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Abstract—The novelty of this letter is that it capitalizes on noise
waveform to construct measurement operator at the transmitter and
presents a new method of how the analogue to digital converter
(ADC) sampling rate in the monostatic multiple-input multiple-output
(MIMO) noise radar can be reduced — without reduction in waveform
bandwidth — through the use of compressive sensing (CS). The
proposed method equivalently converts the measurement operator
problems into radar waveform design problems. The architecture is
particularly apropos for signals that are sparse in the target scene. In
this letter, Estimates of both target directions and target amplitudes
using CS for monostatic MIMO noise radar are presented. Sparse
bases are constructed using array steering vectors. Orthogonal least
squares (OLS) algorithm for reconstruction of both target directions
and target amplitudes is implemented. Finally, the conclusions are all
demonstrated by simulation experiments.

1. INTRODUCTION

Noise radars transmit random or pseudorandom signals and apply
coherent reception to achieve low probability of interception (LPI)
and low probability of detection (LPD). Noise radars have the unique
property that allows them to achieve high resolution in both range
and Doppler which can be independently controlled by varying the
bandwidth and integration time, respectively. They also have excellent
resistance to jamming and interference. Another advantage of noise
radars is their ability to efficiently share the frequency spectrum,
thereby allowing a number of noise radars to operate over the same
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frequency band with minimal cross-interference. This spectrally
parsimonious feature can be used to integrate several noise radars to a
network centric platform. Therefore, many research studies have been
carried out on this topic [1–4].

Unlike a conventional transmit beamforming radar system that
uses highly correlated waveforms, a MIMO radar system transmits
multiple independent waveforms via its antennas [5, 6]. The MIMO
radar system is advantageous in both widely separated antennas
scenario and collocated antennas scenario. In the first scenario, the
transmit antennas are located far apart from each other relative to their
distance to the target, which make the radar system offer considerable
advantages for estimation of target parameters, such as location and
velocity. In the second scenario, the transmit antennas and receive
antennas are located close to each other relative to the target that all
antennas view the same aspect of the target, which enables the MIMO
radar to achieve superior resolution in terms of direction finding. The
latter scenario, which is adopted in this letter, performs estimation
of both target directions and target amplitudes for monostatic MIMO
radar using CS.

In this letter, the monostatic noise radar concept is extended to
an array of Mt transmit antennas and Nr receive antennas. When
independent noise sources are transmitted from each antenna the
approach may be viewed as a special case of monostatic MIMO radar
and direction finding may be derived. In this case, the monostatic
MIMO noise radar is equipped with Mt transmit and Nr receive
antennas that are close to each other relative to the targets, so that the
RCS does not vary between the different paths. The phase differences
induced by transmit and receive antennas can be exploited to form a
long virtual array with MtNr elements. This enables the monostatic
MIMO noise radar system to achieve superior spatial resolution as
compared to a traditional noise radar system.

CS is a new paradigm in signal processing that trades sampling
frequency for computing power and allows accurate reconstruction
of signals sampled at rates many times less than the conventional
Nyquist frequency, received considerable attention recently and has
been applied successfully in diverse fields. The theory of CS states
that a K-sparse signal η of length N can be recovered exactly from
few measurements with high probability via linear programming. Let
Ψ denote the basis matrix that spans this sparse space, and Φ a
measurement matrix. The convex optimization problem arising from
CS is formulated as follows

min ‖η‖1, subject to X = ΦΨη + E (1)

where η is a sparse vector with K principal elements, and the remaining
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elements can be ignored; Φ is an M ×N matrix incoherent with Ψ and
M ¿ N . E denotes the interference term which is a complex random
vector with correlation matrix G, where G is the N ×N matrix.

