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Abstract—A hybrid technique for the analysis of pyramidal and
conical horn antennas is presented based on an exact vector Dirichlet
to Neumann (DtN) mapping mathematical formalism. The transition
from the feeding waveguide to the radiating aperture is analyzed by
using the mode matching technique (MMT) employing a stepped-
waveguide approach. Love’s field equivalence principle is employed
for the definition of equivalent electric and magnetic current densities
at the horn aperture. Explicitly, these currents are located at a
plane parallel to the aperture but slightly shifted inwards in order
to implement an offset Moment Method for their discretization, which
is free of integral singularities. The unbounded area field generated
by these sources is enforced to be continuous with the internal mode
matching field by strictly following DtN principles. Besides that, this
procedure mimics a By-moment approach ensuring the decoupling of
the required number of modes from that of the sources discretization
degrees of freedom. Finally, the implemented hybrid method is
validated against published experimental and numerical results for
a number of pyramidal and conical horn antennas including various
corrugated geometries.

1. INTRODUCTION

The renewed high interest in horn antennas and especially in the
multimode soft or hard horns [1, 2], placed the urgent requirement
for fast and robust methodologies capable of accurately estimating
both their far, near and internal fields as well as quantities related
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to them, like the input impedance. Additionally, the modern trend
toward miniaturization and broadbanding is addressed with the design
of compact horn antennas [1, 3] making the need for analysis methods
accurately accounting for the field scattering at the horn aperture
more important. This necessity is justified by their electrically small
aperture which intensifies the scattering phenomena. It is toward
the development of such a method that the present contribution is
directed. A lot of works are devoted to horn antenna analysis during
the last decades. However, most of them do not take into account
the discontinuity between the horn aperture and the free space. For
the transition from the small waveguide cross section to the larger
radiating aperture a stepped waveguide approach can be used. This
model is analyzed by employing the mode matching technique (MMT),
since its numerical stability is well established. Different approaches
for the analysis of the discontinuity between the horn aperture and
the free space have been used, [3–7]. These are mainly based on the
mode matching to analyze the horn interior and employed moment
method to model its aperture. This paper aims at the establishment of
a hybrid MMT and an offset moment method technique for the analysis
of the horn antenna. The stepped waveguide model along with the
MMT for the analysis of the waveguiding part of the horn is employed.
The aperture-free space discontinuity is described by an offset moment
method. The latter provides a non-vanishing distance between sources
and observation-collocation points, leading to a stable numerical code.
It is noticed that the number of sources will be made independent
from the number of modes required in the field expansion in the last
waveguide section. Due to the above the continuity conditions are
imposed first in a point matching scheme and then by integrating
over the aperture. This procedure strictly follows the mathematical
formalism of Dirichlet-to-Neumann map. Adopting this approach
makes the present method mathematically and numerically rigorous
and this exactly constitutes the major improvement and the original
contribution over our previous work [9, 10]. The metallic horn walls
are assumed infinitely thin, or equivalently the possibly significant
contribution of the current flowing on the outer surface of the walls
is omitted herein in order to first establish the above concept. Note,
that this approximation constitutes the usual practice in horn antennas
with only a few exceptions like Liu et al. [5]. However, accounting for
these currents in the present formulation constitutes our next priority.
Besides these, the proposed procedure is applicable to any slotted leaky
waveguide or any horn geometry, however this work will be focused on
horn antennas.
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2. FORMULATION

2.1. Mode Matching Analysis of the Horn Interior

Figure 1 illustrates the geometries of typical pyramidal and conical
horn antennas. Following the standard MMT approach [8], the
horn antenna is approximated by a series of waveguide sections and
step junctions (Figure 2(a)). A junction of two waveguides with
different cross section is considered in Figure 2. For each junction
(see Figure 2(b)), a common axis of symmetry (axis-z) for the

(a) (b)

Figure 1. Two typical horn antennas (a) pyramidal and (b) conical
horn antenna.

(a)

(b)

(c)

Figure 2. (a) Step waveguide approximation of a horn antenna.
(b) Step junction of waveguides with different cross-section and
(c) cascaded scattering matrices of discontinuities.
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two waveguides with perfectly conducting walls is assumed. The
electromagnetic field inside each waveguide is expanded into a modal
series, e.g., Marcuvitz [11, p.72]. Modes are numbered in an increasing
sequence as they occur. In order for the field expressions to be
independent of the excitation magnitude each mode eigenfunction
is normalized to the mode power at the junction, as defined by
integrating the Poynting vector over the junction surface. Note that for
a propagating mode this quantity is real and it represents the power
flowing through the junction. In contrary for an evanescent mode
this quantity is imaginary corresponding to the energy stored around
the junction. Hence, after normalization the mode power (Pp) at the
junction is given by [12, p.15] as:

Pp =
1
2

∫∫
S

(
Ep × H∗

p

)·dS=

⎧⎨
⎩

1W for propagating modes
+ jW for evanescent TE modes
− jW for evanescent TM modes

(1)

The normalization coefficient Np is defined as Np = 1
/√

Pp and it
can be calculated from [11, p.67, 73, 75] for the rectangular and circular
waveguide. In this manner the transverse electromagnetic field in each
waveguide section is represented by an infinite sum of its eigenmodes:

Et =
∞∑

p=1

[
ape

−γpz + bpe
γpz
] · Y −1/2

p et,p (2)

Ht =
∞∑

p=1

[
ape

−γpz − bpe
γpz
] · Y +1/2

p ht,p (3)

where ap and bp are the forward and backward traveling wave phasors,
et,p, ht,p the transverse normalized vector electric and magnetic field
eigenfunctions for pth-mode, γp the complex propagation constant,
and Yp the characteristic admittance for the pth-mode. A classical
mode-matching technique has been employed, as described in [12],
which finally yields the generalized scattering parameters (S) that
fully characterize the junction. These S-parameters can be expressed
in a general form in terms of integrals over the junction aperture
which represents the coupling between the smaller section waveguide
pth-mode and the larger waveguide qth-mode (Qpq) and vice-versa.
According to [12, p.16] these read:

[S11]pq =
(
[Q]pq [Q]Tpq + [I]

)−1 (
[Q]pq [Q]Tpq − [I]

)
(4)

[S12]pq = 2
(
[Q]pq [Q]Tpq + [I]

)−1
[Q]pq (5)
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[S21]pq = [Q]Tpq

(
[I] − [S11]pq

)
(6)

[S22]pq = [I] − [Q]Tpq [S12]pq (7)

The elements of the coupling [Q]pq matrices are known as coupling
integrals and result from the application of the field conditions at the
junction and depend on the particular waveguide type and its shape.
These can be expressed in terms of the electric e and the magnetic h
modal eigenfunctions.

