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BONACCI AND HYBRID PERIODIC/FIBONACCI ONE
DIMENSIONAL PHOTONIC CRYSTALS
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(LPMS), Ecole Nationale d’Ingénieurs de Tunis, BP 37 le Belvédère,
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Abstract—We report the transmission response of generalized
Fibonacci photonic crystal Fl(m,n) in microwave domain for normal
incidence, where l is the generation number, and m and n are
parameters of the Fibonacci distribution. The transmission spectra
are calculated through the transfer matrix method and studied by
varying the Fibonacci parameters. The structure is exploited to design
selective optical filters with narrow passbands and polychromatic stop
band filters. Therefore, other structure configurations based on the
generalized Fibonacci system are proposed. A juxtaposition of p
multilayer systems built according to Fibonacci distribution [Fl(m, n)]p
makes possible to have switch-like property (off-on-off-on-off-on-. . . ).
Then, a hybrid structure obtained by sandwiching stacks of generalized
Fibonacci photonic crystal between two periodic photonic crystals is
proposed to enlarge the photonic band gap in microwave domain.

1. INTRODUCTION

Photonic crystals with forbidden photonic bands have attracted much
attention due to promising applications in optical devices, such as
waveguides, cavities, mirrors, optical switches, channel-drop filters,
wave division multiplexers, antireflexion coating [1–5]. The simplest
form of a photonic crystal is a one-dimensional periodic structure and
known as Bragg Mirror [6, 7]. It consists of a stack of alternating
layers having a low and a high refractive indices and a thickness on
the order of λ0/4 where λ0 is the wavelength of the light. Photonic
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band gap (PBG) materials may be designed also in two and three
dimensions. But one-dimensional PBG structures have been given
more importance and investigated extensively because such structures
can be fabricated more easily for a large range of wavelength, and
also the analytical study and numerical calculations are simpler [8].
To ameliorate the optical functions of the one dimensional photonic
crystal, many techniques have been introduced such as defect insertion,
combinations of two or more photonic crystals (heterostructures),
creating disorder [9–12]. The disorder may be constructed according
to a deterministic procedure. So a great deal of effort has been devoted
to the study of quasi periodic systems which possess the properties of
both periodic and random structures and show interesting properties
as the existence of PBGs with some strong resonances, which can
localize light very effectively [13, 14]. Some of these works were focused
on studying the Fibonacci quasi-periodic multilayer [15–20]. From a
structural viewpoint, Fibonacci structures are composed of building
blocks exhibiting two incommensurate periods [21].

The photonic heterostructures are combinations between adjacent
photonic crystals. This approach has been generally explored to design
optical micro cavities [22] and to enlarge the photonic band gap [23–
25]. Heterostructures investigated recently are varied. A Photonic
crystal formed of two structures of the same period and different layer
thicknesses is studied to enhance the omnidirectional reflection [24].
A narrow frequency and sharp angular defect mode is obtained by
combining two one-dimensional defective photonic crystals [26]. Some
researchers are interested in the combination of two photonic crystals
with different periods [27] or two photonic crystals, one of which is
dielectric and the other magnetic [28]. The heterostructure revealed in
this paper is the combination of periodic and quasi periodic photonic
crystals such as the Fibonacci structure. Such a structure has been
the subject of some works. It is found for example that a hybrid
configuration of the type Bragg mirror-Fibonacci-Bragg mirror is
a promising candidate for resonant microcavities with strong mode
localization [29].

In this work, we have firstly studied the transmission properties in
microwave domain [5 GHz, 50 GHz] of the one-dimensional multilayer
system built according to the generalized Fibonacci sequence
Fl(m,n) [15, 30, 31] as a function of the Fibonacci parameters. This
study reveals interesting properties of the structure since it shows
that controlling the Fibonacci parameters permits to obtain selective
optical filters with narrow passband and polychromatic stop band
filters with varied properties which can be controlled as desired.
Secondly, we propose a configuration which is a juxtaposition of
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Figure 1. Scheme of different generations with m = 2 and n = 3.

several blocks built according to generalized Fibonacci sequence
[Fl(m,n)]p. The transmission through this configuration shows the
characteristic of switches. This feature could be useful in the design
of microwave switches. Finally, we present some hybrid configurations
consisting of juxtaposition of periodic and quasi-periodic structures.
The quasi-periodic multilayer is built according to the pattern of
the Fibonacci sequence. Such configurations enhance the reflection
through the system and enlarge the photonic band gap. We calculate
transmission spectra through these structures using the transfer Matrix
Method [2, 32, 33]. In this paper, we present the mathematical model
describing the structures containing the distribution of high and low
refractive index layers according to Fibonacci sequence. Next, we give
simulation results and finish with a conclusion.

