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Abstract—In this hybrid combined time domain (TD) and frequency
domain (FD) approach, one can generate the early-time response using
the method of marching-on-in-time (MOT) and use the method of
moment (MOM) to generate the middle-frequency response, as the
low frequency data may be unstable. The early-time and the middle-
frequency data provide the missing low and high frequency response
and the late-time response, respectively. Generation of a wide-band
response using partial information of the TD data and FD data has
been accomplished by the use of the continuous and discrete Laguerre
functions.

1. INTRODUCTION

Typically, the method of moments (MOM), which uses an integral-
equation formulation, can be applied to perform the electromagnetic
analysis in the frequency domain. However, this approach can become
computationally intensive to perform a wide-band analysis. A time-
domain approach is preferred to a wide-band analysis. For a time-
domain integral equation formulation, the method of marching-on-in-
time (MOT) is usually employed. A serious drawback of this algorithm
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is the occurrence of late-time instabilities in the form of high-frequency
oscillations.

To overcome high computational demand to generate high-
frequency data for MOM and to avoid late-time oscillations for a MOT
method, the hybrid TD (time domain) and FD (frequency domain)
method has been proposed to interpolate and extrapolate both domain
data simultaneously using only early-time and low-frequency data [1–
6]. The MOM approach can efficiently generate low-frequency data,
while the MOT algorithm can be used to obtain stable early-time data
quickly. The basic principle is that the early-time and low-frequency
data provide the missing high-frequency response and the missing late-
time response, respectively.

From the basic principles, one can also extend the hybrid TD-
FD method to generate a wide-band response in both domains using
early-time and middle-frequency data, as low frequency data may be
unreliable, and one does not need much more computation time to
obtain middle-frequency data.

The objective is to generate a wide-band electromagnetic response
with high accuracy using the combined early TD and middle FD
data. We will use the continuous and discrete Laguerre polynomials to
interpolate and extrapolate the wide-band response using the hybrid
TD-FD data such as early-time and middle-frequency data, in an
electromagnetic analysis.

This paper is organized as follows. In Section 2, we will explain
the definitions and properties of the continuous and discrete Laguerre
functions, the process of interpolating and extrapolating the wide-band
response, and the evaluation of the performance. Section 3 shows one
numerical example (horn antenna) to evaluate the performance of the
wide-band response using the seven hybrid TD-FD dataset. Finally,
some conclusions are presented in Section 4.

2. FORMULATIONS

2.1. Continuous Laguerre Functions

The continuous orthonormal Laguerre functions and its Laplace
transform can be defined by [7]

φcn(t, σ) =
√

σe−
σt
2 Ln(σt) (1)

Φcn(s, σ) =
√

σ

(
s− σ

2

)n

(
s + σ

2

)n+1
σ > 0; n ≥ 0 (2)

where σ is the scaling factor with only positive values because its poles
should be all on the negative real axis of the S-plane to have stability.
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The continuous Laguerre polynomials Ln(t) can be defined by

Ln(t) =
et

n!
dn(tne−t)

dtn
, n ≥ 0; t ≥ 0 (3)

They are causal, i.e., they are nonzero only for t ≥ 0. A causal
electromagnetic response x(t) at a particular location in space for t ≥ 0
can be expanded by a Laguerre series as

x(t) =
∞∑

n=0

cnφcn(t, σ) (4)

The Fourier transform of (1) can be evaluated as

Φcn(f, l) =

(
−1

2 + j f
l

)n

√
2πl

(
1
2 + j f

l

)n+1 (5)

where l = σ/2π and j =
√−1.

2.2. Discrete Laguerre Functions

The discrete Laguerre functions can be defined in the Z-domain as [8, 9]

Φdn(z, a) =
√

1− a2

(
z−1 − a

)n

(1− az−1)n+1 , |a| < 1; n ≥ 0 (6)

The constraint on the pole |a| < 1 is set to make the functions causal
and stable. As the limit ∆t approaches zero, (2) and (6) become equal,
as they are related by

a = e−
σ·∆t

2 or σ = − 2
∆t

ln a (7)

One can use a as the scaling factor for both the continuous and discrete
Laguerre functions. It is important to note that for the discrete
Laguerre functions, the boundary of the scaling factor a is |a| < 1.
However, the boundary of the scaling factor a is 0 < a < 1 for the
continuous Laguerre functions because it must be a positive number.
The TD discrete Laguerre functions can be written as

φd0(k, a) = aφd0(k − 1, a) +
√

1− a2δ(k)
φdn+1(k, a) = aφdn+1(k − 1, a) + φdn(k − 1, a)− aφdn(k, a)

(8)

where δ(k) is a Kronecker delta. The FD discrete Laguerre functions
can be obtained by putting z = ej2πf ·∆t in (6) resulting in

Φdn(f, a) = ∆t ·
√

1− a2

(
e−j2πf ·∆t − a

)n

(1− ae−j2πf ·∆t)n+1 , |a| < 1 (9)
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A causal sampled-sequence of the electromagnetic response x(k) can
be expanded by a Laguerre series as

x(k) =
∞∑

n=0

cnφdn(k, a) k ≥ 0; |a| < 1 (10)

2.3. Process of Interpolation and Extrapolation

Let M1 and M2 be the number of TD and FD samples that are given
for the functions x(t) and X(f), respectively. The total number of
available samples is Mt in the TD and Mf in the FD. It means one
can utilize only early-time data (x1) and low- or middle-frequency data
(X1). From these relationships, TD and FD samples can be defined as
follows:




x1 ={x (t0) , x (t1) , . . . , x (tM1−1)}T

x2 ={x (tM1) , x (tM1+1) , . . . , x (tMt−1)}T

X1 ={X (fP ) , X (fP+1) , . . . , X (fP+M2−1)}T

X2 =




{
X(fM2) , X (fM2+1) , . . . , X

(
fMf−1

)}T
, at P = 0{

X(f0) , . . . , X(fP−1) , X(fP+M2) . . . X
(
fMf−1

)}T
,

at P = 1, 2, . . . Mf −M2 − 1.