[Qpq] =
[
Qe

pq

]
=
[
Qm

qp

]T (8)

Qe
qj =

∫∫
S

(
eII

q × hI,∗
j

)
· ẑdS, j = 1, 2, . . . P (9)

where S is the common area of the two waveguides at the junction.
Since modes can be either TE or TM, the combinations (p, q)
in (8) denote coupling between these modes. Integrals of (8)
involve trigonometric and Bessel functions for rectangular and circular
waveguide sections respectively, with different orders and arguments
and they require an increased computational effort, especially for
microwave network synthesis purposes. Once the scattering matrices
of the discontinuities are known, the overall scattering matrix of the
stepped waveguide part [SH ], is obtained by building up a system of
equations comprised of a series of cascaded waveguide section — step
junction S-parameters as depicted in Figure 2(c).

There are two factors which affect the accuracy of the Mode
Matching Technique. The first is the number of steps in which the
horn is divided and the second is the number of modes considered
in each waveguide section. Namely, the infinite sum of (2), (3) must
be truncated to a finite number high enough to ensure convergence.
According to [5] the maximum length of the waveguide sections must
be limited to less than λ/32, while the number of modes in each section
should be proportional to its transverse dimension. It is noticed that all
coupling integrals involved in MMT are evaluated analytically, in our
previous work [8] for circular waveguide discontinuities, while these are
given in Bornemann’s textbook [12, p.38] for the rectangular waveguide
discontinuities, yielding fast and efficient computations.

2.2. Horn Aperture Discontinuity

Usually, in most of Mode Matching Techniques the aperture is assumed
to be perfectly terminated for all the incident waveguide modes. This
approximation causes inaccuracies, especially in the antenna input
impedance, which becomes larger when the electrical dimensions of
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the aperture are small. To overcome this problem, the aperture
discontinuity is characterized as an imperfect junction between the
horn and free space while the field outside the horn is assumed to be
generated by the aperture equivalent sources.

2.2.1. Field Expansion Outside the Horn

The aperture antenna problem is shown in Figure 3(a), where
equivalent sources are defined for the pyramidal and conical horn case.
According to Love’s equivalence principle, e.g., [13, p.71]: “The field
in the unbounded area outside the horn can be determined in terms of
equivalent electric (JS) and magnetic (MS) current densities located
on the aperture surface” (Figure 3(a)). These equivalent sources are
defined in terms of the tangential field components as:

JS = ẑ × Hα and MS = −ẑ × Eα (10)

where Eα and Hα are the interior to the horn electric and magnetic
fields as defined on its the aperture surface-S. According to [13] the
equivalent sources can be restricted only on the horn aperture surface-
S.

However, the above approach does not take into account the
thickness (assumed infinitely thin) of the horn metallic walls, which
are much greater than the electromagnetic wave penetration depth
(δs < 1µm in the microwave band). A field equivalence scheme taking
horn wall thickness into account has been elaborated by Catedra [24].
Following a similar procedure one may arrives at a slightly different
equivalent geometries than those presented in Figure 3, which yields

(a) (b)

Figure 3. (a) Application of the field equivalence principle for horn
antennas and (b) equivalent electric and magnetic sources on the offset
surface S′.
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(a) (b) (c)

Figure 4. Illustration of the field equivalence principle for a horn
antenna when the metallic thickness is considered. (a) Current
densities flowing on the walls and equivalent aperture currents.
(b) Equivalent internal field model. (c) Equivalent external-unbounded
field model.

a somehow larger equivalent surface for the external (unbounded)
region fields as presented in Figure 4. Comparing Figures 3 and 4
it is realized that the internal current densities (JSi) as well as the
aperture equivalent currents are taken into account in both schemes
in the same manner. The former (JSi) is considered within the mode
matching internal field formulation, while the equivalent currents (Jeq,
Meq) are accounted through the field continuity conditions across the
aperture following the Dirichlet-to-Neumann map-formalism. Figure 4
clarifies the necessity to include the electric density flowing on the
horns outer surface (JSo) in the external-unbounded field formulation.
This is in accordance with the findings of Liu et al. [5] and these outer
current is expect to contribute significantly to the radiation pattern at
wide angles and in the rear hemisphere. Although, a highly accurate
formulation should take into account the current densities flowing on
the horn outside walls, the present effort will be focused on the thin
walls assumption. This restriction is necessary in order to reduce
the formulation complexity, aiming mainly at the validation of the
concept of “exactly enforcing the field continuity conditions at the
horn aperture”, through the DtN formalism. It is however understood
that some inaccuracies in the radiation pattern sidelobes and the back
lobe is expected, along with some minor effects on the aperture field
distribution and the horn input impedance. Taking these outer surface
currents into account it is indeed important and constitutes the next
step of this research effort.

The establishment of the present method is based on the field
equivalence principle and a small translation of the equivalent sources.
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Thus the electromagnetic field in free space region-I (which will be
symbolized by the index I) can be described by equivalent electric
(JS) and magnetic (MS) sources, which are located on a surface S′
which is displaced by δz inside to the horn aperture as shown in
Figure 3(b) or in Figure 4. Hence, the field (Eα,Hα) is established by
the mode matching method within the last waveguide section, which
defines the equivalent current densities (JS, MS) at the aperture. In
turn these current densities will be exploited in order to establish the
electromagnetic field in the unbounded domain outside the horn. From
a first careless point of view, one would consider a general solution
of Maxwell equations in the unbounded region, so that it obeys the
radiation condition at infinity, and impose the appropriate boundary
conditions at the aperture for both JS and MS. This is equivalent
to imposing the continuity conditions across the aperture for both
the tangential magnetic and electric field between the field expansions
inside and outside the horn. While this approach sounds logical and
in accordance with the electromagnetism principles, imposing both
tangential electric and tangential magnetic field continuity leads to
an overdetermined system of equations. A more careful mathematical
approach reveals that indeed both field continuity conditions should
be enforced, but this should be carried out by strictly following the
Dirichlet-to-Neumann map (DtN) mathematical formalism. According
to DtN the field solution in the unbounded domain should be first
established based on Dirichlet data on the aperture. In turn this
solution must be differentiated to establish the DtN map and finally the
continuity of the derivatives normal to the aperture (Neumann data)
should be impose. The question now is which are the Dirichlet data on
the horn aperture? The electric (JS) or the magnetic (MS) equivalent
current densities or respectively the tangential magnetic (Hα) or the
tangential electric field (Eα). One could identify the electric field as
Dirichlet data inside the horn, since its walls are assumed perfect
electric (PEC), thus imposing Dirichlet boundary conditions on the
electric field. Hence the required Dirichlet data on the aperture are
comprised of the tangential electric field Eα or the equivalent magnetic
current density (MS).

In turn the electromagnetic field in the unbounded region outside
the horn can be established with the aid of the classical vector electric
potential F, e.g., Balanis [14, p.260]:

EI = −1
ε
∇× F (11)

HI = −jωF −∇Φm (12)

where the magnetic scalar potential Φm and the electric vector
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potentials F are given by [14, p.311]:

F(r) = ε

∫∫
S′

MS(r′)G
(
r, r′
)
ds′ (13)

Φm(r) =
1
μ

∫∫
S′

ρm(r′)G
(
r, r′
)
ds′ (14)

The equivalent magnetic charge density is related to the corresponding
current density through the charge conservation equation:

ρm = −∇ · MS/jω (15)

Finally G (r, r′) represents the free space Green’s function

G(r, r′) = e−jk|r−r′|
/

4π
∣∣r − r′

∣∣ (16)

where r′ and r are the source and observation position vectors
designated in Figure 5 and (k = ω/c = ω

√
με). The magnetic sources

surface and the relative location of source points and observation points
for pyramidal horn case, are also shown in Figure 5.