2. MODELS

The first system under consideration is composed of two layers, H and
L, stacked alternatively along z direction and following the rules of
Fibonacci sequence, i.e., Sl+1 = Sm

l Sn
l−1 for l ≥ 1 with S0 = H and

S1 = L, where l is the generation number, and m and n are parameters
characterizing substitution rules generating the sequence. In fact,
each transition from a generation to the following one is obtained
by doing the substitutions L → LmHn, H → L. Figure 1 explains
what change in generation number implies when m = 2 and n = 3.
We can build different generations through two procedures, by using
the relation between Sl+1, Sl and Sl−1, or by using the substitution
rules between two consecutive generations. Next, we consider a system
which is a combination of blocks of Fibonacci structures so having
the form [Fl (m, n)]p. Finally, a one-dimensional hybrid periodic and
generalized quasiperiodic photonic crystal is studied. The structure is
built according to the form (LH)j [Fl (m,n)]

p
(LH)j . Here, H and L

are defined as two dielectric materials with H the high refractive index
material and L the low refractive index one.
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We choose the Roger and the Air respectively as the high refractive
index material (nH = 3.134) and the low one (nL = 1). Refractive
indices of these materials are assumed to be constant in the wavelength
region of interest. We assume the individual layers as quarter-wave
layers so satisfying the Bragg condition nHdH = nLdL = λ0

4 with λ0

the reference wavelength chosen to be 12mm.

3. RESULTS AND DISCUSSIONS

3.1. Generalized Fibonacci Multilayer Structure

3.1.1. Generation Number Effect

In this section, we present in Figure 2 the transmission spectra through
the Fibonacci photonic multilayer for different generation numbers. A
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Figure 2. Transmission spectra of a quarter wave Fibonacci structure
as function of frequency for different generation numbers with m = 1
and n = 1: (a) l = 4, (b) l = 6, (c) l = 13, (d) l = 18.
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symmetric behavior is depicted in the inset of Figures 2(a), (b), (c) and
(d). The spectra present a unique mirror symmetrical profile around
the band gap center frequency 25GHz (which is of course the band
gap center frequency of a periodic quarter-wavelength one dimensional
PC).

With the fourth generation, the transmission falls through two
ranges of frequency. The depth of curves varies with the generation
number, and two PBGs are formed. Then, with increasing the
generation number, the two bands gradually draw together until a
flat transmission band emerges with some transmission peaks around
the central frequency. We note also the increase of peaks density
producing a dark continuum at the edges of the curves. In order to
understand the changes in the spectrum shown in Figure 2, we are
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Figure 3. Transmission spectra of a quarter wave Fibonacci structure
as function of frequency with m = 1 and n = 1 (a) for the 6th
generation for the reduced range of frequency 20 < f < 30 (GHz),
(b) for the 12th generation for the reduced range of frequency 24.97 <
f < 25.03 (GHz), (c) for the 18th generation for the reduced range of
frequency 24.9998 < f < 25.0002 (GHz).
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reminded that the formation of the band gap and the peaks around
its center occurs due to firstly the quasiperiodic property of the stack
and secondly the auto-similarity that reproduces the structures of the
spectrum in smaller scales [15, 34]. To understand this scaling property,
we plot in Figure 3(a) the transmission spectrum of Figure 2(b)
(which represents the response of the sixth generation quasiperiodic
Fibonacci sequence) for the range 20 GHz < f < 30 GHz. This
spectrum is the same, as shown in Figure 3(b), as the one representing
the twelve-generation for the range of frequency reduced by a scale
factor approximately equal to 166. When calculating the structure
response of the eighteenth generation (4181 layers) and narrowing
the frequency range, as shown in Figure 3(c), this spectrum is the
same as those depicted in Figure 3(a) and Figure 3(b), in the range
of frequency amplified by a scale factor equal to almost 150. It is
interesting to notice from Figure 3 and Figure 5 (which represent
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Figure 4. Change in the shape of the peak in band center frequency
according to the Fibonacci generation number (a) l = 6, (b) l = 7, (c)
l = 8, (d) l = 9.
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transmission spectra of the seventh and thirteenth generations) that
this occurs every time the difference between two generation numbers
of the Fibonacci sequence is six [34]. It is worth noting that the auto-
similarity is not limited to a narrow central region of the spectra, but
it embraces the peaks emerging around of f = 25GHz. Concerning
the edges of the spectrum, they acquire a fractal shape when the
generation number increases. Such a behavior can be also interpreted
as a signature of auto-similarity.

