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Abstract—In this paper, a new method to analyze arbitrary shaped
microstrip patch antennas is introduced. This method uses the
multiport network model (MNM) together with a mathematical
approximation called the “Padé approximation” such that the antenna
input impedance obtained from the multiport analysis is approximated
as a rational function of polynomials. Then, the roots of the
denominator of this rational function are used to determine the antenna
resonant characteristics. This new method is more time efficient than
the standard multiport analysis because the evaluations are made at
a single frequency. In the standard method, evaluations are made at
multiple frequency values throughout the analysis. Results obtained
by the new method are verified using the examples of rectangular and
slot loaded compact microstrip patch antennas. Computational efforts
for both procedures are presented.

1. INTRODUCTION

Analytical and numerical methods are used for the analysis of
microstrip patch antennas. Some common analytical methods are
the transmission line model [1–4], cavity model [5, 6], and multiport
network model (MNM) [7, 8]. Numerical methods are the method of
moments (MoM) [9–12], finite element method (FEM) [11, 12], and
finite difference time domain method (FDTD) [13, 14]. The multiport
network model can be considered an extension of the cavity model
where the substrate is treated as a cavity surrounded by a perfect
electric conductor (PEC) on the top and bottom planes, and a perfect
magnetic conductor on side surfaces. Based on these assumptions, a
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2D boundary value problem whose Green’s function is expressed as a
series expansion is defined. This analytical expression is a function
of frequency and its terms are the modes of the resonator. In the
multiport model, ports are placed around the patch periphery, and
the Green’s function is calculated at these multiports. During these
calculations, the Green’s function infinite series is truncated to the
extent that the summation is sufficiently convergent to the true value.
Once the Green’s function is determined, the multiport impedance
matrix can be obtained [15–17]. This impedance matrix defines the
mutual and self-impedances among the ports and can be obtained
analytically only for regularly-shaped patches such as rectangular,
triangular and circular patches. For irregularly-shaped patches, such
as those with slots, segmentation or de-segmentation methods are
used [18–20]. In these methods, the overall patch geometry is divided
into segments of regular shapes, and the composition or deduction of
these regularly shaped patches is considered for segmentation or de-
segmentation respectively.

Since the multiport network model is based on the solution of
the Green’s function with boundary assumptions, it offers accuracy
and simplicity for the antenna analysis. However, it is not time
efficient in wide band frequency simulations because the Green’s
function and the impedance matrix elements must be calculated at
many frequency sweep values. In this paper, in order to speed up the
multiport frequency analysis of microstrip patch antennas, the “Padé
approximation” is used to approximate the antenna input impedance.
The Padé approximation is a rational function of polynomials whose
coefficients are obtained from the power series expansion of the
approximated function [21]. To the author’s knowledge, the application
of Padé in microstrip structures is not new, and has been reported in F.
Ling’s paper [22] where the MoM solution of the microstrip structures
is analyzed, and the frequency analysis over a broad band is expedited
by the asymptotic waveform evaluation (AWE). In AWE, the power
series coefficients (moments) are evaluated from a recursive relation,
and then the Padé approximation is applied. The combination of AWE
with MNM have been reported in several other papers as well. For
example, the application of AWE to partitioned circuits is analyzed
in [23]. The AWE technique is applied to interconnect structures
characterized by sampled data in [24]. Nonlinear interconnect circuits
are analyzed by the extension of the AWE technique in [25]. In this
paper, the Padé approximation is used with the multiport network
model specifically for the analysis of arbitrarily shaped microstrip
patch antennas. In the multiport network model, the input impedance
can be Padé approximated because the impedance expression is a
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function of frequency and can be differentiated at a single expansion
frequency. As a result, the frequency characteristics can be obtained
by the roots of the denominator polynomial of the approximation
which correspond to the antenna resonant frequencies (singularities
of the input impedance). Part of this theory was presented earlier in
a conference paper [26] where the impedance matrix elements were
“vector Padé” approximated. In vector Padé approximation, the
impedance matrix elements are approximated as rational functions
with a common denominator. The poles of this approximation also
yield antenna resonant frequencies, however the theory is applicable
practically only for a few number of ports in the multiport model.
Furthermore, the Padé approximation (scalar Padé) which is used in
this paper is faster in the sense that it approximates the impedance
port element only.

This paper presents the theory of multiport network model
and segmentation in Sections 2 and 3, respectively. The theory
of Padé approximation is presented in Section 4. The proposed
method, Padé approximating the input impedance obtained from the
multiport network model is described in Section 5. The validity and
computational time advantage of the proposed method are presented
in Section 6 through the examples of a rectangular and a slot loaded
compact microstrip patch antenna.