(11)

The matrix representation of this hybrid TD-FD data using (4), and
(10) would be


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(12)
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where ‘Re’ and ‘Im’ in the matrix equation are the real and imaginary
parts of the transfer function, respectively. The unknown coefficients
cn can be obtained by solving this matrix equation with the total least-
square implementation of the Singular Value Decomposition (SVD)
method [10].

To evaluate the performance of the interpolation and extrapola-
tion, we compute the estimated error following the normalized mean
square errors (MSEs) in the time and frequency domain as

Eest =
‖x̂′ − x‖2

‖x‖2

+

∥∥∥X̂ ′ −X
∥∥∥

2

‖X‖2

(13)

where ‖ • ‖2 is the L2-norm of a vector. x̂′ and X̂ ′ are the estimated
TD and FD data.

3. NUMERICAL SIMULATION: HORN ANTENNA

A horn antenna is used as one example to validate the above
methodology. Typically, we use a Gaussian input pulse as the
excitation for solving the TD problem as

g(t) =
4

σ
√

π
U0e

−
(

4(t−t0)
σ

)2

(14)

where U0 is the amplitude of the input pulse, σ is the width of the
Gaussian pulse, and t0 is the delay to make g(t) ≈ 0 for t < 0. In FD,
the Gaussian pulse is given by

G(f) = U0e
−

(
(2πfσ)2

64
+j2πft0

)

(15)
In our computation, U0 is chosen to be 1 V. We obtained the S-
parameter (S11) for the horn antenna which is fed by a probe, using
the HOBBIES (High Order Basis Based Integral Equation Solver)
simulation program as shown Fig. 1 [11]. The computed frequency
range is from dc to 7.65 GHz (∆f = 30 MHz, 256 data points).
We can obtain the FD data of the horn antenna with the Gaussian
pulse excitation by multiplication of the horn antenna response from
the HOBBIES and the spectrum of the Gaussian plane wave. The
Gaussian excitation voltage has the parameters with σ = 0.5208 ns
and t0 = 0.9766 ns. Theoretically, the TD data generated by the MOT
method should be the same as the TD data from IDFT of the FD
data. Thus, one can obtain the TD data from t = 0 to t = 6.478 ns
(∆t = 0.03255 ns, 200 data points) using IDFT of the FD data.

Assume that only the first 60 TD data points (0 to 1.921 ns) and
the first 70 FD data points (0 to 2.07 GHz) are available to solve
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Figure 1. HOBBIES simulation
model for the horn antenna.

0 1 2 3 4 5 6

x 10
-9

-0.5

0

0.5

1

1.5

2

2.5

3

x 10
9

Time (sec)

x
(t

)

 

 

original

estimated

Figure 2. Estimated TD data
using the continuous Laguerre
function.
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Figure 3. (a) Estimated Real and (b) Imaginary FD data using the
continuous Laguerre function.

the matrix Equation (12). Figs. 2 and 3 plot the interpolation and
extrapolation of the data using the continuous Laguerre function. We
choose the degree of Laguerre expansion N = 350, the scaling factor
a = 0.6. The estimated MSE is 1.08e-1. If one utilizes the middle 70
FD data (0.9 to 2.97 GHz) to apply the Hybrid method with the same
scaling factor instead of the first 70 FD data, one can get a better
estimated data as shown in Figs. 4 and 5. In this case, the estimated
MSE is 6.05e-4.

We now evaluate the performance of the interpolation and
extrapolation using the same TD data (the first 60 points) and different
FD data (70 points, shifted to the right with 30 incremental points)
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Figure 4. Estimated TD data using the continuous Laguerre function.
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Figure 5. (a) Estimated Real and (b) Imaginary FD data using the
continuous Laguerre function.

versus the scaling factor a for both the continuous Laguerre functions
and the discrete Laguerre functions. Fig. 6 shows the results of the
MSE for seven different hybrid TD-FD dataset. From Fig. 6, one can
recognize that the discrete Laguerre function has higher performance
for the interpolation and extrapolation than the continuous Laguerre
function of case 1. Also, one can get better performance if one utilizes
the hybrid early TD data and the middle FD data (case 2 and 3) to
apply both the continuous Laguerre (0.22 ≤ a ≤ 0.78) and discrete
Laguerre (−0.1 ≤ a ≤ 0.82) techniques. However, if one use high FD
data (case 4-7), the hybrid TD-FD method does not work too well, as
the early time data and the high frequency data may contain redundant
information and thus may not be mutually complementary.
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Figure 6. MSE for the same TD data and different FD data: (a)
continuous Laguerre function and (b) discrete Laguerre function for
the horn antenna.

4. CONCLUSION

In this paper, we have presented the continuous and discrete Laguerre
functions to interpolate and extrapolate the wide-band response in
both TD and FD simultaneously using seven different hybrid TD-FD
dataset. Even though computing the middle-frequency response needs
more time and memory than generating the low-frequency response,
one can generate the wide-band response with better performance
using both the continuous and discrete Laguerre functions with the
hybrid early-time data and middle-frequency data.
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