We can observe that the bandwidth of the transmittance peaks is
much smaller than the width of the bandgap. Thus, it is interesting
to make use of the narrow resonate peaks in the bandgap to create
selective optical filters with narrow passbands. We have investigated
the spectral width of narrow resonate peak in the band center frequency
for various Fibonacci iterations. Figure 4 shows the change of the
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Figure 5. Transmission spectra of a quarter wave Fibonacci structure
as function of frequency with m = 1 and n = 1 (a) for l = 7, (b) same
as in (a) but for the reduced range of frequency, (c) for l = 13, (d)
same as in (c), but for the reduced range of frequency.
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peak shape at an increase of the Fibonacci generation. We note
from Figure 4 and Figure 5 that we can have a peak with almost
96% with the seventh generation and consequently the thirteenth
generation. The FWHM (full widths at half maximum) of these peaks
are respectively d7 = 0.18 GHz and d13 = 0.00228GHz.

3.1.2. Effect of the Parameters m and n

To study the effect of parameters m and n on the transmission response
of the Fibonacci structure, at first we take the case where m = n.
This case is interesting since it reveals special properties which will
be investigated as follows. Figure 6 shows the transmission spectra
corresponding to the third generation and some values of m (or n). It
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Figure 6. Transmission spectra of a quarter wave Fibonacci structure
as function of frequency for the third generation for different values of
m = n, (a) m = n = 2, (b) m = n = 3, (c) m = n = 4, (d) m = n = 5.
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is obvious that the number of PBGs is controlled by the variation of
m (or n). In the case of m = n, the number of PBGs is the same as m
(or n) value.

When m = n = 2, we obtain 2 PBGs. If m = n = 5, the number
of PBGs is also 5. But we must note that for each value of m (or n), the
PBGs are perfect without transmission peaks for the third generation,
but for the fourth generation, transmission peaks appear inside the
PBG. For example, with m = 3, Figure 6 shows a transmission spectra
with 3 PBGs for which the transmission is stopped at all frequencies
of these 3 PBGs. From l = 4, as shown in Figure 7, some peaks appear
inside the PBGs. These phenomenon can be explained if we investigate
the multilayer structure for each configuration. For this, we explore
the case where m = n = 3 as an example.

Figure 8 shows a comparison between the geometry of the third
generation and that of the fourth generation. The structure in
Figure 8(a) is an alternation of two blocks of layers, a block formed
of three layers of low refractive index and a block formed of three
layers of high refractive index. So, the multilayer structure behaves
as a periodic structure of two elementary layers with refractive indices
nL and nH and geometric thicknesses with the values 3 λ0

4nL
and 3 λ0

4nH
,

respectively. In other words, the optical length of layers is multiplied
by 3.

Figure 9 shows the transmission spectra calculated by the program
of a periodic structure with two layers of refractive indices nH = 3.134
and nL = 1 and geometric thicknesses taken three times larger than
these of the quarter wave structure. We notice the appearance of three
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Figure 7. Transmission spectra of a quarter wave Fibonacci structure
as function of frequency with m = n (a) m = n = 2, l = 4, (b)
m = n = 3, l = 4.
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Figure 8. Geometry of the generalized Fibonacci photonic crystal
structure with m = n = 3, (a) third generation, (b) fourth generation.
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Figure 9. Transmission spectra
of a three quarter wave periodic
structure as function of frequency.
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Figure 10. Transmission spectra
of a quarter wave Fibonacci struc-
ture as function of frequency with
m = n = 2, l = 10.

PBGs in the transmission spectra. If we inspect the geometry of the
fourth generation, we note some blocks which contain more than three
layers of the same refractive index (6 layers of low refractive index),
so the structure behaves as described in the precedent case but with
some defects which disturb the periodicity of the structure. The defect
can be considered as a layer which has an optical length 6λ0

4 instead
of 3λ0

4 (the defect itself is periodic, which implies the quasi periodicity
of the structure). This enhances the appearance of transmission peaks
and explains the fact that for generation more than 3, the PBGs are
affected by some peaks.

