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Abstract—In this work, the enhancement in photonic band gap
(PBG) in a dielectric-semiconductor photonic crystal (DS PC) is
investigated. We consider two possible schemes that can be used to
enhance the PBG in the near-infrared region. The first scheme is to
add an ultrathin metal layer into the DS PC such that a structure
of ternary metal-dielectric-semiconductor (MDS) PC is formed. The
second scheme is to make use of the heterostructured PC. In scheme 1,
it is found that the addition of metal layer will significantly move
the left band edge to the shorter wavelength position, leading to
an enlargement in the PBG. This enlargement can be extended as
the thickness of metal film is increased. In addition, a pronounced
enhancement in PBG is achieved when the metal with a higher plasma
frequency is used. In scheme 2, we find that the PBG can be
significantly enlarged compared to scheme 1. In addition, the increase
in the band extension is shown to be four times larger than that in
scheme 1. The results illustrate that, in order to enhance the PBG,
the use of scheme 2 is superior to scheme 1. The enhancement of near-
infrared (NIR) PBG is of technical use in the optical communications.
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1. INTRODUCTION

Photonic crystals (PCs), artificially periodic media, have attracted
much attention over the past two decades [1–4]. Depending on the
structural dimensions, PCs can be one-, two-, or three-dimensional.
The fundamental optical physics, such as the existence of the photonic
band gap (PBG), can simply be understood in the one-dimensional
(1D) PCs. Simple all-dielectric 1D PCs, which are made of two
alternating materials with distinct refractive indices, are also called
distributed Bragg reflectors (DBRs) [4]. A DBR functioning as a mirror
plays an important part in modern photonics because of its wide use
in solid-state lasers.

In practical applications, a PC with wide PBG could be of interest
to the community. In optical communications and telecommunications,
potentially useful PCs are made of dielectric and semiconducting
materials. For instance, a usual binary PC consists of Si and SiO2

in each period. Such semiconductor-dielectric (SD) PCs can exhibit
PBGs in the NIR to mid-IR frequency regions. It is well known that, in
the visible region, the bandwidth of PBG in an SDPC like Si/SiO2 have
relatively larger refractive index contrast (∼ 3.46 for Si and 1.46 for
SiO2) than most all-dielectric PCs and thus has a wider PBG, However,
in the NIR region, PBG will be reduced because the refractive index of
SiO2 has been increased to 2.25, leading to a decrease in the refractive
index contrast [5–7].

To enhance the bandwidth of PBG in a PC, several methods have
been proposed thus far. In a binary all-dielectric PC, the PBG can
be enlarged by simply increasing the refractive index contrast of the
constituents [8]. PBG can also be enhanced in a disordered or chirped
PC [9–13]. Using the heterostructured PC, a strongly extended PBG
is obtainable [14]. Recently, another scheme of extending PBG is
reported, that is, a ternary PC which has three different materials
in each period. Optical properties in ternary PCs with different
constituent materials have been available [15–19]. Most of them are
primarily paid attention to the enhancement of omnidirectional band
gaps (OBGs). In [20], Dai et al. use the superconductor in a ternary
PC and show that OBG can be markedly extended and be further
temperature-tunable because of the temperature-dependent London
penetration length in superconductors. Recently, Kong, et al., reported
the enhancement in OBG in a one-dimensional ternary plasma PC [21].

Motivated by the ideas of ternary PC together with heterostruc-
tured PC, in this work, we would like to analyze the band gap extension
for a semiconductor PC in the near-infrared. Two schemes will be pro-
posed to enhance the band gap. In scheme 1, a thin metal layer is
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added in the original binary DS PC such that the structure become
ternary, i.e., each period is made of metal, dielectric, and semiconduc-
tor. The structure of ternary PC is called the MDS PC and is depicted
in Figure 1. Here, the semiconductor will be taken to an extrinsic
semiconductor, n-Si whose permittivity can be tuned by the impurity
concentration. In addition to the band gap extension, this selection
also allows us to investigate how the PBG is affected by the doping
impurity concentration [22]. The second scheme is to use the photonic
heterostructure, i.e., a heterostructured PC is formed by cascading two
or more binary DS PCs with different constituent thicknesses in each
PC. We will demonstrate that the enhancement of PBG in scheme 2
is superior to that of scheme 1.

