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Abstract—Split-field finite-difference time-domain (SF-FDTD) meth-
od can overcome the limitation of ordinary FDTD in analyzing
periodic structures under oblique incidence. On the other hand,
huge run times of 3D SF-FDTD, is practically a major burden in
its usage for analysis and design of nanostructures, particularly when
having dispersive media. Here, details of parallel implementation
of 3D SF-FDTD method for dispersive media, combined with total-
field/scattered-field (TF/SF) method for injecting oblique plane wave,
are discussed. Graphics processing unit (GPU) has been used for this
purpose, and very large speed up factors have been achieved. Also
a previously reported formulation of SF-FDTD based on the Drude
model for dispersive media, is extended to cover Drude-Lorentz model,
which is usually needed for materials such as gold. The resulting
reduction in the number of variables in this formulation, not only
helps in reducing the computational time, but also makes it possible
to be implemented in GPU, where its memory limitation is a major
concern. As an example for demonstrating the importance of this
method in optimization of nanophotonics structures, improvement in
the performance of a refractive index sensor, made of an array of
nanodisks, using suitable angle of incidence is reported. To the best of
our knowledge this is the first report of GPU implementation of SF-
FDTD method, capable of analyzing periodic dispersive media under
oblique incidence.

Received 5 January 2012, Accepted 9 February 2012, Scheduled 18 February 2012
* Corresponding author: Bizhan Rashidian (rashidia@sharif.ir).



56 Shahmansouri and Rashidian

1. INTRODUCTION

Periodic plasmonic nanostructures have found many applications in
nanophotonics. The response of these structures usually depends on
the incident angle. In order to optimize structures, having a time
efficient analysis tool is essential. Split-field finite-difference-time-
domain (SF-FDTD) method [1] is a powerful method for analyzing
periodic structures under oblique incidence, a case that ordinary
FDTD is facing difficulty. SF-FDTD method has the advantage of
wideband analysis of periodic structures by considering only one unit
cell. This method has been used for analyzing dielectric or lossy [1–
7], anisotropic [8] and dispersive [9, 10] periodic structures. We have
recently reported an improved formulation of 3D SF-FDTD [11] for
analyzing dispersive media. In deriving those formulations,Drude
model was assumed for dispersive media. Although Drude model can
be applied to metals such as silver or aluminum in visible or infrared
spectral range, for some other materials such as gold, it might be
necessary to use Drude-Lorentz model. In this paper the extended
formulation for implementing Lorentz model in SF-FDTD is reported.
This implementation of Drude-Lorentz model has considerably reduced
number of variables compared to the previously reported works [9, 10].

Using SF-FDTD, especially in the case of dispersive media, faces
the problem of huge runtimes needed on ordinary computational
platforms. This challenge originates from the large number of variables
present in the SF-FDTD formulation, much more than that in ordinary
FDTD.

One logical solution for reducing the computational load of FDTD
could be increasing the time step. However, it cannot be used in
fully explicit FDTD method, due to Courant stability condition [12,
Chap. 4]. Some methods have been reported for ordinary FDTD
based on implicit FDTD to overcome the Courant stability restraint on
the time step of fully explicit FDTD. ADI-FDTD [13–16], and LOD-
FDTD [17–21] have been developed for this purpose. In this way, up
to 5 times reduction in computation times have been reported [21].
These methods require larger memory than fully explicit FDTD. Also
the implementation of these methods for 3D problems faces more
complexity compared to 2D problems.

Parallel processing can efficiently reduce the runtime. Among
different approaches, such as using clusters [22] or field programmable
gate arrays (FPGA) [23], using graphics processing unit (GPU) is more
efficient, and cheaper in reducing runtimes. In spite of large efforts on
GPU parallel programming for ordinary FDTD [24–31], GPU parallel
programming for SF-FDTD has not been reported yet, to the best of
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our knowledge. Even though cluster programming by using Massage
Passing Interface (MPI) has been reported for SF-FDTD [32, 33], it has
not achieved good efficiency, compared to the GPU implementation
reported here.

