every sensor consists of six spatially colocated but diversely polarized
antennas, namely, three electric and three magnetic orthogonal sensors
(dipoles and loops).

The complex envelope of the array output has three electric-field
vectors, and three magnetic-field vectors may expressed in Cartesian
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Figure 2. Electromagnetic vec-
tor sensors array.

coordinates as

x(t)=[x1(t), x2(t) . . . x6L(t)]T =
M∑

k=1

a(L) (θk, ϕk, γk, ηk)sk(t) + n(t) (2)

where M is the number of cochannel signals, and a(L) (θk, ϕk, γk, ηk)
is the array manifold for the entire L-elements electromagnetic vector-
sensor array.

a(L) (θk, ϕk, γk, ηk)
def= a (θk, ϕk, γk, ηk)⊗




q1 (θk, ϕk)
...

qL (θk, ϕk)




︸ ︷︷ ︸
def
= q(θk,ϕk)

(3)

where ⊗ symbolizes the Kronecker-product operator. q (θk, ϕk) is inter
electromagnetic vector-sensor array spatial phase factor. The k-th
narrow-band point source to the l-th electromagnetic vector sensor
at the location (xl, yl, zl) is

ql(θk, ϕk) = ej2π((xluk+ylvk+zlwk)/λ) (4)

a (θk, ϕk, γk, ηk) is the spatial response in matrix notation of the single
electromagnetic vector sensor.

a(θk, ϕk, γk, ηk) =




cosϕk cos θk − sinϕk

sinϕk cos θk cosϕk

− sin θk 0
− sinϕk − cosϕk cos θk

cosϕk − sinϕk cos θk

0 sin θk




︸ ︷︷ ︸
def
= V(θk,ϕk)

def
= P (γk,ηk)︷ ︸︸ ︷[
sin γke

jηk

cos γk

]
(5)
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where 0 ≤ γk < π/2 represents the auxiliary polarization angle;
0 ≤ ηk < 2π signifies the polarization phase difference.

Note that V (θk, ϕk) depend only on the sources’ spatial angular
locations, and P (γk, ηk) depend only on the incident signals’
polarization states.

Equation (2) may be written in matrix notation as

x(t) = [x1(t), x2(t) . . . x6L(t)]T = AS(t) + n(t) (6)
where

A=
[
a(L)(θ1,ϕ1,γ1,η1), a(L)(θ2,ϕ2,γ2,η2), . . . a(L)(θM ,ϕM ,γM ,ηM )

]

S(t)=[s1(t), s2(t) . . . sM (t)]T n(t) = [n1(t), n2(t) . . . n6L(t)]T

n (t) symbolizes the 6L × 1 additive complex-valued zero-mean
white noise vector.

2.2. Models for Distributed Sources

Consider a three-dimensional array of L elements EMVS (see Figure 2)
monitoring a wave of M distributed narrowband sources in additive
background noise. The time dispersion introduced by the multipath
and diffusion propagation is assumed to be small in comparison with
the reciprocal of the bandwidth of the emitted signals. Below, we
discuss signal sources, respectively, distribution in spatial field and
polarization field.

2.2.1. Spatial Field Distribution

Firstly we only concern source spatial distribution, under deterministic
polarization state assumption (We will talk about polarization state
distributed property later, and then give completely distributed source
model). The angular signal density of k-th distributed source can be
denoted [14] as

s(θ, ϕ; ψk) = skg(θ, ϕ : ψk) (7)
The random component sk represents the temporal behavior of

the source. The deterministic complex-valued function g (θ, ϕ : ψk) of
θ and ϕ characterizes the spatial distribution of the source. ψk is the
unknown parameter vector. It is natural to assume that the incident
waves deterministic angular signal density in azimuth is independent
of elevation. This assumption is not only intuitive but also supported
by experimental data analyzed in [22] by Taga. Taga proposed the
Gaussian density function in elevation and uniform density function in
azimuth and supported by experimental data.

g(θ, ϕ : ψk) = gak(ϕ : ψk) ∗ gek(θ : ψk) (8)
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Figure 3. Gaussian-shape in both azimuth and elevation of
distributed source.

where gak (ϕ) and gek (θ) are azimuth and elevation angular signal
density, respectively, and the symbol “*” represents the product
operator. For example, Figure 3 depicts a Gaussian-shape in azimuth
and elevation distributed source.