If we look for the generation number effect on the number of PBGs,
we can see from Figure 10 that with the same value of m (or n) and
varying the generation number, the number of PBGs remains the same.

Then, we investigate the cases when one of the two parameters m
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or n varies and the second set to 1. The transmission is extracted
for the fourth generation. The transmission spectrum presents
symmetrical profile around the central frequency. It is worth noting
from Figure 11 that the number of PBGs through the spectral range
increases and contracts by increasing m or n. It is obvious that the
number of PBGs is governed by the parameters m and n. The stacking
of the PBGs leads to the design of the multi-stop band filters in
microwave domain. So we can indicate for each filter the frequency
centre and width of the corresponding stop band. Nevertheless, the
variation of each m or n has its special effect on the spectral range.

In fact, if parameter m is fixed at 1 and parameter n varies, PBGs
are still separated by ripples. Transmission tends to 100% through
the spectral ranges of theses ripples. When parameter m varies and
parameter n fixed at 1, PBGs are separated by groups of transmission
peaks. Increasing m generates an increase density of peaks producing
dark narrow bands, and the corresponding ranges may be considered
as multi-stop narrow band filters. This behavior can be explained
when we know that the fractal aspect is verified for the systems with
n = 1 and m variable [15]. So the splitting of the transmission peaks
when m increases is due to the auto-similarity phenomena which is
a manifestation of fractal systems. Whereas, the splitting of the
bandgaps when n increases and m fixed at 1, is a distinguishing feature
of the quasi-periodic systems (without a fractal aspect).

3.2. Juxtaposition of Generalized Fibonacci Systems

We study the configuration of a multiple of a generalized Fibonacci
sequence having the form [Fl(m,n)]p. It is a juxtaposition of p
multilayer systems built according to Fibonacci distribution. The
transmission spectra of system [Fl(m,n)]p with m = n = 1, l = 3 and
the repetition number p varying from 1 to 10 are shown in Figure 12.
The results show that for p = 2, we have 2 PBGs separated by
oscillations. The number of oscillations increases as p increases. The
proposed structure is similar to a periodic structure with the supercell
(LHL). For this type of structure, splitting phenomenon is exhibited
in the pass bands but not in the bandgaps [35]. Thus, with increasing
the number of periods p, the number of PBG remains 2, whereas the
peaks are all split into multiple narrower peaks. Furthermore, the
system shows around the central frequency a switch-like property as
shown in Figure 13. If we use “on” to represent the high transmission
and “off” the low transmission for the central frequency, we note that
we have “off” for the odd value of p and “on” for the even value of p. In
fact, the transmission through the structure has the following switch-
like property: S1(OFF)-S2(ON)-S3(OFF)-S4(ON)-S5(OFF)-S6(ON)-
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Figure 11. Transmission spectra of a quarter wave Fibonacci
structure as function of frequency for the fourth generation for different
values of m and n: (a) m = 1, n = 5, (b) m = 5, n = 1, (c)
m = 1, n = 10, (d) m = 10, n = 1, (e) m = 1, n = 20, (f)
m = 20, n = 1.
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Figure 12. Transmission spectra of the structure [Fl (m,n)]p as
function of frequency for the third generation, m = n = 1 for different
values of p: (a) p = 1, (b) p = 2, (c) p = 5, (d) p = 10.

S7(OFF)-S8(ON)-S9(OFF). This reveals interesting results that can
be applied to develop new types of nano-switches based on linear
photonic crystals. Switching function may be permitted by using a
mechanical tuning. It may be realized by directing the incident light
to one of two orthogonally orientated stacks, one with an odd value
of p and the other with an even value of p. The system may, by
controlling polarization, selectively generate and transport the desired
wavelength. Light transmission is enabled or disabled by selecting the
desired polarization to interact with a geometric aspect. By specifying
geometry and orientation, transmission peaks can be modulated to
provide multi-state operation.

We can also propose to have a stack with an even value of p.
The incident light can propagate through the PC. To inhibit the
propagation, a separated block F3(1, 1) can be displaced and stacked
with the whole structure. So, it is enough to retire or to add one
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Figure 13. Transmission spectra
of the structure [Fl (m,n)]p as
function of frequency for the third
generation, m = n = 1 for p = 4
and p = 5.

p S p
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Periodic Structure Fibonacci Structure

... ... ...