In order to show the practical importance of this method in
designing nanostructures, a plasmonic refractive index sensor made
of an array of nanoparticles is investigated. It is shown that the
refractive index sensing performance can become much better at
oblique incidence, compared to normal incidence.

The extended formulation for applying Lorentz model in SF-
FDTD is described first. After a brief review on GPU programming,
implementation of SF-FDTD combined with Drude-Lorentz model for
dispersive media and total-field/scattered-field (TF/SF) method (for
plane wave injection) on GPU will be discussed, and the achieved speed
up factors will be reported. Refractive index sensors are introduced
next, and the results of simulations done for a plasmonic refractive
index sensor will be discussed.

2. FORMULATION OF LORENTZ MODEL IN SF-FDTD

To analyze a structure with periodicity in two dimensions (y and z),
only one unit cell can be considered (Fig. 1), by taking advantage of the
periodic boundary condition in these directions. In the third direction
(x) the structure should be truncated, by using an appropriate
absorbing boundary condition. Convolutional perfectly matched layer
(CPML) [34] is chosen for this purpose.

Figure 1. One unit cell of a periodic array.
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In the SF-FDTD method, the field transformation is applied to
the electric and magnetic fields in order to eliminate the phase shift
between periodic boundaries in oblique incidence [12, Chap. 13]:

P̆ = Ĕ exp[j(kyy + kzz)] (1a)

Q̆ = η0H̆ exp[j(kyy + kzz)] (1b)

where Ĕ and H̆ are (phasor domain) electric and magnetic field vectors,
P̆ and Q̆ are (phasor domain) field transformed vectors, ky and kz

are the wave numbers of incident wave in the periodicity directions y
and z, and η0 is the intrinsic impedance of free space. By inserting
the field transformed variables in Maxwell’s equations, extra time-
derivative terms appear in the equations. To overcome this problem,
the transformed field variables (Px, Py, Pz, Qx, Qy, Qz) become split
and new variables (Pxa, Pya, Pza, Qxa, Qya, Qza) are defined. So the
method is named split field FDTD (SF-FDTD).

The so called field transformations can be also applied to current
J̆ by introducing a new field transformed vector variable Ğ [11]:

Ğ = J̆ exp[j(kyy + kzz)] (2)

The relative permittivity of a dispersive medium introduced by Lorentz
model in the frequency domain is given by [12, Chap. 9]:

ε (ω) = ε∞ +
P∑

p=1

Δεpω
2
p

ω2
p + 2jωδp − ω2

(3)

Considering one pole (p) of the Lorentz model and J̆p as the
polarization current vector associated with it, J̆p and Ĕ are related
through: [12, Chap. 9]

J̆p = jωε0

(
Δεpω

2
p

ω2
p + 2jωδp − ω2

)
Ĕ (4)

Replacing J̆p and Ĕ in the above equation by the field transformed
variables Ğp and P̆ results:

ω2
pĞp + 2jωδpĞp − ω2Ğp = jωε0Δεp ω2

p P̆ (5)

As in auxiliary differential equation (ADE) method, performing inverse
Fourier transformation on each term, and integrating, the time domain
equation for Gp is achieved:

∂2Gp

∂t2
+ 2δp

∂Gp

∂t
+ ω2

pGp = ε0Δεp ω2
p

∂P

∂t
(6)



Progress In Electromagnetics Research, Vol. 125, 2012 59

The equations of SF-FDTD with dispersion are as follows [11]:
ε∞
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Py = Pya − k̄z

ε∞
Qx, Qy = Qya +

k̄z

μr
Px (7e)

Pz = Pza +
k̄y

ε∞
Qx, Qz = Qza − k̄y

μr
Px (7f)

In the above equations (Pxa, Pya, Pza, Qxa, Qya, Qza) are time domain
split variables (“a” components), (Px, Py, Pz , Qx, Qy, Qz) are time
domain field transformed components, and (Gx, Gy, Gz) are time
domain transformed current components (Gx, Gy, Gz are computed
from the superposition of the results obtained from all poles, i.e., all
Gp values). k̄y = ky/k0, k̄z = kz/k0, k0 = 2πf/c, f is the frequency,
and c is the speed of light in the free space.

