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Abstract—The influence of random fluctuations in the layer
thicknesses in high contrast, one-dimensional Photonic Crystals (PCs)
on the transmission spectra and Photonic Band Gaps (PBGs) is
investigated. The change in the PBGs depends on the magnitude of
the fluctuations and increases with an increase in the order of the
PBG. Introducing thickness non-uniformity into the PC of up to 0.004
times the value of lattice constant for different types of fluctuation
distributions has a negligible effect on either the position or the shape
of the 1st and nearest PBGs. The approach suggested here allows the
determination of the tolerances required in the geometrical parameters
of PCs during fabrication. It also allows the optimisation of PC
structures using high order PBGs.

1. INTRODUCTION

Photonic crystals (PCs), based on periodic structures, have attracted
much attention over the last quarter century [1–3] since they can
control the propagation of electromagnetic waves. These artificial
materials exhibit a Photonic Bandgap (PBG) where electromagnetic
radiation cannot propagate [1]. Although the optical properties of one-
dimensional photonic crystals (1D PCs) as periodic dielectric coatings
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are well known, the search for novel structures and applications for
these materials continues. For example, in Ref. [4], the relatively new
phenomenon of omni- directional reflectivity has been demonstrated for
1D PCs. It is worth noting that the technology required to fabricate
1D PCs is relatively cheap and technologically mature, facilitating the
development of applications for these materials. The processes which
are typically utilized for fabrication of 1D PCs are: 1) thin film coating
onto a substrate, 2) etching of periodic layers with different porosities,
3) etching of air channels [5].

No process is perfect, so the question arises as to how
imperfections in the fabricated 1D PC structure might influence their
optical properties? Answering this question requires the development
of a mathematical model of the multilayer structure. Once this model
is validated, the response of the optical properties of the system to
fluctuations in the structural parameters is estimated. When modelling
a 1D PC, four main structural parameters are involved. These are,
the thicknesses, dH and dL, and the refractive indices, nH and nL, of
the high and low refractive index components, respectively (Fig. 1).
The sum of dH and dL is a, the lattice constant of the PC. In
thin film fabrication, a fluctuation may occur in the composition or
stoichiometry of the coating (i.e., in the refractive indices) and/or in
the geometrical parameters of the film (i.e., in film thickness). During
deposition, layer characterisation is typically performed in-situ. If
a deviation of parameters such as n and/or d from target values is
detected, real time adjustments are applied to the process in order to
correct for the parameter excursion.

Figure 1. Schematic diagram of a seven-period, 1D PC with a lattice
constant a = dH + dL and an optical contrast of nH/nL. A wall
thickness with fluctuation (dH)i in the H-component appears in each
lattice period, causing a variation (dL)i in the L-component of the
structure.
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A practical PC, fabricated by a microstructuring process [5],
always contains a certain level of imperfection, for example, roughness
can occur in the walls of etched air channels in one-dimensional
photonic crystals. Technological deficiencies resulting in side-wall
roughness in 1D PCs were investigated in Refs. [6–10], whereas in
Refs. [6, 8, 11, 12], non-uniformities in wall thickness were analysed.
The investigation of the influence of fluctuations in the geometrical
parameters, or PC disorder, on the optical properties of PCs is a crucial
aspect of material engineering, since this allows an estimation of the
maximum level of disorder, beyond which the optical properties of
the crystal are unacceptably degraded. For example, in Ref. [13], the
threshold level of disorder below which the probability of formation
of an eigenstate at the center of a PBG is negligible was established.
Introduction of disorder into a 2D PC as a result of the variation in the
size of the air cylinders leads to increasing transmission within the PBG
and to a distortion of the PBG’s shape [13]. The PBG width is used
as a metric to describe this distortion. The width can be determined
as the distance between the boundaries of areas on dispersion curve
where the Bloch wave vector K has imaginary values [14].

Typically, 1D PCs are designed as Bragg reflectors with the
optical thickness of both layers, dHnH and dLnL, corresponding to
the quarter wavelength for which this PC is going to be utilized.
In addition to the first PBG, one-dimensional PCs have numerous
secondary, and higher order, PBGs. These have been investigated in
Refs. [10, 15], for example. Utilisation of secondary, and higher order,
PBGs allow further applications of 1D PCs, including Fabry-Pérot
optical filters with tunable resonance peaks of high-order [16], or the
formation of wide-band windows of transparency in Si [17]. For these
structures [16, 17], a large variation of filling fractions, fH = dH/a or
fL = dL/a, was used, unlike conventional structures based on quarter
wavelength optical thicknesses.