The format of paper is given as follows: Section 1 is the
introduction. The theoretical method and related materials
electromagentics to be used in our calculation are described in
Section 2. The numerical results, including the binary and ternary PCs
(scheme 1), and the heterostructured PC (scheme 2) are presented in
Section 3. The conclusion is then summarized in Section 4.

2. BASIC EQUATIONS

As mentioned in Introduction, we shall use two schemes to enhance
the band gap of a DS PC. The structure of the first scheme is shown
in Figure 1, in which a structure of one-dimensional ternary metal-
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Figure 1. The structure of a one-dimensional ternary metal-dielectric-
semiconductor photonic crystal (MDS PC) immersed in air, where,
in each period, dielectric layer D is sandwiched by metallic layer M
and semiconductor layer S. Here, d1, d2, and d3 are the corresponding
thicknesses for layers M, D, and S, respectively. The optical wave with
a unit power impinges normally at the plane boundary, z = 0. Here,
R and T are reflectance and transmittance, respectively.
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Figure 2. Two binary DS PCs with different thicknesses. The
thicknesses of PC2 are denoted as d′i = di (1 + η), i = 2, 3 and η > 0.
The heterostructured PC is a combination of PC1 and PC2 in series.

dielectric-semiconductor photonic crystal (MDS PC) that is immersed
in air. Here, the total number of periods is taken to Np and the spatial
periodicity is Λ = d1 +d2 +d3, where the thicknesses of the constituent
layers are d1, d2, and d3, respectively. In addition, ε1, ε2, and ε3 are the
corresponding relative permittivities, respectively. The second scheme,
which is depicted in Figure 2, is a combination of two binary PCs in
series. The two PCs have different thicknesses in the constituent layers
and they are related by

d′i = di (1 + η) , i = 2, 3 and η > 0, (1)
where η is regarded as an incremental factor or chirp parameter.
Equation (1) illustrates that the constituents’ thicknesses of PC2 are
taken to be slightly larger than those of PC1.

In scheme 1, the metal layer is added in a DS PC. Thus, it is
necessary to describe the permittivity of metals. In what follows,
we assume that the temporal part, for all fields, is exp (jωt). With
this convention of time part, on the basis of the Drude model, the
permittivity of metal layer M is expressed as

ε1 (λ) = 1− ω2
p(

2πc
λ

)2 − jγ 2πc
λ

, (2)

where ωp is the plasma frequency and γ is the damping frequency. The
index of refraction of M is thus given by n1 (λ) =

√
ε1 (λ). For the

semiconductor layer S, we shall consider the extrinsic semiconductor,
the n-type silicon (n-Si). For n-Si, its relative permittivity is a
function of wavelength and the doping concentration and can be simply
expressed in terms of the plasma model, namely [5]

ε3 (λ, N) = ε∞

(
1− ω2

pe(
2πc
λ

)2 − jγe
2πc
λ

− ω2
ph(

2πc
λ

)2 − jγh
2πc
λ

)
, (3)
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where ε∞ is the high-frequency limit of the relative permittivity and
equal to the permittivity of the intrinsic Si, γe and γh are the damping
frequencies for the electrons and holes, respectively, and ωpe, ωph are
the electron and hole plasma frequencies given by

ωpe, h =

√
ne, he2

me, hε0ε∞
. (4)

Here, me, h are the effective masses of electron and hole, ne, h are
the carrier concentration of electron and hole, respectively. The
concentrations of electron and hole are written as [6]

ne, h =

√
n2

i +
N2

4
± N

2
, (5)

where ni is the intrinsic electron concentration of Si and N is the
doping impurity concentration. The corresponding refractive index is
then given by

n3 (λ,N) =
√

ε3 (λ, N). (6)

The photonic band gap of the PC in scheme 1 of Figure 1 can
be investigated by way of the reflectance spectrum. We use the
transfer matrix method (TMM) to calculate the reflectance spectrum.
According to TMM, we must first compute the total system matrix
which can be written as [8]