2.2.2. Offset Moment Method for the Pyramidal Horn

Expanding the curl of vector potential F, and the gradient of Φm,
from (11) and (12) in the Cartesian coordinate system, the tangential

Figure 5. Definition of the magnetic sources surface (S′) and
collocation point surface (S) for the pyramidal horn antenna.
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to the aperture electric and magnetic field components, are given by
the relations:

EI
x(x, y, z) =

1
ε

(
∂Fy

∂z

)
(17)

EI
y(x, y, z) = −1

ε

(
∂Fx

∂z

)
(18)

HI
x(x, y, z) = −jωFx − ∂Φm

∂x
(19)

HI
y (x, y, z) = −jωFy − ∂Φm

∂y
(20)

Using the moment method approach the surface-S′ carrying the
magnetic sources is discretized into segments in the −x and −y
directions respectively, resulting in patches of sizes Δs = ΔxΔy, as
shown in Figure 6. Each component of surface magnetic current density
on surface-S′, is expanded into a set of overlapping subdomain rooftop
triangular basis functions (Figure 7) as follows:

Mx

(
x′, y′

)
=

N+1∑
n=1

M∑
m=1

Mmn
x Tmn

x

(
x′ − xm

)
(21)

My

(
x′, y′

)
=

N∑
n=1

M+1∑
m=1

Mmn
y Tmn

y

(
y′ − yn

)
(22)

where Mmn
x ,Mmn

y are unknown magnetic current amplitudes and
Tmn

x (x′, y′), Tmn
y (x′, y′) are the triangular subdomain basis functions

Figure 6. Discretization of magnetic sources surface S′ for the inwards
offset rectangular aperture surface.
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(a) (b)

Figure 7. Overlapping subdomain rooftop triangular basis functions
(a) for Mmn

x expansion and (b) for Mmn
y expansion.

which are defined as, [18, p.12]:

Tmn
x (x′, y′) =

⎧⎪⎨
⎪⎩

1 − |x′ − xm| /Δx

Δy
for

xm−1 < x′ < xm+1

yn−1 < y′ < yn

0 elsewhere
(23)

Tmn
y

(
x′, y′

)
=

⎧⎪⎨
⎪⎩

1 − |y′ − yn| /Δy

Δx
for

xm−1 < x′ < xm

yn−1 < y′ < yn+1

0 elsewhere
(24)

Note that, the orientation of the roof top basis functions is
selected so that the current density may acquire the proper increase
according to the edge singularity, [Collin, “Guided Waves”, [21], p.25].
Substituting (21) and (22) into (17)–(20) the tangential electric and
magnetic field components read:

EI
x(x, y, z) = −(z − z′)

4π
N∑

n=1

M+1∑
m=1

xm∫
xm−1

yn+1∫
yn−1

Mmn
y Tmn

y (y′ − yn)
e−jkR

R2

(
jk +

1
R

)
dy′dx′ (25)

EI
y (x, y, z) =

(z − z′)
4π

N+1∑
n=1

M∑
m=1

xm+1∫
xm−1

yn∫
yn−1

Mmn
x Tmn

x

(
x′ − xm

) e−jkR

R2

(
jk +

1
R

)
dy′dx′ (26)
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HI
x(x, y, z) = −jωε

4π
N+1∑
n=1

M∑
m=1

xm+1∫
xm−1

yn∫
yn−1

Mmn
x Tmn

x

(
x′ − xm

) e−jkR

R
dy′dx′ − ∂Φm

∂x
(27)

HI
y (x, y, z) = −jωε

4π
N∑

n=1

M+1∑
m=1

xm∫
xm−1

yn+1∫
yn−1

Mmn
y Tmn

y

(
y′ − yn

) e−jkR

R
dy′dx′ − ∂Φm

∂y
(28)

where R =
√

(x − x′)2 + (y − y′)2 + (z − z′)2 is the source to
observation point distance. Here, primed coordinates denote the source
location while unprimed coordinates denote the observation location.
In this manner the above integral representations for the vector electric
and magnetic potentials are reduced to summations over the discretized
sources distributions. Hence, the final expressions for the electric
and magnetic field at the aperture surface involve only the unknown
weighting factors.

2.2.3. Offset Moment Method for the Conical Horn

For the conical horn, the curl of electric vector potential F , and
the gradient of Φm, from (11) and (12) are expressed in a circular
cylindrical coordinate system. The tangential to the aperture electric

Figure 8. Definition of the magnetic sources surface S′ and collocation
point surface S for the conical horn.
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and magnetic field component, read:

EI
ρ(ρ, ϕ, z) =

1
ε

(
∂Fϕ

∂z

)
(29)

EI
ϕ(ρ, ϕ, z) = −1

ε

(
∂Fρ

∂z

)
(30)

HI
ρ (ρ, ϕ, z) = −jωFρ − ∂Φm

∂ρ
(31)

HI
ϕ(ρ, ϕ, z) = −jωFϕ − 1

ρ

∂Φm

∂ϕ
(32)

The surface carrying the equivalent magnetic sources is discretized
into elementary circular sectors, as shown in Figure 9, with area

Δs =
nΔϕ∫

(n−1)Δϕ

mΔρ∫
(m−1)Δρ

ρdρdϕ = Δρ2Δϕ
(
m − 1

2

)
.

Each component, is approximated by a finite number m × n of
pulse basis functions, with unknown amplitudes Mmn

ρ , Mmn
ϕ .

Mρ

(
ρ′, φ′) =

N∑
n=1

M−1∑
m=1

Mmn
ρ Pmn

ρ

(
ρ′, φ′) (33)

Mφ

(
ρ′, φ′) =

N∑
n=1

M∑
m=1

Mmn
φ Pmn

φ

(
ρ′, φ′) (34)

Figure 9. Discretization of the equivalent magnetic current density
on a surface S′ slightly inside the horn aperture.
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where pulse basis functions are defined as:

Pmn
ρ

(
ρ′, ϕ′) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 for

(
m − 1

2

)
Δρ ≤ ρ′ ≤

(
m +

1
2

)
Δρ

(n − 1)Δϕ ≤ ϕ′ ≤ nΔϕ

0 elsewhere

(35)

Pmn
ϕ

(
ρ′, ϕ′) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 for
(m − 1)Δρ ≤ ρ′ ≤ mΔρ(

n − 1
2

)
Δϕ ≤ ϕ′ ≤

(
n +

1
2

)
Δϕ

0 elsewhere

(36)

and Δρ = a/M , Δϕ = 2π/N (a is the aperture radius).
Substituting (33) and (34) in (29)–(32), the tangential to the

aperture electric and magnetic field components in the unbounded
region I read:

EI
ρ(ρ, ϕ, z) = −(z − z′)

4π

N∑
n=1

M∑
m=1

(n+ 1
2)Δϕ∫

(n− 1
2)Δϕ

mΔρ∫
(m−1)Δρ

Mmn
ϕ

e−jkR

R2

(
jk +

1
R

)
ρ′dρ′dϕ′ (37)

EI
ϕ(ρ, ϕ, z) =

(z − z′)
4π

N∑
n=1

M−1∑
m=1

nΔϕ∫
(n−1)Δϕ

(m+ 1
2)Δρ∫

(m− 1
2)Δρ

Mmn
ρ

e−jkR

R2

(
jk +

1
R

)
ρ′dρ′dϕ′ (38)

HI
ρ (ρ, ϕ, z) = −jωε

4π

N∑
n=1

M−1∑
m=1

nΔϕ∫
(n−1)Δϕ

(m+ 1
2)Δρ∫

(m− 1
2)Δρ

Mmn
ρ

e−jkR

R
ρ′dρ′dϕ′ − ∂Φm

∂ρ
(39)

HI
ϕ(ρ, ϕ, z) = −jωε

4π

N∑
n=1

M∑
m=1

(n+ 1
2)Δϕ∫

(n− 1
2)Δϕ

mΔρ∫
(m−1)Δρ

Mmn
ϕ

e−jkR

R
ρ′dρ′dϕ′ − 1

ρ

∂Φm

∂ϕ
(40)
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where R =
√

ρ2 + ρ′2 − 2ρρ′ cos(ϕ − ϕ′) + (z − z′)2.

2.3. Modeling the Aperture Discontinuity-DtN Overview

The aperture discontinuity can be modeled as a generalized scattering
matrix by enforcing the field continuity conditions at the aperture.
This procedure couples the field expansion in the interior of the
horn (EII,MMT, HII,MMT) with those of the unbounded exterior
region I (EI,e, HI,e), (Figure 10). The continuity conditions should
be applied strictly following the Dirichlet-to-Neumann (DtN) mapping
mathematical formalism. According to [15, 16], the Dirichlet-to-
Neumann map constitutes a nonlocal transparent boundary condition,
which has the inherent property to be “exact”. The procedure followed
for the application of the DtN formulation can be summarized as
follows:

(i) An artificial boundary is introduced as to separate the numerical
solution domain (horn interior) from the unbounded (free space)
area. This surface coincides with the horn walls and its aperture,
(Figure 10). Equivalent electric (JS) and magnetic (MS) current
densities need to be considered only on the horn aperture,
according to Love’s equivalence principle [13, p.71]. In particular
herein the separation surface carrying the equivalent currents is
assumed parallel to the horn aperture S but shifted toward the
interior of the horn by distance δz, comprising the offset surface
S′ in Figure 3(b).

(ii) The electromagnetic field inside the horn (region II) es-
tablished with the aid of the Mode Matching Technique
(EII,MMT, HII,MMT), where inside each waveguide section a su-
perposition of appropriate number of TE and TM modes is con-
sidered. Electric field values can be considered as Dirichlet data,
since the horn walls are assumed as perfect electric conductors.
In turn, the electric field components tangential to the aperture,
define the equivalent magnetic current density (MS) through (10).
Recall again that the equivalent current (MS) is define along the
offset surface S′.

MS = −ẑ × EII,MMT
∣∣
S′ (41)

(iii) A field solution in the unbounded region-I (EI , HI) is established
based on Dirichlet data defined on the artificial separation
boundary. Specifically these being the equivalent magnetic current
density (MS) on the horn aperture. This is equivalent to the
enforcement of the tangential electric field continuity at the
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aperture.
ẑ × EI

∣∣
S

= ẑ × EII
∣∣
S

(42)

For the field solution in the unbounded region-I the Moment
Method (MoM) is applied. But strictly speaking this can be
identified as an offset MoM, since the sources (MS), are located
on the offset surface S′ while field continuity and the accompanied
integration is carried on the aperture surface (S) as shown in
Figure 3(b) and specifically in Figures 5, 8.

(iv) Even though one field solution in the unbounded domain-I is
established based on the electric field values at the aperture,
the offset-MoM of step-3 readily offers both electric (EI) and
magnetic (HI) fields in region-I. This is equivalent to exploiting
the electric field curl equation (differentiating the solution) to
obtain the magnetic field. Hence this corresponds to the
establishment of a Dirichlet-to-Neumann (DtN) map. In turn the
magnetic field values on the aperture represents the corresponding
Neumann data and their continuity must be enforced at this
step. Respectively, the magnetic field (HI) components tangential
to the horn aperture generates the equivalent surface current
(JS = ẑ × HI) which is in turn equal to the tangential magnetic
field inside the horn (ẑ × HII) within the last waveguide section.

ẑ × HI
∣∣
S

= ẑ × HII
∣∣
S

(43)

Recall that adopting the offset approach (JS) is actually located
on the offset surface S′. For this condition to be appropriately
applied, Equation (43) must be integrated over the aperture-
S. However, in order to exploit the eigenfunction orthogonality
properties of the last waveguide section, Equation (43) is
successively multiplied by each waveguide eigenfunction and then
integrated over S.
The above four step procedure yields an equivalent closed system

for the horn antenna, since it provides a generalized scattering
matrix for the horn aperture. From a different point of view the
DtN approach defines an equivalent surface impedance (or radiation
boundary condition) at the horn aperture. The explicit application of
the above DtN approach follows next.

2.4. Explicit DtN Approach

2.4.1. Electric Field Continuity (3rd Step)

The tangential electric field components as obtained from MMT (inside
the horn) and offset MoM (outside the horn), are point-matched



Progress In Electromagnetics Research B, Vol. 40, 2012 117

according to Equation (42) at (n) collocation points, which are located
on the aperture surface-S (Figures 5, 8). This condition can be
explicitly expressed through (2) and (25), (26) for the pyramidal horn
antenna. Likewise, Equations (2) and (37), (38) are used for the conical
horn antenna. The resulting expression offers a relation between
the modal waveguide coefficients aN

p , bN
p and the offset MoM current

distribution coefficients (Mmn
x , Mmn

y ) or (Mmn
ρ , Mmn

ϕ ). But the aim
of this step is the establishment of the field in the unbounded region-
I, thus to define the MoM current coefficients. Hence, the number
of collocation points is selected equal to the MoM degrees of freedom
(n × n) and the continuity equations are enforced on the collocation
points. The resulting system of equations is solved to express the
weighting factors of the current densities, in terms of the coefficients
aN

p , bN
p , of the eigenmode expansion used by MMT for the waveguide

section just before the aperture. Substituting (2), (25) and (26) in (42)
for the rectangular horn case, and (2), (37) and (38) in (42), for conical
horn case, after some algebraic manipulations in the matrices form we
can write:

[
[Mh1 ]
[Mh2 ]

]
n×1

=

⎡
⎢⎢⎣

[Qh1]
... 0

. . .
... . . .