The gap map method for analysing PBGs [3] has proven to be an
effective approach to investigating PCs over a range of filling fractions.
The use of gap maps has been demonstrated in our previous work on
the design and fabrication of composite [18] and multicomponent [19]
photonic structures as well as in Fabry-Perot resonators [20].

In this paper, we investigate the influence of disorder on 1D PCs
of high optical contrast for use in Si photonics. Using a combination of
calculations and gap map analysis, the influence of random thickness
fluctuations in PC parameters on the transmission spectra and PBGs
is explored. The advantage of using PBGs map approach is that it
enables the analysis of the optical properties of the PCs over a range of
possible filling fractions and photonic band gaps of any order, including
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the most common quarter wavelength structures.

2. CALCULATIONS OF SPECTRA AND PBG MAP

A two-component 1D PC with thicknesses of dH and dL for the high
(nH) and low (nL) refractive index components, respectively, and a
total of seven periods is shown in Fig. 1. During microstructuring
processes such as lithography and wet or dry etching, the optical
constants of the constituent materials generally remain unchanged. We
use an nH value for Si in the mid-IR range of 3.42 and a value of nL = 1
for the air component of the grooved Si structure. Calculations of the
reflection (R) and transmission (T ) spectra of these structures were
performed using software developed in our group based on the Transfer
Matrix Method [21] approach. The incoming and outgoing media are
air with a refractive index of n = 1. Fig. 2(a) shows the reflection
spectrum R at normal incidence of light, calculated for a filling fraction
fH = dH/a = 0.23, corresponding to a quarter wavelength optical
thickness for both components. Wavelength values, λ, are shown in
units of normalized frequency, a/λ, on the x-axis. Reflection spectra
calculated for fH = 0.5 and fH = 0.08, are shown in Figs. 2(b)
and 2(c), respectively. Wide reflection bands with a characteristic
Π-shape, corresponding to the first and higher order PBGs, are seen
in all of the R spectra.

From Figs. 2(d), (e), (f) it is clear that within the PBG’s
frequencies, the very pronounced dips in transmission indicate that
amplitude modulation of up to ∼ 80 dB in the T spectra are possible.
(Note the log scale on the y-axis). For comparison, the amplitude
modulation of T outside the PBG regions is around 10 dB. These dips
can be explained by the appearance of the imaginary part of the wave
vector, K, in the range of PBGs frequencies [14]. The imaginary part
of the wave vector K affects the spectrum in a way which is equivalent
to strong absorption of the light. The light is not absorbed via the
usual electronic route within the atoms of the material. Rather, it
is due to a strong interaction of the incident light with the periodic
structure. Clearly, the boundaries of the strong dips are the boundaries
of PBGs. The transmission spectra and PBG map will be further used
for the evaluation of the impact of thickness fluctuations on the optical
properties of PCs.

In our calculations of PBG’s map we used over 100 values of the
parameter fH in the range 0.01 to 0.99 [22]. From the calculated R
spectra, values of a/λ satisfying the condition R > 0.999 are selected
and plotted on a graph in coordinates of fH versus a/λ. The PBG map
obtained is presented in Fig. 3, from which the main (or 1st) PBG and
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Figure 2. (a), (b), (c) R and (d), (e), (f) T spectra of an ordered PC
based on a Si-Air structure for (a), (d) fH=0.23, (b), (e) fH = 0.5 and
(c), (f) fH = 0.08. The number of lattice periods, m=7, the incoming
and outgoing medium is Air and a normal incidence of light is used
for these calculations. The numbers correspond to the order number
of the PBGs from Fig. 3.

a number of PBGs of high order, labelled 1 to 14, are observed. It
can be seen that for the number of periods here (m = 7), the 1st PBG
with R > 0.999 can be obtained in the range fH = 0.04 − 0.7. The
PBGs of higher order number occupy smaller areas on the map. The
filling factor fSi = 0.23 corresponds to λ/4 optical thicknesses for each
PC component. Note that the maximum width of the 1st PBG is at
this value of fSi, marked with a dashed line on the map. We are also
interested in the high-order PBGs, for example, the regions numbered
2–9. The widest part of the second PBG corresponds to fSi = 0.5, the
associated R spectrum is presented in Fig. 2(b). The widest part of
the third PBG corresponds to fSi = 0.08, the associated R spectrum
is presented in Fig. 2(c).