CS techniques offer a framework for the detection and allocation
of sparse signals for radar with a reduced number of samples [7–
9]. The application of compressive sensing to MIMO radar system
has been investigated quite intensively in recent years [10–12]. The
problem discussed in [10] is of the targets angular separation and
reduction of the physical array elements required for the system [10]
uses CS to reduce the number of real receiving elements so as to
obtain a sparse MIMO array. The sensing matrix is obtained from the
conventional digital beam forming matrix by selecting only a subset
of rows corresponding the sparse MIMO receive channels. In [11],
the DOA estimation for MIMO radar in a distributed scenario is
proposed. The transmitted waveforms in MIMO radar are known at
each receive antennas, so that each receive antenna can construct the
basis matrix locally, without the knowledge of the received signal at
other antennas. In [12], CS approach to accurately estimate properties
(position, velocity) of multiple targets was exploited for MIMO radar.
The sampled outputs of the matched filter at the receivers are used to
estimate the positions and velocities of multiple targets using MIMO
radar systems with widely separated antennas by employing sparse
modeling and compressive sensing.

In this letter, we present one specific scenario in which our
proposed system improves the performance considerably. The
treatment of monostatic MIMO noise radar focuses on estimation
of both target locations and target amplitudes, ignoring range and
Doppler effects. Since the number of targets is typically smaller
than the number of snapshots that can be obtained, estimation
of both target locations and target amplitudes can be formulated
as the recovery of a sparse vector using CS. Unlike the scenario
considered in [7–11] and [12], in the proposed monostatic MIMO noise
radar system it capitalizes on random or pseudo-random waveform to
construct measurement operator at the transmitter and convert the
measurement operator problems into radar waveform design problems.

In the next sections, after a statement of the monostatic MIMO
radar scenario, the three prime issues involving possibility knowledge
are investigated: first, the orthogonal random waveforms are proposed
for the compressive sampling which is based on the principle of CS;
then the sparse bases composed of the signal steering vectors is studied;
lastly, CS reconstruction algorithm is selected to estimate both target
directions and target amplitudes. We also provide simulation results
to show that the proposed approach can accomplish the accuracy
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Figure 1. Monostatic MIMO noise radar scenario.

estimation in the MIMO noise radar system by using far fewer samples
than existing conventional methods, such as amplitude and phase
estimation (APES) and generalized likelihood ratio test (GLRT) [6].

2. SIGNAL MODEL FOR MIMO NOISE RADAR

In this section, we describe a signal model for the MIMO radar. The
model focuses on the effect of the target spatial properties ignoring
range and Doppler effects. For simplicity, we consider a monostatic
MIMO radar system, shown in Figure 1, with an Mt-element transmit
array and an Nr-element receive array, both of which are closely spaced
uniform linear arrays (ULA). The targets and antennas all lie in the
same plane. Assume that the inter-element spaces of the transmit and
receive arrays are denoted by ∆t and ∆r, respectively (see Figure 1).
The targets appear in the far-field of transmit and receive arrays.

At the transmit site, Mt different bandlimited and random noise
signal transmitted are modeled as

smt(t) = umt(t) exp (i2πf0t) (2)

where 1 ≤ mt ≤ Mt. f0 is the center frequency of the waveform.
umt(t) = µmt(t)+iυmt(t). µmt(t) and υmt(t) are stationary, orthogonal
random process with bandwidth B. Let smt(t) denote the waveform
transmitted by the mt-th transmit antenna.

amt(θ) = exp (i(2π/λ)(mt − 1)∆t sin θ)

is the transmit array steering vector, where λ denotes the wavelength.

A(θ) = [a1(θ), a2(θ), . . . , aMt(θ)]

is the transmitted signal steering matrix.

bnr(θ) = exp (i(2π/λ)(nr − 1)∆r sin θ)
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is the steering vector of the receive array.

B(θ) = [b1(θ), b2(θ), . . . , bNr(θ)]

is the received signal steering matrix. The backscatter from a point
target observed at the nr-th receiver, (1 ≤ nr ≤ Nr), is given by

xnr(t) = Sbnr(θ)A
T (θ)η + enr(t) (3)

where (·)T denotes the transpose. S = [s1(t), s2(t), . . . , sMt(t)]. η is the
complex amplitude proportional to the radar-cross-section (RCS) of
the point target, θ is the azimuth angle, enr(t) denotes the interference-
plus-noise term. The unknown parameters, to be estimated from
xnr(t), are direction parameter θ and amplitude parameter η.