0
... [Qh2 ]

⎤
⎥⎥⎦
−1

n×n

⎡
⎣
[
eII
h2,p

]
[
eII
h1,p

]
⎤
⎦

n×P

[
aII

p + bII
p

]
P×1

(44)

The subscripts h1 → x, ρ and h2 → y, ϕ indicate the
different components of magnetic current in different coordinate system
(Cartesian and cylindrical for rectangular horn and conical horn
respectively). [Mh1 ], [Mh2 ] are submatrices with unknown weighting
factors and [Qh1 ], [Qh2] are submatrices with ij-elements defined as
follows.

For the Pyramidal horn:

Qij
y =

δz

4π

xm∫
xm−1

yn+1∫
yn−1

Tmn
y

(
y′ − yn

)e−jkRij

R2
ij

(
jk +

1
Rij

)
dy′dx′ (45)

Qij
x = − δz

4π

xm+1∫
xm−1

yn∫
yn−1

Tmn
x

(
x′ − xm

)e−jkRij

R2
ij

(
jk +

1
Rij

)
dy′dx′ (46)

And for the Conical horn:

Qij
ϕ =

δz

4π

nΔϕ∫
(n−1)Δϕ

mΔρ∫
(m−1)Δρ

e−jkRij

R2
ij

(
jk +

1
Rij

)
ρ′dρ′dϕ′ (47)
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Qij
ρ = − δz

4π

(n+ 1
2)Δϕ∫

(n− 1
2)Δϕ

(m+ 1
2)Δρ∫

(m− 1
2)Δρ

e−jkRij

R2
ij

(
jk +

1
Rij

)
ρ′dρ′dϕ′ (48)

The index j indicates the magnetic cell while the index i indicates
the observation point on the aperture and δz = z − z′ is the distance
between the magnetic sources surface-S′ and the observation points
surface-S.

2.4.2. Magnetic Field Continuity (4th Step)

The electric field in the unbounded region-I is established in the
previous step and through its curl the corresponding magnetic field is
readily available as a DtN map. Explicitly, the equivalent magnetic
current weighting factors obtained through (44) can be exploited
in Equations (27), (28) or (39), (40) to yield the magnetic field
in the unbounded region-I outside the pyramidal and conical horn
respectively. These can be substituted in (43) along with the already
available tangential magnetic field inside the horn, from (3), to ensure
the tangential magnetic field continuity (continuity of Neumann data
or establishment of the equivalent electric current on the aperture).
The question now is how to enforce this condition across the entire
aperture-S? In order to exploit the orthogonality of the waveguide
modes inside the horn, it is preferable to integrate Equation (43)
across-S. Hence, the waveguide modes orthogonality properties are
exploited to obtain the aperture generalized scattering matrix. Both
sides of (43) are multiplied with waveguide mode electric field conjugate
eigenfunctions eII,∗

j (r) and integrated over the aperture, the resulting
expression reads:∫∫

S

(
eII,∗
i ×HI

t

)
·dS=

P∑
p=1

∫∫
S

(
e∗,IIi ×hII

p

)
·dS[aII

p −bII
p

]
, i=1, 2, . . . P (49)

Explicitly, the orthogonality property of waveguide modal eigenfunc-
tions eII,∗

i , hII
p is written as, [19]:∫∫

S

(
e∗,IIi × hII

p

)
· dS = Up

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2W for propagating modes
+ 2jW for evanescent TE modes
− 2jW for evanescent TM modes

⎫⎬
⎭ for i = p

0 for i �= p

(50)
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Hence, the left side of (49) reads:∫∫
S

(
eII,∗
i × HI

t

)
· dS = Up

[
aII

p − bII
p

]
, i = 1, 2, . . . P (51)

[Up] is a diagonal square matrix with dimensions P × P determined
from (50).

The tangential magnetic field HI
t involved in (51) is already

expressed as a function of the magnetic current amplitudes
(MoM expansion) through Equations (27), (28) for the pyramidal
and (39), (40) for the conical horn antenna. Substituting these
expressions in (51) and arranging it in matrix form yields:

[V ]P×n

[
[Mh1]
[Mh2]

]
n×1

= [Up]P×P

[
aII

p − bII
p

]
P×1

(52)

The ij-th element of matrix [V ] represents the coupling integral
between the i-th waveguide mode and the j-th magnetic current
element, which according to the above algebraic substitutions reads:

Vij =
∫∫

S

(
eII,∗
i × gj

)
· dS (53)

where

gj(r) = −jωε

∫∫
S′

G
(
r, r′j

)
ds′ − j

ωμ
∇
⎛
⎝∇ ·

∫∫
S′

G
(
r, r′j

)
ds′

⎞
⎠ (54)

It should be noticed that, each element of matrix [V ] in (53)
is a four dimensional integral. In general these types of integrals
can be evaluated in closed form, but this requires an excessive
algebraic manipulation, which is beyond our present effort. For the
pyramidal horn these integrals are reduced into double ones and some
characteristic types for both horn types are given in Appendix-B.

2.4.3. Horn Aperture Scattering Matrix

Equation (52) actually represents the tangential magnetic field
continuity conditions and involves the equivalent magnetic current
amplitudes. However, these are already defined in (44) in terms of
the last waveguide section modal coefficients through the tangential
electric field continuity conditions. The overall procedure is equivalent
to the introduction of a radiation impedance boundary condition at
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the horn aperture. Hence, substituting (44) in (52) yields an equivalent
closed system in matrix form as:

[V ]P×n

⎡
⎢⎢⎣
[Qh1]

... 0

. . .
... . . .

0
... [Qh2]

⎤
⎥⎥⎦
−1

n×n

⎡
⎣
[
eII
h2,p

]
[
eII
h1,p

]
⎤
⎦

n×P

[
aII

p + bII
p

]
P×1

= [Up]P×P

[
aII

p − bII
p

]
P×1

(55)

The unknowns of the system in (55) are the amplitudes aN
p , bN

p
of the forward-incident and backward-reflected waves respectively of
each mode at the horn-free space aperture discontinuity. Finally,
rearranging (55) one may obtain the generalized aperture reflection
matrix [SA

11], which describes the aperture discontinuity. The resulting
formulation can be written as follows:[

bII
p

]
= ([Up] + [T1])

−1 ([Up] − [T1])
[
aII

p

]⇒ (56)[
bII
p

]
=
[
SA

11

] [
aII

p

]
(57)

or [
SA

11

]
= ([Up] + [T1])

−1 ([Up] − [T1]) (58)

where the square matrix [T1] with dimensions PxP reads:

[T1] = [V ]P×n

⎡
⎢⎢⎣

[Qh1]
... 0

. . .
... . . .