M =
(

M11 M12

M21 M22

)

= D−1
A

(
D1P1D

−1
1 D2P2D

−1
2 D3P3D

−1
3

)Np
DA. (7)

where the dynamical matrix Dq (q = A, 1, 2, 3), under normal
incidence, is expressed as

Dq =
(

1 1
nq −nq

)
, (8)

where q = A is for air with εA = 1, and Np is the number of periods.
The propagation matrix Pi in Equation (7) for layer i (i = 1, 2, 3)
takes the form

Pi =
(

exp (jkidi) 0
0 exp (−jkidi)

)
, (9)

where ki = ni(2π/λ) is the associated wave number. The reflectance
R and transmittance T are then given by

R =
∣∣∣∣
M21

M11

∣∣∣∣
2

, T =
∣∣∣∣

1
M11

∣∣∣∣
2

. (10)
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The absorptance is A = 1−R− T .
The PBG structure in a PC can also be investigated by directly

plotting the dispersion relation K vs λ, where K is the Bloch wave
number. To compute the dispersion relation, we have to determine the
translation matrix for a single period, Ms, which is expressible as

Ms =
(

A B
C D

)
= D−1

1 D2P2D
−1
2 D3P3D

−1
3 D1P1. (11)

This matrix relates the complex amplitudes of the incident wave an−1

and the reflected wave bn−1 in one layer of a period to those of the
same layer in the next period, i.e.,(

an−1

bn−1

)
=

(
A B
C D

)(
an

bn

)
. (12)

According to the Bloch theorem, field solution can be expressed as a
Bloch form, namely

EK (z, t) = EK (z) e−jKzejωt, (13)

where K is the Bloch wave vector, and the amplitude is a periodic
function of spatial periodicity, i.e., EK (z + Λ) = EK (z). Then the
dispersion relation can be determined by the following relation, i.e.,

cos (KΛ) =
1
2

(A + D) . (14)

An explicit expression for Equation (14) can be obtained as [16]

cos (KΛ) = cosβ1 cosβ2 cosβ3 − 1
2

(
n1

n2
+

n2

n1

)
sinβ1 sinβ2 cosβ3

−1
2

(
n2

n3
+

n3

n2

)
cosβ1sinβ2 sinβ3− 1

2

(
n1

n3
+

n3

n1

)
sinβ1cosβ2sinβ3, (15)

where β` = k0n` d`, ` = 1, 2, and 3, with k0 = ω
√

µ0ε0 being the
free-space wave number. For a binary PC, say d3 = 0, Equation (15)
reduces to [8]

cos (KΛ) = cosβ1 cosβ2 − 1
2

(
n1

n2
+

n2

n1

)
sinβ1 sinβ2. (16)

In general, the Bloch wave number is complex-valued, K = Kr − jKi.
In the PBGs (stop bands), solution for K has an imaginary part Ki so
that the Bloch wave is evanescent. In the transmission band, where the
Bloch wave is a propagation mode because the solution for K is purely
real, i.e., K = Kr. It should be noted that, in the presence of loss,
A and D in Equation (11) are with imaginary parts which, in turn,
have a salient effect on Equations (14)–(16), that is, we will have a
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so-called complex photonic band structure (CPBS). In this case, Bloch
wave number K (and cos(KΛ)) will be complex everywhere (not only
in the PBG but also in the transmission band) [23].

As for the scheme 2 of Figure 2, the PBG extension will be
investigated on the basis of the calculated reflectance using TMM. In
this case, the total system matrix of a heterostructured PC is written
as

M =
(

M11 M12

M21 M22

)

= D−1
A

(
D2P2D

−1
2 D3P3D

−1
3

)Np
(
D2′P2′D

−1
2′ D3′P3′D

−1
3′

)Np
DA. (17)