The width of the 3rd PBG is larger than the width of the 1st
PBG. Therefore, this PBG can be used as a wide-band reflector, with
the width of the R band being larger by a factor of 1.3 than the R-band
of the reflector with an optical thickness of the components equal to
λ/4.
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Figure 3. Gap Map for ordered PC, based on Si-Air structure,
with m = 7. The lines, intersecting the PBG regions labelled with
the numbers shown, are demonstrated for fH = 0.23 (dashed line),
fH = 0.08 (dotted line) and 0.5 (short dotted line).

3. MODELLING OF THICKNESS FLUCTUATION

During the fabrication of PCs, the tolerance in the lattice period of
the ordered structure a = dH + dL is determined by the lithographic
accuracy, which is typically high. However, if an inaccuracy, for
example in the thickness of one of the components, dH , occurs as
a result of process variations, this will lead to an inaccuracy in the
thickness of the second PC component, dL (Fig. 1). We note that
technologically, all layers in these periodic structures are fabricated
simultaneously and, therefore, it is impossible to make any alterations
to the final structure. This is not the case for thin film coatings, where
the periodic structure is formed by sequential deposition.

Let the number of walls in a PC be i = 8 as shown in Fig. 1. In
order to draw the PBG map, it is necessary to first calculate the spectra
R (or T ) in a range of values of dH from 0 to a. Next, let us introduce
the standard deviation, δ, as a parameter which is related to the wall
thickness, dH , in the ordered PC and leads to the inaccuracy, or relative
fluctuation, δi, induced in the ith wall of the ordered structure in
accordance with the random distribution law.

We will use two approaches to account for the thickness
fluctuation, δdHi. The first approach consists of the introduction of
fluctuations proportional to the thickness of the ith wall. Thus, the
value of fluctuation increases with an increase in the wall thickness.
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In this case, the thickness of the ith wall, (dH)i, in the presence of a
thickness fluctuation δdHi = dH · δi, is determined from the following
Equation (1):

(dH)i = dH + dH · δi = dH(1 + δi), (1)

In the second approach, the thickness fluctuation is determined by
equation δdHi = (dH)min · δi, where (dH)min is some minimal value of
the wall thickness. In this case the value of (dH)i changes in accordance
with Equation (2):

(dH)i = dH + (dH)min · δi (2)

Let us select the value of (dH)min, corresponding to the filling
fraction fH = 0.08. Equation (2) transforms to Equation (3):

(dH)i = dH + 0.08 · a · δi (3)

For example, using the first approach and standard deviation, δ = 0.05,
if the value of relative fluctuation δi = 0.11 (for i = 1 in Table 1)
then the thickness fluctuation, δdHi, will correspond to 0.11dH . For
a = 3µm at a lower value of fH = 0.1, the thickness dH will be
equal to 0.3µm, while at a higher value of fH = 0.7, the value of
dH = 2.1µm. The calculated thickness fluctuations δdH , determined
from Equation (1), are 0.3 · 0.11 = 0.033µm = 33 nm and 2.1 · 0.11 =
0.231µm = 231 nm, respectively, i.e., δdH will be proportional to

(a) (b) (c) (d)

(e) (f) (g) (h)

(k) (l) (m) (n)

Figure 4. Histograms for 12 types of thickness fluctuation distribution
values δi for an eight wall PC with standard fluctuation δ = 0.05.
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the thickness of the walls. Using the second approach, if δ = 0.1,
for the selected lower value of (fH)min = 0.08, the value of the
thickness fluctuation δdH = 24 nm at a = 3µm, and therefore, all
other walls thicknesses in the range of the filling fraction from 0 to
1 will have fluctuations of 24 nm. Therefore, the difference between
the approaches 1 and 2 is that in the first case we are dealing with
more radical changes in thickness fluctuation (dH)i, while in case 2 the
thickness fluctuation is less pronounced.

For both approaches, we use a random-number generator, which,
based on a standard deviation of δ, generates for each ith wall a value
of δi in accordance with the normal random distribution law. Using
Equations (1)–(3), we obtain the variation of thickness in each ith wall
as (dH)i. Since actual values of δi can be either positive or negative, the
thicknesses (dH)i can be either smaller or larger than dH in an ordered
PC. As an example, histograms for 12 types of thickness fluctuation
distribution for a structure with eight walls (Fig. 1) with δ = 0.05 are
presented in Fig. 4.