0
... [Qh2]

⎤
⎥⎥⎦
−1

n×n

⎡
⎣
[
eII
h2,p

]
[
eII
h1,p

]
⎤
⎦

n×P

(59)

2.4.4. Total Horn-aperture Discontinuity Generalized S-matrix

Finally, combining the aperture discontinuity scattering matrix [SA
11]

with that of the stepped waveguide scattering matrices [SH ] as
depicted in Figure 11, the reflection matrix of the whole horn at its
input waveguide section including the aperture reflection is derived as
(Figure 11):[

STotal
11

]
=
[
SH

11

]
+
[
SH

12

] [
SA

11

] (
[I] − [SH

22

] [
SA

11

])−1 [
SH

21

]
(60)

2.4.5. Horn Antenna Radiated Field

The radiated far zone electric and magnetic field, is identical to that
generated by the equivalent surface electric (Js) and magnetic (Ms)
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Figure 10. Separation of the
horn interior region from the
unbounded free space, for DtN
application.

Figure 11. Horn and aperture
discontinuity S-matrices combi-
nation.

currents defined on the surface S′. Thus the well established procedure
which gives the radiation from known electric and magnetic current
densities can be readily applied, e.g., Stutzman text book [25, p.375–
383]. For completeness the final expressions for the radiated electric
field components in spherical coordinates are given below.

Eθ =j
k

4π
e−jkr

r
(Px cos ϕ+Py sinϕ+η cos θ (Qy cos ϕ − Qx sinϕ)) (61)

Eϕ=j
k

4π
e−jkr

r
(cos θ (Py cos ϕ−Px sin ϕ)−η (Qy sin ϕ+Qx cos ϕ)) (62)

where Px, Py, Qx, Qy are evaluated as follows:

Px =
∫∫

S

Eα,xejk(x′ sin θ cos ϕ+y′ sin θ sin ϕ)dx′dy′ (63)

Py =
∫∫

S

Eα,ye
jk(x′ sin θ cos ϕ+y′ sin θ sinϕ)dx′dy′ (64)

Qx =
∫∫

S

Hα,xejk(x′ sin θ cos ϕ+y′ sin θ sinϕ)dx′dy′ (65)

Qy =
∫∫

S

Hα,ye
jk(x′ sin θ cos ϕ+y′ sin θ sinϕ)dx′dy′ (66)
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Eα, Hα are the tangential electric and magnetic field on the aperture
horn surface respectively, k = ω/c and η = 120π ohms are the free
space wavenumber and its characteristic impedance.

The directivity and the gain of a horn are computed by
normalizing the radiated field with the transmitted power and the
incident power, respectively. For one incident mode at the input section
of the horn, the transmitted power is given by:

Ptrms = Pinp

⎛
⎝1 −

P∑
p=1

|S11(p, 1)|2
⎞
⎠ (67)

where Ptrms is the transmitted power and Pinp is the incident power
at the input port of the horn, S11 (p, 1) is the reflection coefficient
between the p-th mode and the dominant mode at the input port.
However, since the normalized eigenfunctions are used, the incident
power is equal to unity (Pinp = 1), assuming the incident-dominant
mode amplitude equal to unity. The directivity and gain patterns are
given by:

D(θ, ϕ) =
2π
η

|Eo(θ, ϕ)|2
Ptrsm

(68)

G(θ, ϕ) =
2π
η

|Eo(θ, ϕ)|2
Pinp

(69)

where |Eo(θ, ϕ)|2 = r2|E(θ, ϕ)|2 = r2(|Eθ|2 + |Eϕ|2).

3. NUMERICAL RESULTS

To examine the validity of the method five different horn antennas
(three pyramidal and two conical) were analyzed. Table 1 presents
the dimensions of these pyramidal and conical horn antennas. For
MMT analysis each horn antenna was approximated by multiple
waveguide step discontinuities with length λmin/40 or “40 sections
per wavelength” at the maximum frequency of operation. Table 2
shows the parameters for MMT analysis, the number of waveguide step
discontinuities approximating each horn antenna, as well as the number
of modes required to ensure convergence. Also, Table 2 presents the
number of “magnetic cells” considered for the discretization of the
equivalent magnetic current on surface S′.

First, the effect of the offset distance δz between the magnetic
current surface S′ and the collocation points surface S is investigated.
Figure 12 presents the relative error for the Voltage Standing Wave
Ratio (VSWR) at the input of the horn I, considering a TE10 incident
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mode (input waveguide operating at its dominant mode) at 11 GHz,
as a function of offset distance δz. For this error estimation the
measurements given by Bhattacharyya and Rollins [7] are used as
reference (exact) data. It is obvious that, when δz tends to zero the
VSWR error becomes very large. In this case the collocation surface
S tends to coincide with the sources surface (or the method tends
to the classical moment method). Thus the increased inaccuracy is
due to the approaching of the integration surface toward the Green’s
function singularities. Namely, the increased inaccuracy is due to the
poor handling of the Moment Method singular integrals. For the horn
I, when δz is varied from 3λmin/68 until λmin/136 the VSWR error
(as shown by the magnified area of Figure 12(b) it oscillates from 0.1%
to 3.1%, while it starts to increase again. Hence, the optimum offset
distance is λmin/108 = λmax/140 which corresponds to locating the
sources surface about at the mid-length of the last waveguide section,
since its length is set to λmin/40.

Table 1. Typical data of the analyzed pyramidal and conical horn
antennas.

Type

Input Dimensions Aperture Dimensions Length

a×b in (mm) A × B in (mm) in (mm)

a b A B L

Horn I 19.05 9.525 34.417 34.417 77.724

Horn II 72.14 34.04 72.14 239.42 346.68

Corrugated Horn 22.86 10.16 90.0 60.0 90.0

Input Radius Aperture Radius Length

in (mm) in (mm) in (mm)

Conical Horn I 20.24 55.58 140.0

GPHA [17] Horn 11.60 59.902 286.0

Table 2. Data analysis of rectangular and conical horn antennas.

Number of Number Number Distance δz

waveguide of of magnetic (mm)

discontinuities Modes cells

Horn I 145 25 64 0.2 = λmin/108

Horn II 154 30 100 2.0 = λmin/45

Corrugated Horn 80 90 49 1.0 = λmin/18

Conical Horn I 168 60 54 0.7 = λmin/47

GPHA [17] Horn 95 80 30 0.8 = λmin/25
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(a) (b)

Figure 12. (a) Relative error for the VSWR at the input of the horn
antenna I at 11 GHz as a function of distance δz. (b) Enlarged part of
a).

The second step studies the convergence of the method versus the
number of cells discretizing the surface of equivalent magnetic sources.
In Figure 13(a) the convergence rate of the magnitude and phase
reflection coefficient at 11 GHz for the horn I, versus the number of
cells per square free space wavelength, is presented. The corresponding
percent error of magnitude and phase is shown in Figure 13(b) from
where it is obvious that at least 64 cells/λ2 is required for an error less
than 2%.