The complex envelope representation of the array output
observation vector can be given by

x(t)=
M∑

k=1

π∫

0

∫ 2π

0
a(L)(θ, ϕ, γ, η)sk(t)gak(ϕ :ψk)∗gek(θ :ψk)dϕdθ+n(t) (9)

The integral is response to the continuum components of signals in θ
and ϕ. For simplicity, we define

a′(θ, ϕ, γ, η : ψk)=

π∫

0

∫ 2π

0
a(L) (θ, ϕ, γ, η)gak(ϕ : ψk) ∗ gek(θ : ψk)dϕdθ

k = 1, 2, . . .M (10)

And let A′ (ψ) be the matrix of the column vectors a′ (ψk).
Equation (9) may be written in matrix notation as

x(t) = A′(ψ)S(t) + n(t) (11)

where A′(ψ)=[a′(ψ1), a′(ψ2), . . . a′(ψM )]; S(t)=[s1(t), s2(t) . . . sM (t)]T ;
n(t) = [n1(t), n2(t) . . . n6L(t)]T .

2.2.2. Polarization Field Distribution

Polarization is a nature property of electromagnetic (EM) wave. The
polarization state of EM wave is a function of time. In particular,
a completely polarized wave has a constant state of polarization,
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whereas a partially polarized signal varies with time. In a variety
of applications, partially polarized or unpolarized signals are a general
type of EM wave, and only a limited case of scenario’s signal is a
completely polarized EM wave. For example, as the transmitting
Radar rotates itself to scan over the desired sector, the polarization
of signals received at an observation point varies with time [23–28],
even though the original transmitted wave is completely polarized.
This variation occurs because of the nonstationary behavior of
targets, clutter, rough surface, and other disturbance sources. In
wireless communication in the Arctic environment, the transmission
of signals is often undergone ionospheric scattering, so that the
polarization of signals reaching the receiver would appear to be
partially polarized [29, 30]. In maritime environments, tracking targets
flying near the sea surface is a case of low-grazing-angle propagation.
The polarization of signals received is partially polarized while the sea
surface is disturbed and irregular [9].

Under the unknown polarization stochastic state, we decompose
scattering partially polarized signal into completely polarized and
unpolarized two components, to correct the situation mentioned in
Section 2.2.1 that does not concern source polarization distribution
deficiency. The completely polarized component relates to the direct
signal, and the unpolarized component is associated with the diffuse
signal component. We conduct decomposition to signal and express it
as [38]

ps = pcpppH + pup/2∗I2 (12)

where pcp = σ2
S = E[|sk(t)|2]; pup = σ2

u = E[|UH
k (t) ∗ Uk(t)|];

Uk(t) ∈ C2X1.
p is the polarization vector defined as in (5); Uk(t) denotes the

horizontal and vertical components of the diffuse signal, and they are
uncorrelated. The diffuse component carries no useful message, but
it provides information about the source spatial position. Hence, this
component accounts for “signal” in the model, instead of as part of the
noise. Then, the array output can be written as

x(t) =
M∑

k=1

π∫

0

∫ 2π

0
a(L) (θ, ϕ, γ, η)gak(ϕ : ψk) ∗ gek(θ : ψk)sk(t)dϕdθ

+
M∑

k=1

π∫

0

∫ 2π

0
V (θ, ϕ)⊗q (θ, ϕ) gak(ϕ :ψk)∗gek(θ :ψk)Uk(t)dϕdθ+n(t)(13)
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For simplicity, we define

b(L)(θk, ϕk) = V (θ, ϕ)⊗ q (θ, ϕ) ;

b′(θ, ϕ : ψk) =

π∫

0

∫ 2π

0
V (θ, ϕ)⊗ q (θ, ϕ) gak(ϕ : ψk) ∗ gek(θ : ψk)dϕdθ

k = 1, 2, . . . M (14)

where b′(ψk) ∈ C6LX2. let B (ψ) be the matrix of the column vectors
a′ (ψk) and b′ (ψk).