2. THE MULTIPORT NETWORK MODEL

In the multiport network model for analyzing microstrip patch
antennas, the patch is analyzed as a two-dimensional planar network.
Multiple ports are located along the periphery. The length of each
port should be small so that the field over this length is uniform. The
number of ports depends on the field distribution along the edges.
A greater number of ports should be chosen when there is a larger
variation in the field distribution.

The impedance matrix corresponding to the ports is obtained by
the Green’s function solution. The evaluation of the Green’s function
is based on the cavity model where the region between the patch
and the ground plane is treated as a cavity that is surrounded by
magnetic walls around the periphery and by electric walls from the
top and bottom sides. Since thin substrates are used, the field inside
the cavity is treated as uniform along the thickness of the substrate.
For a rectangular patch as in Fig. 1 with length L and width W , the
Green’s function at an arbitrary point (x, y) for the rectangular patch
with a z-directed electric current source at a point (x0, y0) is given
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Figure 1. Multiport network model of a rectangular microstrip patch
antenna.

by [7, 16, 17].

G(x, y/x0, y0)=
jωµh

LW

∞∑

m=0

∞∑

n=0

σmσncos(kxx)cos(kyy)cos(kxx0)cos(kyy0)
k2

x + k2
y − k2

(1)
where

kx = (mπ)/L , ky = (nπ)/W

σm = 1 if m = 0 , σm = 2 otherwise
k2 = ω2µ0ε0εr(1− jδe)
k2

mn = k2
x + k2

y

where h is the substrate thickness, εr the effective dielectric constant,
and δe the loss tangent of the substrate.

Multiport impedance matrix elements Zij between the ith and the
jth port of the patch are evaluated from the Green’s function as

Zij =
1

WiWj

∫

Wi

∫

Wj

G(xi, yi/xj , yj)dsidsj (2)

where (xi, yi) and (xj , yj) denote the coordinates of the center point of
the ith and jth ports of widths Wi and Wj , respectively.

The integral in (2) yields [7, 16, 17]

Zij =
jωµh

LW

∞∑

m=0

∞∑

n=0

σmσn cos(kxx) cos(kyy) cos(kxx0) cos(kyy0)
k2

x + k2
y − k2

· sinc(kxWi/2) sinc(kyWj/2) (3)
It should be noted that the spectral wave numbers kx and ky

that appear in the argument of cos and sinc functions refer to the
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orientation of the ports. Therefore, (3) corresponds to a matrix entry
where the ith port is along x-direction and the jth port is along the
y-direction. Once the Z-matrix of the rectangular patch is obtained,
the circuit configuration of any arbitrary shape patch can be analyzed
by employing the segmentation method. In this method, the circuit
pattern is obtained by combining the segments of regular shapes such
as rectangles whose Green’s function solutions are given in (1).

3. SEGMENTATION METHOD

For regularly shaped patches, rectangular, triangular or circular, the
Green’s function corresponding to the geometry under consideration
is well known. In the analysis of irregular patches, whose Green’s
functions are not analytically available, the segmentation and/or
desegmentation techniques are used in conjunction with the multiport
analysis [18–20]. “Irregular shapes” refers to the microstrip antenna
whose patch is cut in different shapes in order to fulfill a specific
antenna property such as compactness, wideband characteristics and
multiresonant operation.

Consider the patch structure shown in Fig. 2 where n segments
are connected to create the overall patch geometry. In this network of
n-segments, Z-matrices can be related to port voltages and currents
by

[
V̄p

V̄c

]
=

[
Z̃pp Z̃pc

Z̃cp Z̃cc

] [
Īp

Īc

]
(4)

where V̄p, Īp and V̄c, Īc are the voltages and currents at the p
external and c internal ports. Furthermore, there are interconnection
constraints on the c ports such that the voltages and currents are equal
in magnitude, and the currents are in the opposite direction at the two

Figure 2. Segmentation of n-segments, α1, αn, to form the overall
shaped patch segment.
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connected ports. These constraints can be expressed as
Γ̃1V̄c = 0̄ (5)

Γ̃2Īc = 0̄ (6)
where the Γ1 and Γ2 matrices describe these relations. In the Γ1 and
Γ2 matrices, each row contains zeros that indicate a non-connection
except the two columns that correspond to the two connected ports.
Thus, the two nonzero entries in a row are 1 and −1 for matrix Γ1 and
both 1 for matrix Γ2. Combining (4), (5), and (6), one can obtain the
relation between Ip and Ic as[