In the SF-FDTD method, each field component is updated in each
half time step (Δt/2). So the difference formula for Gp can be written
as:

G
n+1/2
p − 2Gn

p + G
n−1/2
p(

Δt
2

)2 + 2δp
G

n+1/2
p − G

n−1/2
p

Δt
+ ω2

pG
n
p

= ε0Δεp ω2
p

Pn+1/2 − Pn−1/2
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(8)

And update formula is:
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δp Δt/2 − 1
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As can be seen from Eq. (7), G components only affect the equations
of Pxa, Pya, Pza. Their update formulas are:

Pn+1/2
xa (i, j, k) = Pn−1/2

xa (i, j, k)

+
1

ε∞

⎡
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where Tx = cΔt/Δx, Ty = cΔt/Δy, Tz = cΔt/Δz.
The update equations for other variables can be written in a

similar way. The update equation of Gp (Eq. (9)) show that for
updating at time (n + 1/2)Δt, the components G

n−1/2
p , Gn

p , Pn−1/2,
and Pn+1/2 are needed. In order to minimize the number of variables
that have to be saved, it is better to update Gp in two stages, as
described below.

In each half time step, at first (Pxa, Pya, Pza, Qxa, Qya, Qza)
components are updated. Then Gp components are updated based on
the Eq. (9), without the last term which contains Pn+1/2. After that,
(Px, Qx), (Py, Qy), and (Pz , Qz) are updated, and then updating
G components is completed by adding the term containing Pn+1/2.
In this way implementation of one pole Lorentz model in SF-FDTD
adds only 9 extra variables, and 3 extra equations (3 variables for
saving G

n+1/2
p , 3 for G

n−1/2
p , and 3 for Pn−1/2). Adding each pole to

the dispersion model increases the number of variables by 6, and the
number of equations by 3. As discussed in [11], the ordinary SF-FDTD
method needs 18 variables for implementation. Using CPML absorbing
boundary condition adds 8 additional variables with the size of CPML
layer. Memory storage and consumption time for updating all of the
CPML variables are even less than that of one ordinary variable. So the
total number of variables for ordinary SF-FDTD with CPML is about
19, and by inclusion of Lorentz model, it increases to 28. Implementing
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Drude model (Eq. (11)) adds 6 extra variables to SF-FDTD [11], so
SF-FDTD with Drude-Lorentz model (Eq. (12)) needs 34 variables.

The other method of SF-FDTD for dispersive media [9, 10] uses
112 variables for implementation of Drude-Lorentz dispersion model.
The large number of variables not only increases the runtime, but also
may prohibit the implementation of the algorithm on a GPU card, due
to its limited memory.

ε (ω) = ε∞ −
P∑

p=1

ω2
p

ω2 − jωγp
(11)

ε (ω) = ε∞ −
PD∑

PD=1

ω2
PD

ω2 − jωγPD

+
PL∑

PL=1

ΔεPL
ω2

PL

ω2
PL

+ 2jωδPL
− ω2

(12)

3. PARALLEL PROCESSING FOR SF-FDTD

3.1. Overview of Parallel Processing by GPU

GPU devices are designed for compute-intensive, highly parallel
computations. Each GPU device contains streaming multiprocessors
(for example GeForce GTX 480 has 15 multiprocessors), and each
multiprocessor consists of scalar processors (32 for GeForce GTX 480),
and each scalar processor can execute 32 parallel threads (a thread is
the smallest unit of processing); thus 15360 parallel threads can be
executed in parallel by the GeForce GTX 480. Data-parallel processing
maps data elements to the parallel processing threads [35, 36].