B(ψ) =
[
a′(ψ1), a′(ψ2), . . . a′(ψM ),b′(ψ1) . . .b′(ψM )

]
(15)

Equation (13) may be written in matrix notation as

x(t) = B(ψ)U(t) + n(t) (16)

where U(t) = [s1(t), s2(t) . . . sM (t), UT
1 (t), UT

2 (t) . . . UT
M (t)]T ; n(t) =

[n1(t), n2(t) . . . n6L(t)]T .
We assume that the signal sk (t), noise nk (t) and “signal” UT

k (t)
are mutually independent distributed complex Gaussian processes with
zero mean. Then, the data model (16) allows us to write the covariance
matrix of the array measurements as

R= E(xxH) = Rs (ψ) + Rn (17)

where E(·) denotes statistical expectation; superscript H represents
Hermitian transposition; the noise covariance matrix is Rn = σ2

nI; σ2
n

is the noise power; Rs (ψ) is the noise-free covariance matrix and can
be given by

Rs(ψ) =
M∑

k=1

M∑

l=1

π∫

0

2π∫

0

π∫

0

∫ 2π

0
a(L)(ψk)skpkl

(
θ,ϕ,θ′,ϕ′ :ψk,ψl

)
s∗l a

(L)(ψl)Hdϕdθdϕ′dθ′+

M∑

k=1

M∑

l=1

π∫

0

2π∫

0

π∫

0

∫ 2π

0
b(L)(ψk)Ukpkl

(
θ,ϕ,θ′,ϕ′:ψk,ψl

)
U∗

l b(L)(ψl)Hdϕdθdϕ′dθ′ (18)

where

pkl

(
θ,ϕ,θ′,ϕ′:ψk,ψl

)
=gak(ϕ :ψk)∗ gek(θ :ψk)∗ g∗al(ϕ

′ :ψl)∗ g∗el(θ
′:ψl) (19)

and “*” represents the complex conjugation. If the signals from
different sources are uncorrelated, then

pkl

(
θ, ϕ, θ′, ϕ′ : ψk, ψl

)
= pk

(
θ, ϕ, θ′, ϕ′ : ψk

)
δkl

= gak(ϕ : ψk) ∗ gek(θ : ψk) ∗ g∗ak

(
ϕ′ : ψk

) ∗ g∗ek
(
θ′ : ψk

)
(20)
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The noise-free covariance matrix is then given by

Rs(ψ)

=
M∑

k=1

π∫

0

2π∫

0

π∫

0

∫ 2π

0
a(L) (ψk) skpk

(
θ,ϕ,θ′,ϕ′ :ψk

)
s∗ka

(L) (ψk)
Hdϕdθdϕ′dθ′

+
M∑

k=1

π∫

0

2π∫

0

π∫

0

∫ 2π

0
b(L)(ψk)Ukpk

(
θ,ϕ,θ′,ϕ′:ψk

)
U∗

kb(L)(ψk)
Hdϕdθdϕ′dθ′ (21)

Below, we discuss Equation (21) in CD and ID sources, respectively.
For CD sources, the noise-free covariance matrix can be given by

Rs(ψ) =
M∑

k=1

a′(θ, ϕ, γ, η : ψk)σsa
′ (θ′, ϕ′, γ, η : ψk

)H

+
M∑

k=1

b′ (θ, ϕ : ψk) σub′
(
θ′, ϕ′ :ψk

)H (22)

For ID sources,

pk

(
θ, ϕ, θ′, ϕ′ : ψk

)
=pk (θ, ϕ, : ψk) δ

(
θ − θ′

)
δ
(
ϕ− ϕ′

)

=gak(ϕ :ψk)∗ gek(θ :ψk)∗g∗ak(ϕ :ψk)∗ g∗eK(θ :ψk)(23)