4. CALCULATIONS OF PBG MAP AND TRANSMIS-
SION SPECTRA OF A PC WITH THICKNESS DEPEN-
DENT VARIATIONS IN THE WALL THICKNESS

Let us consider in detail the first approach using, as a model, a PC
with eight walls (i.e., i = 8) as shown in Fig. 1. For the first type
of distribution (type 1) and the value of standard deviation δ = 0.05
the dependence of the values of δi on the wall number is presented
in Fig. 4(a). The relative thickness fluctuations δi for this type of
distribution are listed in Table 1 along with the altered values of
wall thickness (dH)i, calculated from Equation (1) for the thickness
dH = 0.66 µm (corresponding to fH = 0.23 for a PC with a = 3 µm).

Now that the new values of (dH)i are known, a calculation of
layer thickness dL, the distance between the walls in Fig. 1, can be
performed. Since in our model, a has a constant value, i.e., the distance
between the centres of the walls remains unchanged, the new value of
the distance between the two walls (for example walls 3 and 4) will
correspond to the difference (dL)34, determined by formula (4):

(dL)34 = a− ((dH)3/2 + (dH)4/2) (4)

Next, taking into account the changes in all of the thicknesses, dH

and dL, we perform a calculation of the gap map taking into account
the thickness fluctuations. Using the approach suggested earlier for an
ordered PC (Fig. 3), we use the criterion R > 0.999 and draw the gap
map for the disordered PC with a thickness fluctuation of type 1 and
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Table 1. Dependence of the relative fluctuations δi (for distribution
of type 1) and wall thickness values (dH)i on the wall number for
a standard deviation of δ = 0.05. Values are given for an eight-wall
structure in a PC with dH = 0.66 µm (fH = 0.23, a = 3µm).

i Values of fluctuation δi
Values of thickness for ith wall

(dH)i, µm
1 0.110 0.733
2 0.040 0.686
3 0.049 0.692
4 0.043 0.688
5 0.046 0.690
6 0.023 0.685
7 −0.052 0.626
8 0.003 0.662

(a) (b) (c)

Figure 5. Gap maps of an (a) ordered (thin line) PC (from Fig. 3) and
a disordered (thick line) PC with standard random thickness deviation
of the walls of δ = 0.05. The fluctuation distribution used is type 1
from Fig. 4(a), (b) Gap maps under identical conditions to those in
figure (a) but with fluctuation distribution of type 8 (Fig. 4(h)) and
(c) type 6 (Fig. 4(f)).

a value for δ = 0.05. In Fig. 5(a), we present both maps on the same
graph. From Fig. 5(a), the position of the PBGs regions for ordered
and disordered PCs with δ = 0.05 for lower values of fH are practically
the same, while at higher fH values the PBGs are shifted to larger a/λ
values, that is, a red shift.

Let us analyse in detail what happens with the T spectra for a
few values of fH (Fig. 6). From Fig. 6(a), for fH = 0.08 there are no
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Figure 6. Transmission spectra T for ordered (black line) and
disordered (grey line) PCs with filling fractions (a) fH = 0.08, (b) 0.23,
(c) 0.5, (d) 0.71, with corresponding thickness fluctuations δdH =
0.004a, 0.0115a, 0.025a and 0.036a and fluctuation distributions of
type 1 from Fig. 4(a) and Table 1. Numbers inside the dips (PBGs)
correspond to the number of the PBG shown on the gap map in
Fig. 5(a).

changes visible in the dips in the T -spectra within the same frequency
range. For fH = 0.23, a red shift of the PBGs begins to become
apparent, which increases when fH is increased to fH = 0.5 and 0.71
(Figs. 6(b), (c), (d)). In parallel with this shift, a distortion in the
shape of the high-order PBGs also occurs.