Compute unified device architecture (CUDA) by NVIDIA [36],
provides a general purpose parallel computing architecture. CUDA
comes with a software environment that allows programmers to
use high-level programming language or application programming
interfaces such as C, FORTRAN, OpenCL, and Direct Compute.
CUDA allows programmers to program the GPU device, compute
parallel functions (called kernels) that when called are executed N
times in parallel by N different CUDA threads, and exchanging data
between the host (CPU) and the device (GPU). Threads can be
arranged into one dimensional, two dimensional or three dimensional
thread blocks. These blocks are organized into a one dimensional or
two dimensional grid. Data should be also partitioned into blocks that
can be handled in parallel by blocks of threads.

CUDA threads can access data from different memory spaces
on device, such as global, shared, constant, texture memory, and
registers. All threads have access to the global, constant, and texture
memories. These memories are persistent for all kernel launches during
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an application. Shared memory is visible only for the threads in each
block, and has the same life time of that block. Registers can be
accessed only by one thread. It should be mentioned that constant and
texture memory spaces are read-only. Registers, shared, and constant
memory, are the fastest memory spaces, followed by texture and global
memories. Global memory is the largest memory space. Accessing the
global memory takes 400 to 600 clock cycles of memory latency, because
this memory is off-chip and uncashed. Shared memory is also uncashed,
but is on chip, it is about 100x faster than the global memory. Texture
memory is off-chip but it is cashed, hence its latency is lower than the
global memory.

3.2. Implementation of SF-FDTD on GPU

Host (CPU) and device (GPU) are programmed by Visual Studio
C++ linked by CUDA. At first, static data, variables, and outputs
are initialized in the host. Static data (dimensions, time and spatial
steps, ky and kz, and CPML parameters) are copied to GPU constant
memory, constant arrays (like permittivity array) are bind to the
texture memory. The variables (Pa & Qa, P & Q, G, and CPML
variables) are initialized on the GPU global memory. The intermediate
variables (Pa & Qa, G, and CPML variables) are only initialized on
the GPU memory.

In FDTD method, for injecting a perfect plane wave at an
arbitrary angle to the 3D structure, TF/SF method is used [12,
Chap. 5]. In this method a virtual closed surface is considered around
the structure and the incident field components are added to the field
components on the virtual surface. The region inside the virtual
closed surface is called total-field (TF) region,which contains both
incident and scattered fields. The region outside the virtual surface
is called scattered-field (SF) region, which contains only the scattered
fields. Using an auxiliary one-dimensional grid and calculating the
incident field components on this grid, followed by applying the
field components to the 3D virtual surface, effectively reduce the
computational time. The implementation of TF/SF method for SF-
FDTD was discussed in [11]. Formulation was derived for calculating
the incident transformed fields on an auxiliary one-dimensional grid.
The calculated fields on this grid are applied to the planes of TF/SF
(Fig. 1). The same field values are imposed on all points of each TF/SF
plane. Implementation of TF/SF in SF-FDTD is simpler than ordinary
FDTD, where for injection of an oblique plane wave a Look-Up table
should be generated, based on the field components of auxiliary grid,
and data should be interpolated to obtain the incident field values on
TF/SF surface [12, Chap. 5].
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The equations for the auxiliary grid in SF-FDTD are as
follows [11]:
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Implementation of the above equations needs 14 variables. If the
auxiliary grid is truncated by an absorbing boundary condition, the
reflection error is unavoidable. The auxiliary grid can be made long
enough to avoid fields from reaching its end, even at the last time steps,
simply by choosing the number of spatial steps on this grid more than
the total number of time steps (T ). To avoid large memory usage of
these variables during the calculations of the structure, the calculation
of the auxiliary grid can be done before initializing the structure on
the GPU memory. After initializing the variables of the auxiliary grid,
the fields are calculated in parallel by launching appropriate kernels
based on Eq. (13) for all of the time steps (T ). In each half time
step (Δt/2), the field values which should be applied to the TF/SF
interfaces (Py, Pz, Qy, Qz of points A and B on the auxiliary grid of
Fig. 1) are saved in a Source matrix on the GPU global memory. These
values are then added to (Pya, Pza, Qya, Qza) components of TF/SF
planes while running the structure. This is the advantage of SF-FDTD,
over ordinary FDTD, for oblique incidence. In the implementation of
the TF/SF for ordinary FDTD, the points on each TF/SF plane get
different values, and in each time step the fields of every points located
on TF/SF planes should be saved. By finishing the auxiliary grid
calculations, all its variables are cleaned from the global memory, and
only the Source matrix is kept. This strategy helps to keep free the
maximum amount of device memory during the analysis. After that,
the structure variables (Pa & Qa, P & Q, G, and CPML variables) are
initialized in the GPU global memory and the kernels for computing
equations of SF-FDTD are launched one by one. Variables are arranged
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into data blocks. In each kernel launch, data blocks are loaded from the
global memory to the shared memory (being on chip, thus very fast),
update equation is run, and the results are sent to the global memory.
By finishing the calculations at each half time step, the field variables
(P & Q) are sent to the host for post processing. The flowchart of
algorithm is shown in Fig. 2.