Then the noise-free covariance matrix can be given by

Rs (ψ) = σ2
s

M∑

k=1

π∫

0

∫ 2π

0
a(L) (ψk)pk (θ, ϕ : ψk)a(L)(ψk)Hdϕdθ

+σ2
u

M∑

k=1

π∫

0

∫ 2π

0
b(L) (ψk)pk (θ, ϕ : ψk)b(L) (ψk)

Hdϕdθ (24)

3. MVDR LOCALIZER

By performing an eigen decomposition of correlation matrix in (17),
we get

R = UsΣsU
H
s + UnΣnUH

n (25)

where Σs = diag
(
σ2

S1, σ2
S2 . . . σ2

SM , σ2
u1

/
2, σ

2
u1

/
2 . . . σ

2
uM

/
2, σ

2
uM

/
2
)
.

Σs denotes a 3M×3M diagonal matrix whose diagonal entries are
the 3M largest eigenvalues, and Σn symbolizes a (6L−3M)×(6L−3M)
diagonal matrix whose diagonal entries contains the (6L−3M) smallest
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eigenvalues σ2
n. Signal subspace Us is 3M eigenvectors (6L×1), and Un

denotes 6L× (6L−3M) matrix composed of the remaining (6L−3M)
eigenvectors of correlation matrix and is the pseudo-noise subspace.
[ϕk, θk, γk, ηk, σ2

S , σ2
u, σ2

n] are unknown parameters, and the vector
ψ = [ϕk, θk, γk, ηk] includes parameters of interest.

For the covariance matrix R of Equation (17), the MVDR
spectrum [7, 31–35] Pu (ψ) is derived through the selection of the
MVDR beamforming weight vector w, which are used to control the
shape of the EMVS array beam.

Pu (ψ) = wHRw (26)

Below, we consider the MVDR spectrum of both CD and ID
sources, respectively.

3.1. The CD Sources Localizer

For CD sources, we get weight vector w by solving the following linearly
constrained quadratic problem.

minwHRw subjetc to wHa′ (ψk) = 1 (27)

With Lagrange multiplier method, there is

woptR = µa′ (ψk) (28)

So the resulting weight vector is then given by

wopt = µR−1a′ (ψk) (29)

where
µ =

1

a′ (ψk)
H R−1a′ (ψk)

Further, the MVDR spectrum as

Pu(ψ) =
1

a′(ψ)HR̂−1a′(ψ)
(30)

So the vector ψ of CD sources can be estimated by locating the peaks
of Pu (ψ).

ψ̂ = arg max
ψ

1

a′ (ψ)H R̂−1a′ (ψ)
(31)

For localization, a multi-dimensional space search step is
performed to find the maxima of Pu (ψ). These maxima are the
estimates of the signal parameter vectors.
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3.2. The ID Sources Localizer

For simplicity, from Equation (24) we define

pak(ψk) =

π∫

0

∫ 2π

0
a(L) (ψk)pk (θ, ϕ : ψk)a(L) (ψk)

H dϕdθ (32)

pbk(ψk) =

π∫

0

∫ 2π

0
b(L) (ψk)pk (θ, ϕ : ψk)b(L) (ψk)

H dϕdθ (33)

We assume that the sources’ powers are equal. Equation (24) simplifies
to

Rs (ψ) = σs

M∑

k=1

pak (ψk) + σu

M∑

k=1

pbk (ψk) (34)

For ID sources, we extend the MVDR Capon spatial filter[31] to the
EMVS-DIS model as

minwHRw subjetc to wHp (ψk)w = 1 (35)

where p (ψk) = pak (ψk) + εpbk (ψk), ε is a ratio of diffuse components
to direct components in induced signals. Equation (35) maintains
distortionless spatial response to a hypothetical source’s covariance
matrix with the unknown vector parameter of interest, while maximally
suppressing the contribution of interference sources and noise.