Γ̃1Z̃cc

jΓ̃2

]
Īc =

[
−Γ̃1Z̃cp

0̃

]
Īp (7)

Substituting the value of Īc, obtained from (7) into (4), we get the
overall network impedance matrix as

Z̃p = Z̃pp − Z̃pc

[
Γ̃1Z̃cc

jΓ̃2

]−1 [
Γ̃1Z̃cp

0̃

]
. (8)

When the excitation port is defined as the first port of the
matrix Zp, then Zp11 is the input impedance of the antenna. Once
the input impedance of the antenna is obtained, parameters such as
the input reflection coefficient and the voltage standing wave ratio
(VSWR) can be evaluated easily. The effect of fringe fields from the
edges, surface waves and radiated waves are incorporated in the so
called “edge admittance networks” containing equivalent impedances
that are connected with the final antenna edge ports. Among the
several formulations available in the literature to describe the edge
admittances, a very common technique which is also used in this
paper, is to increase the edge lengths by the “effective edge length”
equivalent [17] to account for the stored energy in fringe fields.

In the following section, the Padé approximation is described for
the purpose of approximating the elements of the impedance matrix
in (8) as a rational function of polynomials.

4. THE PADÉ APPROXIMATION

The Padé approximant of a function f(s) is the ratio of two polynomials
with a numerator of degree p and a denominator of degree q, and
denoted by the notation [p/q]. The approximation is obtained by
equating the approximated function f(s) to its power series expansion
up to a degree (p + q) [21], as shown in the following equation

f(s) ∼= [p/q]=
a0 + a1s + . . . + aps

p

b0 + b1s + . . . + bqsq
= M0 + M1s + . . . Mp+qs

p+q (9)
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where M ′
ns are the nth moments of the series. By matching the two

sides of (9), the coefficients in the numerator and denominator of
the Padé approximation can be obtained from the following system
of linear equations



Mp Mp−1 . . . Mp−q+1

Mp+1 Mp . . . Mp−q+2
...

...
...

...
Mp+q−1 Mp+q . . . Mp







b1

b2
...
bq


 = −




Mp+1

Mp+2
...

Mp+q


 (10)

and the numerator coefficients can be obtained from

ar =
r∑

j=0

Mr−jbj , r = 0, 1, . . . , p. (11)

If the power series is expanded at s0, then the complex variable s
in (9) has to be replaced by (s− s0) and the moments in (10) and (11)
have to be evaluated at s = s0.

The Padé approximation in (9) can be applied to the impedance
matrix entries of the multiport network model of a rectangular
microstrip antenna given in (3) by replacing the jω term with the
complex variable s. In the more general case of any arbitrary shaped
microstrip patch antennas, including those with segmented structures,
the procedure for obtaining the Padé approximation for the impedance
elements is explained in the following section.

5. FORMULATION OF THE NEW PROCEDURE

Starting with the segmentation formulation for irregularly shaped
microstrip patch antennas, the overall impedance matrix can be
obtained from the sub-matrices of regular segments by

Z̃p = Z̃pp − Z̃pc

[
Γ̃1Z̃cc

jΓ̃2

]−1 [
Γ̃1Z̃cp

0̃

]
(12)

In order to Padé approximate the elements of the matrix Zp in
(12), its moments have to be known. Analytically, these moments
can be obtained from the moments of the sub-matrices Z̃pp, Z̃pc,
Z̃cc, Z̃dd, Z̃cp. Since these sub-matrices belong to regularly shaped
segments, their derivatives can be obtained through the Green’s
function analysis. Assuming all the impedance calculations and the
moments are evaluated for the complex variable s = jω, then the nth
derivative of the overall matrix can be written as

dn

dsn
(Z̃p) = (Z̃pp)(n) −

(
Z̃pc

[
Γ̃1Z̃cc

jΓ̃2

]−1 [
Γ̃1Z̃cp

0̃

])(n)

(13)
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where (n) stands for the nth partial derivative with respect to s.
In (13), the nth derivative of the 2nd term on the right hand side
can be written in the matrix form by the triple product rule as

(
Z̃pc

[
Γ̃1Z̃cc

jΓ̃2

]−1 [
Γ̃1Z̃cp

0̃

])(n)

=
n∑

k=0

k∑

p=0

(
n
k

)(
k
p

)
Z̃(p)

pc

.