A shift in the PBG regions, and a change in the T spectra,
typically occurs for a small change in filling fraction, fH . Analysing
the distribution of thickness fluctuations in Fig. 4(a) and Table 1, it is
apparent that nearly all H-layers increase their thickness (dH)i when
compared with the ideal case of dH = 0.66 µm. Evidently, the filling
factor has changed. The increase of (dH)i here generates a red shift in
the PBG on the map and in the T spectra. A proportionate dependence
of the increase in PBG edges with an increase of fH is observed, which
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Figure 7. T spectra for ordered (black line) and disordered (grey
line) PC with fluctuation distribution of type 8 for (a) fH = 0.23 and
(b) fH = 0.5 with thickness fluctuations δdH = 0.0115a and 0.025a,
respectively.

can be explained by the increase in the optical thickness of the altered
H-layers and their bands in the T spectra (Fig. 6(c)) and its increasing
influence with an increase in filling fraction fH .

From the fluctuation distributions, shown in Fig. 4, the fluctuation
type 8 (Fig. 4(h)) was selected and used to calculate the T spectra for
two values of fH , a low fH = 0.23 and a high fH = 0.71 (see Fig. 7). It
is apparent that the distortion of the PBG occurs without a frequency
shift outside the PBG band in ordered PCs. If the fluctuation type 8
is used, it does not lead to a shift in the PBG as a function of filling
fraction. This conclusion is supported by calculations using fluctuation
type 8, presented in Fig. 5(b), which demonstrates that distortion of
PBGs occurs with increasing order without an associated shift in the
PBG regions.

Figure 4(f) also shows fluctuation type 6, which demonstrates
an approximately even distribution of δ on i around the middle line
(at y = 0), but with a pronounced single fluctuation within one of
the internal walls, namely the 6th wall. The gap map calculated
for this distribution type, is shown in Fig. 5(c). Analysing this gap
map, it is apparent that disorder does not result in a shift of PBGs,
however characteristic narrow-band regions within the PBG regions
have appeared, either in the centre or at the edges.

Let us select a PBG where the influence of thickness fluctuations
is easily observed, for example, in the case of fH = 0.23 and fH = 0.5.
For these values of fH , the well-modulated transmission dips in the
T spectra correspond to the 1st and the 5th PBGs in Fig. 8(a) and
the 1st, 2nd and 4th PBGs in Fig. 8(b). The narrow peaks within
the dips in the T -spectra are related to the defect modes. When these
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Figure 9. Gap map of ordered (black line) and disordered (grey line)
PC with a standard deviation in thickness δ = 0.2 and fluctuation
distribution of type (a) 1 and (b) 6. The value of the fluctuation
δdH = 0.016a is constant for different wall thicknesses.

peaks are close to the PBG edges, they deform the edges of PBGs
and a decrease in the modulation of the amplitude of T within the
PBG region occurs simultaneously. The distortion of the PBG in the
T spectrum caused by thickness fluctuations is more pronounced for
the higher band orders.

From Figs. 6, 7 and 8 it can be seen how the interference fringes
between PBGs change. They increase in the T spectra with an increase
in the PBG order. This is also a result of the introduction of thickness
non-uniformities into the PC. If a simultaneous degradation of the
edges also occurs, then determining the position of the PBG boundaries
becomes problematic. As the band number increases, these effects
intensify, increasing the difficulties in determining the PBG’s width.
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5. CALCULATIONS OF PBG MAP AND T SPECTRA OF
A PC WITH A CONSTANT VALUE OF FLUCTUATION
FOR ALL WALL THICKNESSES

Let us consider a second approach for the introduction of thickness
fluctuation values, using a minimal thickness deviation for all filling
fractions fH . The thickness fluctuations, δdH , from Equation (2) will
correspond to 12, 24 and 48 nm for a = 3 µm and (fH)min = 0.08 (i.e.,
for (dH)min = 0.24 µm) for the corresponding three values of standard
deviation, δ = 0.05, 0.1 and 0.2, respectively. Differences in the
position of the PBG regions on the maps for ordered and disordered PC
with fluctuations of type 1 are negligible up to δ = 0.05 (δdH = 0.004a).
For δ = 0.2 (δdH = 0.016a) these become apparent (Fig. 9(a)) as a
shift of the PBG region edge, this shift is more pronounced for PBGs
of high order. We can explore this further by analyzing the dips in
the T spectra for various values of fH (Fig. 10). In this model, the
same red shift will be observed in all spectra with different values of
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Figure 10. T spectra of ordered (black line) and disordered (grey
line) PC with fluctuations of type 1 for (a) fH = 0.08, (b) fH = 0.23,
(c) fH = 0.5 and (d) fH = 0.71. The value of the thickness fluctuation
δdH = 0.016a is constant for different wall thicknesses.
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fH . This red shift was discussed earlier in relation to Figs. 5(a) and 6.
These shifts are explained by the nature of the fluctuation distribution,
which increases the filling fraction at the expense of wall thickness.