With Lagrange multiplier method, there is

Rw = µp (ψk)w (36)

Multiplying Equation (36) by wH from left and using the constraint
of (35), we obtain that

µ = wHRw = Pu(ψ) (37)

Therefore, the smallest generalized eigenvalue of the matrix pencil
{R, P(ψk)} is equal to the minimal value of the objective function
Pu (ψ).

Then the MVDR spectrum as

Pu (ψ) = λmin({R,P (ψk)}) (38)

So the vector ψ of ID sources can be estimated by locating the peaks
of

ψ̂ = arg max
ψ

1
λmax({R−1P (ψk)}) (39)

The parameter vector estimates can be obtained from the maxima
of (39). Generally, a multi-dimensional search is required.
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4. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed techniques
in different scenarios. We consider an EMVS array that comprises
several colocated vector sensors as Figure 2, measuring all three
electrical-field components and all three magnetic-field components.
Each sensor is aligned with the axis y of the Cartesian coordinate
system with element spacing d = λ/2 (λ is the wavelength at the
operating frequency). The azimuth angular signal density of sources is
assumed to be uniform.

gak(ϕ) =





1
2∆1k

, |ϕ− ϕk| < ∆1k

0, otherwise
(40)

∆1k is the extension width of uniform density, and ϕk is central
angle of arrival. The elevation angular signal density of the sources is
assumed to be Gaussian density

gek(θ) =
1√

2π∆2k

exp
(
−(θ − θk)2

2∆2
2k

)
(41)

where θk and ∆2k are the central angle of arrival and the extension
width of Gaussian density, respectively.

In our simulation, the additive white noise is, zero mean, complex
Gaussian. SNR is defined as

SNR = (1/M)
M∑

k=1

([
|sk(t)|2

]
+

∣∣UH
k (t) ∗ Uk(t)

∣∣
)

/σ2
n (42)

In the first scenario, two equal power CD sources impinge upon a
2-element EMVS array, with the following parameters values:

ϕ1 = 25◦ ϕ2 = 26◦; θ1= 20◦ θ2= 45◦;
∆11 = 0.5◦ ∆21 = 1.0◦; ∆12 = 0.5◦ ∆22 = 1.0◦.

The polarization states are

γ1 = 60◦ γ2 = 45◦; η1 = 45◦ η2 = 90◦.
The SNR is fixed at 10 dB, and 200 independent snapshots are

used to estimate the array covariance matrix. Figure 4 shows the
spectrum of the proposed CD model and MVDR algorithm. We can
observe that the proposed method successfully locates the two sources.

In the second scenario, three equal power ID sources impinge upon
a 2-element EMVS array, with the following parameters values:

ϕ1 = 45◦ ϕ2 = 60◦ ϕ3 = 30◦; θ1= 35◦ θ2= 45◦ θ3= 20◦;
∆11 = ∆12 = ∆13 = 0.5◦; ∆21 = ∆22 = ∆23 = 1.0◦.
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Figure 4. Spectrum of CD
MVDR algorithm.
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Figure 5. Spectrum of ID
MVDR algorithm.
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The polarization states are

γ1 = 60◦ γ2 = 45◦ γ3 = 45◦; η1 = 45◦ η2 = 90◦ η3 = 30◦.

The SNR is fixed at 10 dB, and 200 independent snapshots are used to
estimate the array covariance matrix. Figure 5 show the spectrum of
the proposed ID model and MVDR algorithm. We can observe that
the proposed method successfully locate the three sources.

In the third scenario, a CD sources impinge upon a 2-element
EMVS array, with the following parameters values:

ϕ1 = 30◦, θ1= 20◦; ∆11 = 0.5◦, ∆21 = 1.0◦;

The polarization states are γ1 = 45◦, η1 = 90◦.
Figure 6 shows a comparison between the performances of the

MVDR and MUSIC-like [36] method for CD source. We use 200
independent snapshots to estimate the array covariance matrix. The
curves in Figure 6 plot the central direction-angles’ (elevation angle
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and azimuth angle) composite estimation Root Mean-Square Error
(RMSE) at various signal-to-noise ratio (SNR) levels, using the MVDR
and MUSIC-like method. The RMSE is computed by taking square
root of the mean of the respective variances of ϕ and θ, and the
RMSE of all the following figures in this paper is similarly computed.
The performances of all estimations are obtained by means of 100
independent Monte Carlo simulation experiments.