Figure 14 presents the input reflection coefficient of the first horn
antenna I, for a TE10 incident mode for δz = 0.2mm = λmin/108
and the number of magnetic surface cells is 144, when the aperture
reflection is considered. The line with circular symbols, presents
the measurements results from [7] while the solid line presents the
calculated input reflection coefficient from the present method. The
dashed line presents the reflection coefficient at the input of the
antenna when the aperture reflection is ignored. Notice that when
the aperture reflection is considered, good agreement between the
present method and the measurements is observed. When the aperture
reflection is ignored, the measured and computed reflection coefficient
at the horn input, do not match.

The normalized input impedance (Z̄) at the horn input port is
calculated from the reflection coefficient of the incident mode as:

Z̄ = Z/Zo = (1 + S11)/(1 − S11) (70)
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(a) (b)

Figure 13. (a) Convergence rate for magnitude and phase of the
reflection coefficient for horn I at 11 GHz. (b) Relative error (%) for
magnitude and phase of the reflection coefficient for horn I at 11 GHz.

Figure 14. Input reflection coefficient for the horn I.

where Zo is the corresponding mode characteristic impedance.
Figure 15 shows the normalized real and imaginary part of the
input impedance for the horn I, when either the aperture effects are
accounted or not. Notice that ignoring the aperture effects (MMT)
the horn appears fictitiously almost perfectly matched (Re (Zin) � Zo,
Im (Zin) � 0). On the contrary, accounting for the aperture effects
a mismatch is revealed where Re (Zin) oscillates around 0.94Zo and
Im (Zin) becomes capacitive around −0.12Zo.
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Results for the input reflection coefficient of an E-plane sectorial
horn in S-band, proposed and analyzed by Encinar [3] using the
Hybrid Modal-Spectral Method (HMSM), are compared against those
of the present method in the second example. Figure 16 presents the
magnitude of reflection coefficient at the input of the horn antenna
considering a TE10 incident mode or operation of the input waveguide
at its dominant mode. The assumed number of modes and the number
of magnetic cells as well as the offset δz, are given in Table 2. The
dots represent the reflection coefficient from measurements originally
given in [4] while the cross symbols represent the reflection coefficient
from HMSM. The solid line presents the reflection coefficient when
the aperture discontinuity is taken into account by the present
method. Good agreement between present method and measurements
is observed.

Another four wall corrugated rectangular horn operating in Ku
band, is considered in order to validate the method for the E and
H-plane radiation pattern. The geometrical characteristics of the
corrugated rectangular horn, are presented in Figure 17. The stepped
waveguide part was divided in 40 sections per wavelength at the
maximum frequency of operation (totally 80 sections), while the
number of modes was 90. For the analysis of the aperture discontinuity,
the total number of magnetic cells located on the surface S (Figure 6) is
36×24. Figure 18 presents comparisons of radiation patterns of H- and

(a) (b)

Figure 15. (a) Normalized input impedance Zin/Zo, (a) real and
(b) imaginary parts for the horn I.
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Figure 16. Reflection coefficient
at the input of an E-plane
sectorial horn.

Figure 17. Geometry of corru-
gated rectangular horn antenna,
with its dimensions given in Ta-
ble 1, [3].

E-plane between the present method and HMSM [3] for the corrugated
horn of Figure 17 at 15 GHz. A good agreement between the present
method and HMSM [3] is observed in Figure 18 for E and H-plane
radiation patterns. Also, Figure 18 shows a comparison of the radiation
patterns between the corrugated horn of Figure 17 and a corresponding
conventional horn (exactly the same dimensions with horn of Figure 17
but without the internal corrugations). The latter presents a similar
main lobe pattern but quite higher sidelobes. The disagreement in
the radiated field at angles greater than 60 degrees could be due to
the currents flowing on the horn outside surface, however this is not
ensured by Figure 18, since both compared methods do not account
for these currents.

The input reflection coefficient for the above four wall corrugated
rectangular horn, is presented in Figure 19. We can observe that is
bellow −16 dB in the whole range from 12 GHz to 17 GHz. Although
at 15 GHz the mode TE20 is propagated in the input waveguide WR90,
its mutual coupling with TE10 is negligible. Indeed, the coupling
coefficient between them is about 2.68 × 10−6 and 21.27 × 10−6 at
15 GHz and 17 GHz respectively. It is interesting to display the electric
field distribution on the corrugated horn aperture and compared it
with that of the corresponding conventional horn antenna without
corrugations inside. Figure 20(a) presents a three-dimensional plot
of the electric field magnitude for the corrugated horn of Figure 17.
Figure 20(b) shows the corresponding field for a conventional horn with
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(a)

(b)

Figure 18. Results of E- and H-plane radiation patterns of the
four wall corrugated horn of Figure 17 at 15 GHz, compared against
those of Encinar and Rebollar [3]. The patterns calculated for the
corresponding conventional (smooth walls) horn are also presented.

exactly same dimensions. Observe that the electric field amplitude
(Figure 20(a) is relatively constant over the corrugated horn aperture,
while it is abruptly tending to zero around its edges. On the contrary
in the case of the conventional horn (Figure 20(b)) tends to zero only
along the two of the edges, while it retains a high value at the other
two edges. Hence, the corrugated horn is indeed more appropriate for
feedings reflectors, avoiding the spillover effects [20].

The conical horn with geometrical characteristics shown in
Table 1, was analyzed. The MMT parameters and the number of
magnetic cells are given in Table 2. Figure 21 presents the Voltage
Standing Wave Ratio (VSWR) at the input port of the conical horn
antenna, considering a TE11 incident mode for δz = 0.7mm = λmin/47.
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Figure 19. Input reflection coefficient at the input port for the
corrugated horn of Figure 17.

(a) (b)

Figure 20. (a) 3D electric field magnitude distribution on the
aperture corrugated horn. (b) 3D electric field magnitude distribution
on the conventional horn aperture (same horn dimensions without
internal corrugations).

The line with rhombus symbols presents the VSWR at the antenna
input using commercial software (HFSS v9.1). The solid line refers to
the present method while the dashed line presents the VSWR when
the aperture reflection is ignored. The importance of the aperture
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Figure 21. VSWR at the input
of the conical horn for TE11 mode
excitation.

Figure 22. Normalized real
and imaginary parts of the input
impedance Zin/Zo, for the conical
horn I.

effects is obvious, while a good agreement between the present method
and the commercial software results is observed. Figure 22 shows the
normalized real and imaginary part of the input impedance for the
incident mode. Observe that, when the real part is maximized the
imaginary part tends to zero and is very close to the ideal match.