For the fluctuation type 6, it can be seen from Fig. 9(b) that
changes in the PBG regions are observed as a result of the introduced
fluctuation with δ = 0.2. The boundaries of the regions are not shifted,
but defect peaks have appeared within the PBG’s frequencies. The
same effect is observed in the T spectra (Fig. 11). For example, in
Fig. 11(b) for fH = 0.23, the shape of the 1st PBG is partially distorted
due to the appearance of a defect peak near it’s edge. The presence
of the defect peaks, as discussed earlier, can be explained by the type
of fluctuation 6, in which the dominant thickness deviation is present
near the centre of the PC.

During our investigations of the influence of other types of
thickness fluctuation shown in Fig. 4 (i.e., types 2–5 (Figs. (b)–
(e)), 7–8 (Figs. (c), (d)) and 10–12 (Figs. (l)–(n)) we observed that
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Figure 11. T spectra of ordered (black line) and disordered (grey
line) PC with fluctuation distribution of type 6 for (a) fH = 0.08,
(b) fH = 0.23, (c) fH = 0.5 and (d) fH = 0.71. The value of
the thickness fluctuation δdH = 0.016a is constant for different wall
thicknesses.
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the boundaries of the PBG regions in the disordered structures are
not shifted. Their behaviour is generally similar to that of type
8 (see the analysis of Fig. 5(b) and Fig. 7), because this type
of thickness fluctuation demonstrates broadly similar positive and
negative thickness fluctuations.

Analysing the shift of PBGs regions from Figs. 9(a) and (b), it is
clear that the shift does not depend on filling fraction, i.e., on thickness
of dH . Therefore, only the amount of thickness fluctuation introduced
into the PC influences the bands shift. This conclusion is confirmed by
the increase in the PBG shift noted above, together with an associated
shift in the spectra, as a consequence of increasing thickness fluctuation
from δdH = 0.004a to 0.036a (Fig. 6).

6. CONCLUSION

A combination of mathematical modelling and gap map analysis allows
the influence of randomly induced thickness fluctuations in photonic
crystal components on the distortion of photonic band gaps in one-
dimensional PCs to be investigated. The investigation of band gaps
in the transmission spectra provides further, detailed information
on the influence of thickness fluctuations. In this study, 1D PCs
based on microstructured semiconductors (Si-Air), with a range of
filling fractions and PBGs of different order were investigated. Three
characteristic types of fluctuation distribution and two ratios of the
fluctuation parameters to the wall thicknesses were considered. By
introducing thickness disorder into the PC, and depending on the type
of fluctuation distribution, a shift of the PBGs, the appearance of
defect modes, a decrease in the amplitude modulation of transmission
within the PBG and an increase in interference fringe modulation
between PBGs were observed.

We established that the change in the PBGs depends on the
magnitude of the fluctuations and increases with an increase in the
order of the PBG. Introducing thickness non-uniformity into the PC
of up to 0.004 from value of lattice constant a for different types of
fluctuation distribution has a negligible effect on either the position or
the shape of the 1st and nearest PBGs. The approach presented here
enables the determination of the fabrication tolerances required for the
geometrical parameters of the PC structure and allows optimisation of
the design of these structures for the utilisation of high order PBGs,
including structures with PC components with quarter wavelength
optical thicknesses. This approach is also useful for the solution of
the complementary task, the determination of the parameters of the
PC structure from it’s reflection/transmission spectra.
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Finally, we note that this study of thickness fluctuations in pho-
tonic crystals can be applied to the design of any one-dimensional, pho-
tonic, micro- and nano-devices such as photonic crystal mirrors [23–25],
tunable bandpass filters [26, 27], polarizers [28, 29] and multichannel fil-
ters [30] for application over a wide electromagnetic spectral range. We
note that omnidirectional reflectors can be obtained even for a high op-
tical contrast 1D PC (e.g., grooved Si) by introducing a third regular
component into the structure (for example by oxidation of Si walls, see
Ref. [19]). We believe that the approach suggested in this paper can
be extended to these types of structures with some modification.
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