From Figure 6 one can observe that the MVDR localizer is superior
to the MUSIC-like method at all SNRs, and for SNR above 2 dB
estimation RMSE decreased nearly to zero.

In the next example, the robustness of MVDR to signal DOA and
polarization parameters is evaluated. In this example, one CD source
impinges upon a 2-element EMVS array. Figure 7 to Figure 10 plot the
RMSE versus one parameter varying in different ranges, respectively.
The other parameters values are the same as in the third scenario. The
SNR is equal to 8 dB. Two-hundred snapshots are used in each of the
100 independent Monte Carlo simulation experiments.

From Figure 7 one can observe that the RMSE of MVDR
localizer’s central spatial angular estimation is under 0.05 at all
azimuth angles. At approximately 90◦ and 270◦, RMSE is greater
than RMSE at other azimuth angles, though they are nearly 0.04 and
0.05 degree, respectively. This can be explained by the fact that all the
array spatial phase factor q (θk, ϕk)’s elements is equal to 1, and one
electric-field sensors and one magnetic- sensors can not obtain signal
at the two direction.

Figure 8 at 0◦ and 90◦ point of elevation angle can be explained by
the fact that two electric-field sensors and two magnetic-sensors cannot
obtain signal.

From Figures 9 and 10, the RMSEs of the two cases as a function
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Figure 7. RMSE of ϕ and θ
versus ϕ.
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versus θ.
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Figure 9. RMSE of ϕ and θ
versus γ.
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versus η.
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Figure 11. RMSE of ϕ and θ
versus ∆11.
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Figure 12. RMSE of ϕ and θ
versus ∆21.

of polarization show that the proposed MVDR localizer work well in all
polarization states. MVDR method was able to resolve and estimate
the DOA at all signal polarization.

In the last example, we examine the performance of the estimators
when the angular spread of the source increases. Here, single ID source
impinge upon a 2-element EMVS array with the following parameters
values:

ϕ1 = 30◦, θ1= 20◦; ∆11 = 0.5◦, ∆21 = 1.0◦;

The ∆11 and ∆21 are only for Figures 12 and 11 respectively. The
polarization states are

γ1 = 45◦, η1 = 90◦.

The SNR is equal to 8 dB. The performances of the estimators
are obtained by means of 100 Monte Carlo simulations for calculating
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the RMSE. The number of snapshots used to estimate the sample
covariance matrix is 200.

Figures 11 and 12 show the RMS error of central spatial angular
estimates versus the angular spread of azimuth and elevation angle.
The two figures show a comparison between the performance of
the MVDR and MUSIC-like method. We can observe that the
proposed MVDR localizer is robust in the single-source case and
widely separated sources situation. The proposed estimator has
great advantage relative to MUSIC-like method, which do require the
knowledge of the effective dimension of the pseudosignal subspace.

5. CONCLUSIONS

A new EMVS-DIS Model for the distributed signals source has
been presented. In this model, we proposed decomposing the
distributed signals into polarized and unpolarized components for its
polarization state “distribution” and describing spatial distribution
with deterministic angular signal density. We have presented that
it is possible to significantly reduce the RMSE of the central DOA
parameters estimation with EMVS-DIS Model when the full EM
information is exploited using electromagnetic vector sensors. The
proposed MVDR algorithm does not require the knowledge of effective
dimension of the pseudosignal subspace, which is the main difficulty
of the existing subspace estimators. This character is extremely
important to ID source parameter estimation. Furthermore, we showed
that the performance of the proposed MVDR parametric estimation
algorithm is super than MUSIC-like method by simulations. The
proposed estimator exploits independent polarization information as
well as azimuth and elevation angle (spatial information) of the source,
and it exhibits a better estimation performance.
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