As an example, kernel for calculating Pya is shown in Fig. 3. Pya

is selected here due to the fact that this is one of those variables that
Source matrix appears in its calculation. The field component saved in
the global memory is defined by d−variable. Each variable is arranged
into a 3D block, and in each kernel launch data block is copied to
a shared memory variable which is defined by sh−variable. The 3D
blocks are arranged such that the blocks in y-z plane compose a two
dimensional grid. In calculating each variable at point (i, j, k) its
neighboring field components are also needed. Considering that the
shared memory is visible only for threads in each block, the extra
data needed from neighboring cells, have to be copied in each block
of shared memory. At each half time step, the needed value of Source
matrix (defined as d−source are copied to the registers (QzHuyg1 and
QzHuyg2), and added appropriately to the TF/SF planes (marked as
d−x−HuygensDown and d−x−Huygensup). The static data which are
copied to the constant memory are defined by adding “d” before the
corresponding name (for example “dc”, instead of “c” for the speed
of light). The structure permittivity matrix is bind to the texture
memory and defined as Tx−Structure.

In GPU parallel processing, all the variables are kept in the global
memory of the device during the process, so their communication is
fast. As GPU devices has limited amount of memory (for example
1.5 GB for GeForce GTX 480), and SF-FDTD uses large number of
variables, reduction in the number of variables is very important here.

3.3. Speed up Factor

Transmission of a 35 nm thick Au thin film calculated by using parallel
SF-FDTD method, using Drude-Lorentz model for Au dispersion [37],
is shown in Fig. 4 for both TE and TM polarizations, in agreement with
the analytical results [38]. To investigate the efficiency of GPU parallel
processing, problems with different sizes are considered by changing
transverse dimensions of the so called Au thin film. Different numbers
of cells in the periodicity (y-z) plane are considered, while the number
of cells in the third direction (x) is kept constant (160 number of cells).
The number of time steps is set to 15000. In Table 1 the runtimes by
using parallel algorithm on a GPU device (GeForce GTX 480) are
compared with the runtimes of a nonparallel SF-FDTD (Visual Studio
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Figure 2. Flowchart of GPU parallel programming for SF-FDTD.
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Figure 3. Kernel for calculating Pya component.

(a) (b)

Figure 4. Transmission through 35 nm thick Au thin film, comparison
between parallel SF-FDTD and analytical results. Both TE and TM
polarizations are shown.
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Table 1. Comparing the CPU and GPU runtimes for different problem
size in the y and z directions, the size in x direction is kept constant
(160 cells), the number of time steps is set to 15000.

Size of Transverse
Plane

CPU
Runtime

GPU
Runtime

Speed Up Factor

8 × 8 497 sec 129 sec 3.8
16 × 16 1314 sec 144 sec 9.1
32 × 32 1.67 hours 219 sec 27.5
64 × 64 7.5 hours 609 sec 44.3

128 × 128 49.3 hours 2165 sec 82
160 × 160 84.4 hours 3345 sec 90.8

C++) on a Quad core CPU (Intel R©Core(TM) i7 930 @ 2.80 GHz).
The speed up factor is also calculated by dividing the runtime of CPU
by that of GPU. It can be seen that for small problem sizes, the speed
up is low, but it increases efficiently for larger problem sizes up to
90. Ordinary FDTD method combined with Drude-Lorentz model on
GPU has been reported by Lee et al. [31]. Speed up factor of 21 was
reported in comparison with the serial C++ version.