([
Γ̃1Z̃cc

jΓ̃2

]−1
)(k−p)([

Γ̃1Z̃cp

0̃

])(n−k)

(14)

where the terms
(

n
k

)
and

(
k
p

)
are the binomial coefficients.

Furthermore, the derivative of the inverse matrix
[
Γ̃1Z̃cc

jΓ̃2

]−1

(15)

can be evaluated by using the following matrix relation
d

ds
(Z̃−1) = −Z̃−1Z̃(n)Z̃−1 (16)

When the derivatives are obtained analytically for the impedance
matrix Zp, the moments required for Padé approximation at the (i, j)th
port can be evaluated from

Mn(ij) =
Z

(n)
p(ij)(s)

∣∣∣
s=s0

n!
(17)

Once the elements of multiport impedance matrix Zp are Padé
approximated, the input impedance can be obtained from the
corresponding feed port. By using the poles of the approximated
input impedance expression, the antenna resonant characteristics can
be determined.

The validity and time efficiency of the new method in comparison
to the standard multiport analysis are experimented in the next
section. First, a rectangular microstrip patch antenna with a single
segment is analyzed. Second, a more complex slot loaded compact
microstrip patch antenna with multiple segments is analyzed.

6. EXPERIMENTAL RESULTS

6.1. Example 1

Consider the rectangular patch configuration with its multiport model
shown in Fig. 3. The patch dimensions are L = 8 cm, W = 10 cm, and
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Figure 3. Multiport model of the rectangular patch antenna.

the substrate parameters are εr = 4.3, thickness h = 0.159 cm and loss
tangent = 0.02. The feed port is located in the middle of the patch
width and 0.1 cm away from the edge. The programming software
Matlab is used for both the multiport analysis and the proposed
method.

The simulation results are shown in Fig. 4 in the frequency interval
0.5–1.5GHz. In Fig. 4(a), the x axis of the graph is the expansion
frequency of the approximation, and the y-axis is the frequency
obtained by the poles of the approximation of order [3/4]. The poles
are evaluated and sorted by the algorithm called the “LAPACK —
Linear Algebra Package” employed in Matlab. In this pole order,
the last pole is observed to yield the best convergence. Hence, the
3rd and 4th pole frequencies are plotted, where it can be seen that
the poles converge to required resonant frequencies in a band of
the expansion frequency. Also, multiple poles converge to the same
resonant frequency in the bandwidth of multiple pole convergence. In
Fig. 4(b), the input reflection coefficient S11(dB) obtained from the
input impedance approximation is plotted against the frequency with
three different expansion points. In Fig. 4(c), the new method and the
standard multiport analysis results are compared.

In Fig. 5, the radiation pattern is shown at 0.88 GHz in the E-
plane (φ = 0◦) and H-plane (φ = 90◦). The radiation is in the
broadside direction, and HPBW in the E and H planes are 170◦ and
85◦ respectively. The co-polar components are Eθ in the E-plane and
Eφ in the H-plane. The cross-polar components, Eφ in the E-plane
and Eθ in the H-plane (not shown in the figure), are 34 dB and 40 dB
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(a)

(b) (c)

Figure 4. Rectangular microstrip patch antenna analysis. (a) Pole
frequencies of the Padé approximated input impedance for order [3/4].
(b) Frequency analysis of the new method. (c) Comparison with mnm.

Figure 5. Normalized radiation pattern of the RMSA at 0.88GHz;
(—) E-plane co-polar and cross-polar and (- - -) H-plane co-polar.

less than the co-polar fields in the corresponding E and H planes.
Computational efforts in the frequency analysis of the rectangular

patch antenna are presented in Table 1. The new method offers a
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Table 1. Computational efforts in evaluating the frequency response
of the rectangular patch antenna in the range 0.5–1.5GHz for the
standard MNM and the padé approximated MNM.

Number of Procedure of the Procedure of the
Evaluations Standard MNM Approx. MNM

(in seconds) (in seconds) for F[3/4]

100 0.11 -

1000 0.30 -

1 - 0.05

significant simulation time advantage over the conventional multiport
analysis. The reason is that the Green’s function and the impedance
matrix elements are evaluated only once at the expansion frequency of
the approximation. The weakness of the proposed method is that in
order to converge to the desired resonant characteristics, the expansion
frequency must be chosen close to the actual resonant frequency of the
antenna. Therefore, a prior expectation of the frequency characteristics
is required before the analysis. To compensate this weakness and
enable wider frequency response, higher order approximations can be
used. As can be seen from Fig. 4(a), high order approximations provide
more poles to contribute to the convergence, and the convergence
bandwidth increases. However, in such a case, the computation time
required to evaluate moments also increases. If we call the degree of the
numerator and denominator of the approximation p and q respectively,
p+q evaluation of the moments is necessary to find the approximation.
Therefore, if the time required for p + q evaluations exceeds the
computation time for the standard analysis, the time advantage of
the proposed method disappears. In view of all these considerations,
to obtain a precise formulation for the simulation time is difficult.
Nevertheless, the approximation order [3/4] yields approximately a
20% multiple band of convergence and the frequency simulations show
good agreement with the standard method.