The ultra wide band corrugated Gaussian Profiled Horn Antenna
(GPHA) shown in Figure 23 was analyzed. These antenna types have
been adopted in many applications due to their excellent radiating
properties such as symmetrical patterns, low crosspolar and sidelobes
levels [17, 26, 27]. The corresponding waveguide profile which follows
the curve for Gaussian equi-amplitude relative surfaces is given by:

R(z) = rin

√
1 +
(

λz

πa2r2
in

)2

(71)

where rin is the inner radius, λ is the wavelength and α is the parameter
controlling the aperture angle of the horn. The antenna profile consists
of two parts. The design parameters for both horn sections are:

• Design Frequency f = 11.6GHz
• Input radius: rin = 11.6mm
• Corrugation parameters: p = 6mm, w = 2mm, d = 6.45mm
• First GPHA section:

– α = 2.0, Length = 210mm



Progress In Electromagnetics Research B, Vol. 40, 2012 131

Figure 23. Geometry of corrugated Gaussian profiled horn antenna
(GPHA), comprised of cascaded first GPHA section, an impedance
transformer and a second GPHA section [17].

– Impedance transformer: Length = 60mm, first corrugation
depth: d1 = 12mm

• Second GPHA section:
– Outer radius: rout = 59.902mm, α = 0.58, Length = 76mm.

According to [17], the impedance transformer corrugation depth,
decreases linearly from λ/2 = 12mm to λ/4 = 6.45mm (at 11.6 GHz)
as we observe in Figure 23. The parameters for the MMT analysis
are shown in Table 2. According to Figure 9 the magnetic sources
surface S′ is divided into 36 × 24 = 864 cells while with this manner
the average magnetic cell area is λ2

min/30. This choice was made for
saving computational resources due to numerical integration in (53).
Figure 24 presents the input reflection coefficient of the GPHA horn
antenna, considering a TE11 incident mode for δz = 0.8mm = λmin/25.
The line with circular symbols, presents the measurements from [17]
while the solid line presents the calculated input reflection coefficient
from the present method. The input reflection coefficient is bellow
−15 dB at 11 GHz to 14 GHz frequency band. The results are in
good agreement with measurements from [17]. Figure 25 shows the
normalized input impedance (real and imaginary part) for the incident
mode. We observe that at 11 GHz to 14 GHz frequency band, the
imaginary part is very close to zero while the normalized real part is
approximately equal to one (perfect match).
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Figure 24. Input reflection coefficient for the GPHA.

Figure 25. Normalized real and imaginary part of the input
impedance, Zin � Zo for the GPHA.

Because horn antennas are very often used as gain references in
antenna measurements, it is very useful to be able to calculate the horn
gain as accurately as possible. It is well known that the gain exhibits
an oscillatory behaviour [22, 23].

Results for the gain of a pyramidal horn, proposed and analyzed by
Mayhew-Ridgers et al. [23] using the Diffraction Model, are compared
against those of the present method. Figure 26 presents the comparison
of measured, diffraction model and present method gain values for an
X-band pyramidal horn antenna. It is observed that the results from
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Figure 26. Comparison of an X-band pyramidal horn antenna
gain calculated by the present method against measurements and
“diffraction model” numerical results [23], (horn dimensions: A =
194.5mm, B = 144.0mm, a = 22.46mm, b = 10.16mm, L =
150.0mm).

the present method are in good agreement with both measurements
and those of the diffraction model, while the gain exhibits indeed an
oscillatory behaviour.

Finally, Table 3 compares the present method and the commercial
electromagnetic simulator HFSS v9.1 in terms of simulation time
and memory requirements for horn I analysis. The present method
simulation time is about 30% higher than the HFSS run time, but
it should be emphasized that about 60% of the cpu time (12.69
min out of the 21.15 min) of the present method is consumed by
the numerical evaluation of integrals given in Appendix B. However,
carefully observing the integrals of Appendix B, one may realize that
these can be analytically evaluated in closed form. We have indeed
evaluated similar integral, even for the cylindrical geometry where
these are transformed to Lommel type (involving Bessel functions),
in our previous work, e.g., [8]. Certainly, the analytical evaluation of
these integrals in closed form will substantially speed up the process
making it much faster. However, this task involves extensive analytical
manipulations and this is left for a future extension, since herein we
focus on the prove of concept. On the other hand the present method’s
memory requirements are orders of magnitude smaller than those of
HFSS.
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Table 3. Comparison of the present method against HFSS for horn I
operating at a frequency 10 GHz, regarding the simulation time and
memory requirements.

Max

Delta

S

Lamda

Refinement

Target

Tetrahedra

in Mesh

Run

time

(min)

Memory

(MByte)

HFSS

v9.1
0.02 0.333 47247 15.39 973.708

Present

Method
− − − 21.15 4.664

4. CONCLUSIONS

A Hybrid technique for the analysis of pyramidal and conical horn
antennas has been established based on the vector Dirichlet-to-
Neumann mapping (DtN) principles. The Mode Matching Technique
along with a stepped waveguide model is employed to describe the
main part of the horn. This was in turn combined with the offset
moment method in order to model the aperture discontinuity between
the last waveguide section and the free space. The field continuity
conditions across the aperture are enforced by strictly following the
DtN mathematical formalism. The procedure is stable and accurate.
A good agreement between numerical and commercial software results
has been obtained. A future extension of this work includes the study
of various types of horn antennas and possibly leaky waveguides. It
was indeed observed that neglecting the currents flowing on the horn
outside walls causes a small deviation in the radiation pattern at
wide angles (greater than 70◦ from broadside), however we could not
identify any related effects on the horn input impedance. Considering
these currents in the formulation constitutes our next research task.
Besides that, the present method can be readily included within an
optimization scheme for the establishment of a horn antenna design
tool.
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APPENDIX A.

Normalized eigenfunctions for rectangular and cylindrical waveguides:
Rectangular Waveguide with internal dimension a × b.

For TEmn modes:
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For TMmn modes:
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where k2
c,mn = (mπ

a )2 + (nπ
b )2 the cutoff wave number and propagation

constant is:

γmn =

⎧⎪⎨
⎪⎩

j
√

ω2με − k2
c,mn for propagated modes√

k2
c,mn − ω2με for evanescent modes

(A9)
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and ε0m is the Neumann factor, which is equal to 1 for m = 0 and
equal to 2 for m > 0.
Cylindrical Waveguide of radius R.

For TEnm modes:
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For TMnm modes:
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where kTE
c = x′

nm
R , m ∈ N∗, kTM

c = xnm
R , m ∈ N∗, xnm and x′

nm

are the mth zeros of the nth order Bessel function Jn (x) and Bessel
function derivative J ′

n (x), respectively and ε, μ relative permittivity
and permeability of vacuum respectively. Also, γ is given by (A9).

APPENDIX B.

Indicative coupling integrals at the horn aperture.
Pyramidal Horn:

b∫
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a∫
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where R =
√

(x − x′)2 + (y − y′)2 + (z − z′)2.
Each of the above four dimensional integrals, using appropriate

change of variable are reduced into a sum of double integrals. For
example, the integral in (B1) is simplified to:
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where [f(u, v) = e−jk

√
u2+v2+(z−z′)2√

u2+v2+(z−z′)2
].

Conical Horn:

a∫
0

2π∫
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2)Δϕ∫
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where R =
√

ρ2 + ρ′2 − 2ρρ′ cos(ϕ − ϕ′) + (z − z′)2 and subscript w

indicates the TE or TM mode.
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