3. COMPRESSIVE SENSING FOR MIMO NOISE
RADAR

The proposed approach for monostatic MIMO noise radar is based on
two key observations. First, there exists a small number of targets,
the unknown parameters θ are sparse in the angle space. Hence, the
property of the target (azimuth angles) is specified by η. If ηk is
the state element of the k-th target, we define ηk = αk. Otherwise,
let ηk = 0. Second, modulated version of the stationary random
process transmitted as radar waveforms smt(t) (1 ≤ mt ≤ Mt) form
a measurement matrix Φnr = [s1, s2, . . . , sMt ] that is incoherent with
the frequency base Ψnr (1 ≤ nr ≤ Nr) (the signal steering matrix)
that sparsify or compress the above mentioned classes of point targets
reflectivity functions η. By combining these observations we can
both eliminate the matched filter in the radar receiver and lower the
receiver A/D converter bandwidth using CS principles. Consider a new
design for a radar system that consists of the following components.
The transmitter is the same as in a classical MIMO noise radar; the
transmit antenna emit the bandlimited and random signal. However,
the receiver does not consist of a matched filter and high-rate A/D
converter but rather only a low-rate A/D converter that operates not
at the Nyquist rate but at a rate proportional to the target sparsity
(see Figure 2).

By CS theory, we can construct a basis matrix Ψnr for the nr-th
receive antenna as

Ψnr = bnr(θ)A
T (θ) (4)

The goal is to estimate η for all the K targets. Now, we discretize the
target angle space into a grid of N possible values η = [η1, η2, . . . , ηN ]T ,
which is a sparse target state vector. A non-zero element with index n
in η indicates that there is a target at the angles θn. Also, considering
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Figure 2. CS-based MIMO noise radar receivers for the transmitters
in Figure 1 perform neither matched filtering nor high-rate analog-to-
digital conversion.

the discrete-time waveform and discrete-angle space, we have linear
projections of the received signal at the nr-th antenna as

xnr(l) = ΦnrΨnrη + enr(l) (5)

where 1 ≤ l ≤ L and L is the snapshot number. Placing the output
of Nr receive antennas, i.e., x1, x2, . . . , xNr , in measurement vector
X = [x1(1), . . . , x1(L), x2(1), . . . , xNr(L)]T we have

X = ΦΨη + E (6)

where X is the NrL × 1 virtual data vector associated with the
monostatic MIMO noise radar. Φ = diag(Φ1, Φ2, . . . ,ΦNr) is a
NrL×MtNr diagonal matrix of the discrete-time waveform and diag(·)
represents the diagonalization operation. Ψ = [ΨT

1 , ΨT
2 , . . . ,ΨT

Nr
]T is a

MtNr ×N basis matrix. E = [eT
1 , eT

2 , . . . , eT
Nr

]T is a NrL× 1 matrix of
the noise term.

Our goal is to estimate both target directions and target
amplitudes. In other words, we want to solve for the vector η
in (6). Solving for η in (6) can be viewed as an ordinary inverse
problem. Compressed sensing reconstruction algorithms such as
minimum mean squared error (MMSE) estimation [13], and iterative
subspace identification (ISI) [14] are well-known for solving this type
of problems. However, OLS method is a powerful and simple tool for
solving this type of problems. In this letter we apply OLS method
in the monostatic MIMO noise radar to reconstruct the sparse target
scene vector η in (6). The numerical example of the recovery results
will be shown in Sec. 4. It shows that the compressed sensing based
monostatic MIMO noise radar system has good estimation results both
in target directions and target amplitudes and has a good robustness.

4. SIMULATION RESULTS

In this section, the simulation is carried out to illustrate the correctness
and the performance of the proposed method. The monostatic MIMO
noise radar system, with uniform linear array (ULA) in which the
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Figure 3. The estimated az-
imuth angles of the targets.

Figure 4. The estimated az-
imuth angles of the targets.

half-wavelength spacing between adjacent antennas is used both for
transmitting and for receiving. The transmitted waveforms with
a bandwidth of 100 MHz are orthogonal and random signals. The
transmitted pulse width is 55µs, and the pulse repeat period is 500µs.