The reflectance can be calculated from Equation (10).
Before presenting the numerical results, let us discuss the loss

factor arisen from the n-Si. In our calculation the doping concentration
will be taken on the order of 1019 cm−3 in n-Si. In this case, the
strongly doped semiconductor has absorption coefficient α on the
order of 100 cm−1 [24]. Because α will be directly related to γe and γh

in Equation (3), the damping frequencies for the electrons and holes,
respectively, it is thus necessary to establish the relationship of how
to get γe and γh from α. Since we are interested in the strongly
doped n-Si, the third term in the bracket (contributed by holes) is
negligibly small and can be reasonably omitted. Thus, the permittivity
in Equation (3) becomes
ε3 (λ,N) = ε′3 − jε′′3

= ε∞

(
1− ω2

pe(
2πc
λ

)2 − jγe
2πc
λ

)
= ε∞

(
1− ω2

pe

ω2 − jγeω

)
. (18)

The wavenumber of n-Si can be written by

k3 =
2π

λ
n3 =

2π

λ

(
n̄3 − jk̄3

)
=

2π

λ

√
ε′3 − jε′′3, (19)

where the imaginary part k̄3 is directly related to the absorption
coefficient α, namely [8]

α =
4π

λ
k̄3. (20)

With Equation (19), a direct manipulation leads to

α =
4π

λ

1√
2

[ √√
ε′23 + ε′′23 − ε′3

]
, (21)

where ε′3 and ε′′3 are obtainable from Equation (18), with the results

ε′3 = ε∞

(
1− ω2

pe

ω2 + γ2
e

)
; ε′′3 = ε∞

γeω
2
pe

ω3 + γ2
eω

. (22)
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Equations (21) and (22) enable us to numerically determine γe when
α is given.

3. NUMERICAL RESULTS AND DISCUSSION

3.1. Enhancement of Band Gap Structure by a Metal Film

In the next calculation, we shall focus on the PBG structure in the
NIR region, in fact, 1–2µm. The metallic layer M is taken to be silver
(Ag) with plasma frequency ωp = 2π×2.175×1015 rad/s and damping
frequency γ = 2π × 4.35 × 1012 rad/s [25]. The dielectric layer D is
SiO2 with n2 = 2.25 [7]. The semiconductor layer S is taken to be
n-Si with ε∞ = 11.7 [6]. By taking α = 100 cm−1, the average value
of electron damping frequency can be found to be γe = 9.375, 47.385,
94.801, and 189.617 rad/s for N = 1 × 1019, 5 × 1019, 10 × 1019, and
20×1019 cm−3 according to Equations (21) and (22), where λ = 1.5µm
is fixed. These values in γe together with γh = 0 will be adopted in
the following calculation.

In Figure 3, we plot the PBGs for both the binary DS PC (black
curve) and the ternary MDS PC (red curve). Here, the thicknesses

PBG 1

PBG 2

K
   

π
r

V /
R

(   m)λ µ

0.5
0.4
0.3
0.2
0.1
0.0

-0.1

1.4                 1.5                  1.6                 1.7                  1.8

Figure 3. The calculated PBGs for the binary DS PC (without M)
and ternary MDS PC. The black curve is for the binary PC with
d2 = 0.8 and d3 = 0.4µm whereas the red curve is for ternary PC
with an additional metal layer of d1 = 1 nm. In calculating R, the
number of periods, Np = 15, is taken for both PCs.
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of layers D and S are d2 = 0.8 and d3 = 0.4µm. In ternary PC,
the metallic layer M has a thickness of d1 = 1nm. The impurity
concentration in n-Si is N = 1 × 1019 cm−3. It can be seen from
Figure 3 that the PBG 1 of binary PC has been enhanced to PBG 2
when the metallic layer is added. The PBG in the original binary PC
is ∼ 0.08µm. The right band edges of both PCs nearly coincide, but
the left band edge of ternary PC moves to a shorter wavelength. As
a result, the PBG is enhanced due to the presence of metal layer. In
ternary PC, the high reflectance range (HRR), in R-curve, is not so
flat as in binary PC, especially in the region close to the left band
edge. This slight deviation can be ascribed to the fact that we have
incorporated loss factor γ in Ag.