4. REFRACTIVE INDEX SENSOR

4.1. Refractive Index Sensor Overview

Plasmon resonances are observed in the interaction of noble metals,
such as gold or silver, with incident electromagnetic waves. The Surface
Plasmon Resonance (SPR) occurs on the surface of thin metallic
films [39]. Localized Surface Plasmon Resonance (LSPR) occurs for
metallic nanoparticles [40]. The plasmon behavior strongly depends
on the structural geometry (size, shape), and also material properties
of metal and surrounding medium [41]. Shift of plasmon resonant
wavelength by the change in the refractive index of surrounding
medium is the basis of plasmonic refractive index sensors. These
sensors have attracted great attention in chemical, biological and
gas sensing [42–47]. Two major kinds of these sensors have been
developed: (1) Excitation of SPR on a metallic thin film, and
measuring the shift of SPR wavelength, or excitation angle, caused by
changing the refractive index of surrounding medium [48]. (2) Using
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metallic nanoparticles in solution [49, 50], or in a periodic array [51–
58], and measuring the shift of LSPR resulting from the change
in the refractive index of surrounding medium. The SPR sensors
mainly use the attenuated total internal refraction method for plasmon
excitation. Kretschman configuration, by using prism coupling, is a
usual excitation method [48]. These sensors have better sensitivity
than LSPR sensors, and are commercially available. On the other
hand, LSPR sensors are based on using transmission/extinction
measurements, not requiring bulky prism excitations used in SPR
excitation. That’s why the LSPR sensors have attracted so much
attention for nanoscale applications. Large efforts have been done
to improve the sensitivity S = Δλ/Δn (where, Δn is the change
in the refractive index, expressed in Refractive Index Unit (RIU),
and Δλ is the corresponding wavelength shift), and figure of merit
FOM = S/FWHM (FWHM is the full width at half maximum) of
plasmonic refractive index sensors. NanoDisk arrays are investigated
in [51, 52], the sensitivity and FOM were reported as S ∼ 178 nm/RIU,
FOM ∼ 2 in [51], and S ∼ 84 nm/RIU, FOM ∼ 0.19 in [52].
Symmetric structures could not show high sensitivity and FOM. To
improve sensitivity, arrays of nonsymetric nanoparticles have been
considered. Nanowire array (S ∼ 300 nm/RIU) [53], nanorod array
(S ∼ 884 nm/RIU, FOM ∼ 1), norod array combined with cavity
(S ∼ 354 nm/RIU, FOM ∼ 7.1) [54], and gold nanobar array placing
close to a thin gold film (S ∼ 600 nm/RIU, FOM ∼ 4.68) [55] are few
examples. More complicated structures, such as nanocrescent array
(S ∼ 332 nm/RIU, FOM ∼ 0.4) [56], nanocrosses array (S ∼ 500–
740 nm/RIU, FOM ∼ 2–2.2) [57], and double nanopillar array with
nanogap (S ∼ 1056 nm/RIU, FOM ∼ 12.2) [58] have also been
investigated.

It has been shown that dipolar couplings of neighboring plasmons
in a nanoparticle array tend to very narrow plasmon resonances [59–
61]. In [62], by changing the nanoparticle size and lattice constant of
periodic array, narrow and tuneable plasmon peaks have been achieved
under normal incidence. That leads to high FOM in refractive index
sensing. Narrow plasmon peaks and high phase sensitivity, has been
reported experimentally for array of gold nanodots at large angles of
oblique incidence [63]. We have reported numerically, by using parallel
SF-FDTD, the appearance of narrow plasmon peaks in Au nanodisk
array under oblique incidence [11, Fig. 8]. In this paper, we calculate
and compare the refractive index sensitivity of nanodisk array under
normal and oblique incidence. We will show that high sensitivity and
FOM can be easily achieved under oblique incidence, without getting
involved in more complicated structures.
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4.2. Simulation Results