In the next example, a slotted compact patch antenna is used.
Because of the slot on the patch, this antenna is considered to be
irregularly shaped where the analytic solution of the Green’s function
is not available. Therefore, the multiport model of the patch contains
segmented structures.
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6.2. Example 2

A slot loaded compact microstrip patch antenna can be obtained from
a rectangular microstrip antenna by cutting a slot from one of its
non radiating edges. The purpose of this antenna is to obtain lower
resonant frequencies at small dimensions. The resonant frequency is
decreased because the surface currents travel longer distances due to
the slot. Since the Green’s function solution is not readily available,
the segmentation method can be used by utilizing three rectangular
segments. The multiport model of the patch is shown in Fig. 6 with
dimensions L = 6 cm, W = 4 cm, Ws = 2 cm, Ls = 2 cm, x = 0.25 cm
and the substrate parameters εr = 2.33, h = 0.159 cm and loss tangent
= 0.002. This is the same antenna simulation used by Kumar and
Ray in [17], where the resonant frequency as that of the rectangular
patch without the slot is 1.60GHz and, when the slot is introduced,
the resonant frequency is decreased to 1.14 GHz.

The simulation results are shown in Fig. 7. In parts (a) and
(b), the pole frequencies at order [3/4] are plotted with respect to
the expansion frequencies in the frequency range 1–1.25 GHz and 0.8–
3GHz respectively. The resonant frequencies are indicated by dot-lines
at 1.14, 2.35 and 2.70 GHz. In part (c), the frequency analysis results
show that the new method is accurate provided that the expansion
frequency is within the bandwidth of convergence. In Fig. 8, the
radiation pattern is shown. The cross-polar electric field components
are increased due to the slot, yet they remain 16 dB and 28 dB less
than the corresponding co-polar fields in the E and H planes. The
radiation is broadside, and the HPBW in the E and H planes are 96◦
and 90◦ respectively.

Time efforts are shown in Table 2. Where the advantage of the
proposed method is more significant than the one in the previous

Figure 6. Multiport model of the slot loaded compact microstrip
patch antenna.
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(a) (b)

(c)

Figure 7. Slot loaded compact microstrip patch antenna analysis. (a)
Pole frequencies of the Padé approximated input impedance for order
[3/4]. (b) Pole frequencies in the range 0.8–3 GHz. (c) Frequency
analysis of the new method in comparison with mnm.

Figure 8. Normalized radiation pattern of the slot loaded compact
microstrip patch antenna at 1.14GHz; (—) E-plane co-polar and
crosspolar and (- - -) H-plane co-polar and cross-polar.

example. The reason is that in multiport analysis there are extra
evaluations of the Green’s function and the impedance matrices for
the segmented structures at each frequency step.
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Table 2. Computational efforts in evaluating the frequency response
of the slot loaded compact MS antenna in the range 1–1.25 GHz for
the standard MNM and the padé approximated MNM.

Number of Procedure of the Procedure of the
Evaluations Standard MNM Approx. MNM

(in seconds) (in seconds) for F[3/4]
100 9.32 -
1 - 0.39

7. CONCLUSION

A new method for the analysis of arbitrary shaped microstrip patch
antennas has been proposed. Through the examples of rectangular
and slot loaded compact microstrip patch antennas, the new method is
observed to be more time efficient than the standard multiport analysis,
because it uses a single rational function in order to obtain the antenna
frequency characteristics. The major limitation of the method is the
restricted convergence band for determining the expansion frequency.
Although higher order approximations can be used to enlarge this
bandwidth, the simulation time advantage starts to diminish as
more calculations of derivatives are involved. Alternatively, multiple
expansion points can be used to enlarge the convergence band in the
analysis [22]. The efficiency regarding the two methods depends on
the frequency band of the analysis. As the frequency band increases,
the multiple expansion point approach may be preferred because the
evaluation of higher order derivatives causes numerical instability
problems besides the decrease in time efficiency.
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