Keeping the same material parameters in Figure 3, Figure 4
depicts the PBG structures for the ternary PC at different thicknesses
of layer M. Here, the upper panel is the photonic band structure for
the infinite PC structure. The corresponding reflectance for a finite
PC structure (15 periods) is demonstrated in the lower panel. Good
consistence is obtained for both two plots. The PBG can be enlarged by
increasing the thickness of the metal layer. It is seen that there exists
a PBG in the vicinity of wavelength 1.5µm with different thicknesses
of metal layer. The left band edge has been significantly moved to
the shorter wavelength as the metal thickness increases. The shift in
the right band edge is not so pronounced as the left one. In addition,
the left band edge in the reflectance spectrum becomes sharper and
flat when the thickness of metal layer is increased. With the salient
shift in the left band edge, the PBG is thus enlarged considerably at
a thicker metallic layer. The other effect in the thick metal is that the
magnitudes of the reflectance in the pass bands have been increased
significantly, causing to weaken the wave transmission through the PC.
The role played by thin metal layer in the ternary PC is thus elucidated.

In Figure 4, we have fixed the number of periods of the PC. Since
the loss factor is incorporated, we continue to investigate the thickness
effect in the reflectance spectrum by changing the number of periods.
The result is depicted in Figure 5, where the thickness of metal is fixed
at d1 = 10 nm. It can be seen that although the metallic loss included,
the PBG does not substantially affected by the number of periods. The
effect is salient only in the pass bands, the Fabry-Perot-like oscillations.

We now investigate how the PBG is enhanced with different metal
layer. In Figure 6, we plot the PBGs in a ternary PC for different
metal layer, Cu, Ag, and Al. The calculated conditions are d1 = 5nm,
d2 = 0.8, d3 = 0.4µm, and N = 1 × 1019 cm−3. The plasma and
damping frequencies for Cu, Ag, and Al are ωp = 2π × 1.914 × 1015,
2π × 2.175× 1015, 2π × 3.570× 1015 rad/s, and γ = 2π × 8.34× 1012,
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2π×4.35×1012, 2π×19.4×1012 rad/s, respectively [25]. It can be seen
that the PBG enhancement is pronounced for Al, which has the largest
plasma frequency among them. The inclusion of damping frequency
leads to smoothing the left band edge, especially for Al. The smooth
in the left band (shorter wavelength) reflects the presence of complex
photonic band structure if the loss is considered. Another feature is of
note, i.e., using Al, the oscillations in the pass bands become nearly
unseen, as pictured in the reflectance plot. Based on the results of
Figures 4 and 6, we conclude that, in order to have a wide PBG, it is
better to select a metal with higher plasma frequency and thicker film.

As we have known that permittivity of n-Si is dependent on the

(   m)λ µ

(   m)λ µ

R
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π

r

V /

1.3              1.4             1.5              1.6               1.7            1.8

Figure 4. The calculated PBGs for a ternary MDS PC at d2 = 0.8
and d3 = 0.4µm at different thicknesses of metal layer, d1 = 1 (red),
5 (blue), 10 (pink), and 15 (black) nm, respectively. The enlargement
in PBG is obvious at a larger d1. The reflectance spectrum for a finite
MDS PC with 15-period is shown in the lower panel.
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Figure 5. The calculated PBGs for a ternary MDS PC at d2 = 0.8,
d3 = 0.4µm, and d1 = 10 nm for different numbers of periods, Np = 5,
15, 25, and 50, respectively.

impurity concentration, it is thus worthy of examining the dependence
of PBG on the impurity concentration. With different concentrations,
different values in γe can be obtained by Equations (21) and (22), as
given in Subsection 3.1. The results are plotted in Figure 7, in which
the conditions d1 = 5 nm, d2 = 0.8, d3 = 0.4µm, and M = Ag, are
used. It is seen that the whole PBG of interest is shifted to the left as
N increases.

Before going on to the next scheme for the band gap extension,
let us discuss how the above numerical results agree with experimental
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Figure 6. The calculated PBGs for a ternary MDS PC at d1 = 5nm,
d2 = 0.8 and d3 = 0.4 µm for different metals, Cu (blue), Ag (red),
and Al (pink). The reflectance spectra are calculated at Np = 50.

results. As shown in Figure 4, we have seen that the left band edge
can be moved to the left, i.e, blue-shifted, such that the PBG can be
enlarged. The shift to a shorter wavelength means that the right band
edge in the frequency domain is shifted to a higher frequency. Such
a shifting behavior has been experimentally reported by Keskinen et
al. [26]. In Figure 8 of their work, the authors have measured the
transmittance spectrum for an MDPC with M = Ag. The right band
edge is apparently shown to be blue-shifted as the thickness of Ag
increases, which is consistent with the result given in Figure 4. Thus,
the PBG enhancement due to the presence of metal layer in a photonic
crystal is clearly elucidated.