A square array (with array constant (Λ) of 540 nm) of Au nanodisks
(with diameter of 180 nm and height of 40 nm) is considered. The
substrate is a 20 nm thick layer of indium tin oxide (ITO) on glass
(Fig. 5). This structure has been investigated in [11]. We have shown
that under oblique incidence by using TE polarization (electric field
along one axis of the square array) the plasmon peak has become
narrower by increasing angle. Nanodisks were considered in water
having refractive index of n = 1.327. FWHM was 68 nm at normal
incidence, and 14 nm at incident angle of θ = 22◦. Here the extinction
cross section of the array is plotted by changing the refractive index
of the medium surrounding the nanodisks from n = 1.2 up to n = 1.5.
The results for normal incidence are shown in Fig. 6(a), and for θ = 22◦
are shown in Fig. 6(b). In calculating the extinction cross section
of the array, Drude-Lorentz model was considered for Au dispersion.
The sensitivity and FOM are calculated from the results of Fig. 6.
For normal incidence, S ∼ 300–380 nm/RIU, and FOM ∼ 4.85–
5.2 are achieved. While for θ = 22◦, S ∼ 370–500 nm/RIU, and
FOM ∼ 14.8–33 are achieved. It can be seen that using oblique
incidence efficiently increases the FOM, thus the performance in the
refractive index sensing. This example demonstrates the applicability
of the SF-FDTD in optimization of plasmonic nanostructures.

By changing the refractive index, it can be seen that for normal
incidence the extinction cross section changes gradually, but for oblique
incidence at θ = 22◦ the extinction cross section is larger for n = 1.327.
The nanodisks in the array experience far field (dipolar) coupling. The
plasmon spectra are strongly affected by the excitation of diffraction
grating orders into the medium surrounding the nanodisks and also the
substrate. This effect was fully discussed in [11, Sec. 3B]. The cut off

Figure 5. Au nanodisks array under oblique incidence with TE
polarization.
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(a) (b)

Figure 6. Extinction cross section of nanodisk array by changing
refractive index. (a) Normal incidence. (b) Oblique incidence, θ = 22◦.

wavelength of the first grating order into each layer, L (ITO: nITO =
1.45, and medium surrounding the nanodisks: nm) are calculated by:
λ1stL = Λ × nair × sin(θ) + Λ × nL.

At normal incidence λ1stITO and λ1stm occurs far from the plasmon
peak and have less effect on the shape of the curve. At θ = 22◦,
the λ1stITO and λ1stm occurs near the plasmon peak, strongly affect
the shape. The interaction of diffraction grating order and plasmon
resonance is maximum at θ = 22◦ for nm = 1.327. For other amount
of nm, the maximum interaction may occur at different angles.

5. CONCLUSION

In conclusion, a formulation was derived for applying Lorentz model
for dispersive media (using ADE method) in 3D SF-FDTD method. It
has been discussed that Drude-Lorentz model can be implemented in
SF-FDTD by considerably reduced number of variables compared to
other reported methods. GPU parallel programming by using CUDA
was explained for SF-FDTD combined with dispersive media and
TF/SF method. The efficiency of GPU parallel programming has been
reported by comparing runtimes of parallel algorithm with nonparallel
algorithm (Visual Studio C++). Speed up factor up to 90 has been
achieved.

We chose ADE method as our first step, based on comparison
made in [12, Chap.9, page 361] between ADE and recursive convolution
methods (RC, PLRC), and the fact that availability of fields at
each half time step in SF-FDTD simplifies implementation of ADE
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(alleviating the need for time averaging used in ADE for ordinary
FDTD). Considering more recently reported works [21] on recursive
convolution methods, adapting them to the method presented in this
paper, might result in more improvements.

Refractive index sensing for nanodisks array under oblique
incidence was compared with normal incidence. Much better
performance was achieved under oblique incidence. This demonstrates
the importance of having an efficient numerical tool for analyzing
periodic structures under oblique incidence, where the ordinary FDTD
cannot be used.
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