Figure 14. Schematic rep-
resentation showing the ge-
ometry of the structure
(LH)j [Fl (m,n)]

p
(LH)j with

m = n = 1, l = 3.

block F3(1, 1) to realize the on-off states. The mechanical tuning of
such device will be in a similar way as in the mechanically switchable
photonic crystal filter which is theoretically introduced by Suh and
Fan [36]. A detailed study on the proposed switching mechanisms is
going to be published.

3.3. Hybrid Structure Periodic/(Fibonacci)P /Periodic

We now investigate the transmission properties of the hybrid
quasi-periodic multilayer structure which is built according to the
Fibonacci sequence and sandwiched between two periodic stacks, i.e.,
(LH)j [Fl(m,n)]p(LH)j (Figure 14). The idea leads to interesting
results with the insertion of generalized cantor like multilayer between
two identical periodic multilayer structures [37, 38]. Applying the idea
for the generalized Fibonacci like multilayer also shows interesting
transmission properties.

In fact, if we consider the hybrid configuration (LH)j [Fl(m, n)]p
(LH)j with m = n = 1, l = 3, p = 7, j = 8, the structure seems
almost totally reflective (Transmission is nearly 0%) through a large
frequency range with a width of 34 GHz. The total number of layers of
this hybrid photonic structure is 53 layers. A second structure exhibits
an interesting response in spite of its great number of layers. The
configuration is studied with m = n = 2, l = 6, p = 8, j = 8. In fact,
the structure permits to have a bandwidth equal to 39.2GHz. The
configuration represents a multilayer of 1696 layers.
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Figure 15. Transmission spectra as a function of frequency for
(a) the periodic structure (LH)8, (b) for the structure [F3 (1, 1)]7,
(c) for the structure (LH)8 [F3 (1, 1)]

7
, (d) for the structure

(LH)8 [F3 (1, 1)]
7
(LH)8.

It is known that the photonic band gap of a photonic crystal
can be enlarged by using heterostructures [23–25]. The constituent
1D photonic crystals have to be properly chosen such that photonic
band gaps of the adjacent photonic crystals overlap each other. If we
plot the transmission spectra of the periodic stack (LH)8 and that of
the quasiperiodic stack [F3(1, 1)]7, we understand that the extended
photonic band gap obtained through the structure (LH)8[F3(1, 1)]7 is
the result of the overlap of the periodic photonic band with the two
bands obtained in the transmission spectrum of the stack [F3(1, 1)]7.
So with 37 layers, we can have a photonic band gap with a width
of 25.3GHz. Connecting a second periodic stack at the upper edge
of the structure permits, as shown in Figure 15(d), more extended
photonic band gap. The structure finishes having the configuration
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Figure 16. Transmission spectra as a function of frequency for
(a) the periodic structure (LH)8, (b) for the structure [F6 (2, 2)]8,
(c) for the structure (LH)8 [F6 (2, 2)]8, (d) for the structure
(LH)8 [F6 (2, 2)]8 (LH)8.

(LH)8[Fl(1, 1)]7(LH)8 with 53 layers. We show in Figure 16 that
the same approach explains the forming of the extended band of
the configuration (LH)8[F6(2, 2)]8(LH)8. The second sidewall stack
permits to eliminate the peak emerging through the extended photonic
band gap of the structure (LH)8[F6(2, 2)]8 and to reduce ripples
appearing in the upper photonic band edge. Theses ripples are
completely removed by stacking 8 periods in the second side of the
multilayer.

4. CONCLUSION

The Fibonacci structure was the subject of many studies. The present
paper proposes new configurations revealing new properties which open



Progress In Electromagnetics Research B, Vol. 40, 2012 237

up a variety of functions. Using Fibonacci structure with some high
generation numbers permits to have selective optical filters with narrow
passbands. Then a design of stop band filters by using Fibonacci
photonic crystal has been studied by varying the Fibonacci parameters.
The stacking of several Fibonacci one-dimensional photonic crystals
presents a switch-like property which can be used to design nano-
switches in microwave domain. Next, sandwiching a several number
of Fibonacci structures between two periodic structures has enhanced
the zero reflection range. Therefore, a large photonic band gap which
covers almost all the microwave domain is obtained with only 53
quarter wave layers. Since different physical phenomena have their
own relevant physical scales, we exploited the physical properties of
the different proposed structures to obtain different microwave devices.
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