Simulation 1: Mt = 45 and Nr = 8, are considered. Assume that
three targets locate at θ1 = −5.00◦, θ2 = 5.00◦ and θ3 = 15.00◦ with
the same complex amplitudes αk = 1 (1 ≤ k ≤ K), SNR = 10 dB,
K = 3. The number of snap-shots is selected as L = 50 during the
simulation. The estimated result for azimuth angles θ of the targets
are shown in Figure 3. From Figure 3 we can see that both target
directions and target amplitudes can accurately be estimated by the
proposed method.

Simulation 2: Mt = 45 and Nr = 2, are considered. Assume that
three targets locate at θ1 = −15.00◦, θ2 = 0.00◦ and θ3 = 15.00◦ with
the same complex amplitudes η = 1, SNR = 10 dB, K = 3. The
number of snap-shots is selected as L = 50 during the simulation.
The estimated result for azimuth angles θ of the targets are shown in
Figure 4. If two receive antennas are used, the proposed approach can
also yield similar performance, but by using far fewer samples. From
Figure 4 both target directions and target amplitudes can accurately
be estimated by the proposed method.

Simulation 3: Mt = 45 and Nr = 8, are considered. Assume that
three targets locate at θ1 = −5.00◦, θ2 = 5.00◦ and θ3 = 15.00◦ with
the same complex amplitudes η = 1, SNR = 10 dB, K = 3, and the
number of Monte-Carlo trials is 50. Figure 5 plots the variation of
direction finding of three methods against the number of Monte-Carlo
trials. The performance of the proposed method is compared with that
of three methods, APES, GLRT and CS-based [11]. From Figure 5 we
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(a) Using 70 snapshots (b) Using 256 snapshots

(c) Using 256 snapshots (d) Using 70 snapshots

Figure 5. The estimated azimuth angles of the targets. (a) Proposed
method. (b) APES method. (c) GRLT method. (d) CS-based [11].

can see that azimuth angles can accurately be estimated in these trials
and the proposed method has a better robustness.

Simulation 4: Mt = 45 and Nr = 8, are considered. The number
of snap-shots is selected as L = 50 during the simulation. Assume
that two targets locate at θ1 = −5.00◦ and θ2 = 5.00◦ with the same
complex amplitudes η = 1, K = 2, and the number of Monte-Carlo
trials is 10000. The root-mean-square error (RMSE) of the azimuth
angles of the targets versus SNR are shown in Figure 6. It can be seen
from Figure 6, the proposed method has low RMSE for azimuth angles
estimation.

Simulation 5: Mt = 45 and Nr = 8, are considered. According
to (3) and the principles of CS, it is obvious that the more the number
of snap-shots is, the better recovery signals the algorithm can find.
Assume that two targets locate at θ1 = −5.00◦ and θ2 = 5.00◦ with
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Figure 6. RMSE of azimuth
angles versus SNR.

Figure 7. RMSE of azimuth
angles versus snapshots.

the same complex amplitudes η = 1, K = 2, and the number of Monte-
Carlo trials is 10000. The RMSE of the azimuth angles of the targets
versus the number of snap-shots are shown in Figure 7. It can be seen
from Figure 7, the proposed method has low RMSE for few samples.

5. CONCLUSION

We have proposed measurement operator at the transmitter in order
to improve parameters estimation performance of CS-based monostatic
MIMO noise radar for the case in which the corresponding waveform
optimization method could be implemented, according to the restricted
isometry property (RIP) and/or signal-to-interference ratio (SIR). The
proposed method has been used to estimate both target directions
and target amplitudes for the proposed monostatic MIMO noise radar
systems. It is superior to these conventional methods, i.e., the APES
and GLRT techniques, when fewer receive antennas are active.

We are currently working on extending this letter by developing
the complete proof for the RIP and/or SIR for different random or
pseudo-random waveform and by studying the sparse signals in the
range-Doppler-angle space. Moreover, we will evaluate such assertions
from a system engineering viewpoint.
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