3.2. Enhancement of Band Gap Structure by a
Heterostructure PC

Let us now investigate the PBG enhancement based on the use
of scheme 2 in Figure 2. With the same parameters used in the
calculations of Figure 3, in Figure 8, we have plotted the reflectance
spectra for PC1, PC2, and PC1+PC2, where the incremental factor
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Figure 7. The calculated PBGs for a ternary MDS PC at d1 = 5nm,
d2 = 0.8 and d3 = 0.4µm for different impurity concentrations of n-Si,
N = 1×1019 (red), 5×1019 (blue), 10×1019 (pink) and 20×1019 cm−3

(black).

in Equation (1) is taken to be η = 0.04. We see that the PBG
enhancement in PC1+PC2 is much efficient compared to the scheme 1
in Figure 3. In Figure 3, the addition of thin metal layer increases the
gap width by only ∼ 0.02µm. However, in Figure 8, the magnitude
in the increase of gap width is about 0.08µm, nearly four times
larger than the enhanced scheme 1. The PBG enlargement in the
heterostructure PC can occur only when the PBGs of PC1 and PC2
must (partially) overlap each other, as illustrated by two vertical blue
dashed lines. The resultant PBG of PC1+PC2 ranges from the left
band edge of PC1 to the right band edge of PC2, as shown by the two
vertical red dashed lines.

It is worthy to mention that the choice of chirp parameter in
Equation (1) is crucial. Increasing η will significantly shift the PBG
structure of PC1 to the right. For example, if η = 0.1 is used, then the
shift to the right is too large such that there is no overlapping between
two PBGs. As a result, the goal of band gap extension will not be
reached.

Following this series combination, it is possible to continue to get
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= 0.04η

Figure 8. The calculated reflectance spectra for the binary DS
PC1 at d2 = 0.8, d3 = 0.4µm, PC2 at d2 = 0.8(1 + 0.04), d3 =
0.4(1 + 0.04)µm, and a series of combination of PC1 and PC2 for
impurity concentrations of n-Si, N = 1× 1019 cm−3.

PBG

R

(   m)λ µ

Figure 9. The calculated reflectance spectra for the heterostructured
PC of PC1+PC2+PC3. Here in PC1, d2 = 0.6, d3 = 0.2µm, in PC2,
d2 = 0.8(1+0.04), d3 = 0.4(1+0.04) µm, and in PC3, d2 = 0.8(1+0.08),
d3 = 0.4(1 + 0.08)µm.
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a wider PBG by cascading three binary PCs, i.e., PC1+PC2+PC3,
where PC3 is assigned to have the thicknesses of Equation (1). Taking
η = 0.04 for PC2 and η = 0.08 for PC3, the band gap extension is
demonstrated in Figure 9. It is apparent that the PBG is greatly
enhanced compared to that of PC1+PC2 in Figure 8. The right band
edge is now extended to near 1.75µm, leading to a much broader PBG.

4. CONCLUSION

We have studied the photonic band gap extension in a semiconductor-
dielectric PC in the near-infrared region. We have examined two
possible schemes. One is a ternary MDS PC. The other is the use
of photonic heterostructure. In scheme 1, it is found that the PBG can
be enlarged when a thin metal layer is incorporated. It can be further
enhanced if the thickness of metal layer is increased. Using a metal
layer with higher plasma frequency, it is beneficial to get the wider
PBG. The change in the impurity concentration in n-Si will cause the
PBG structure to be shifted to the shorter wavelength region. However,
no substantial extension in PBG due to the variation of concentration
is seen. In scheme 2, we find that the enhancement in the PBG is much
more efficient compared to scheme 1. It can be used to obtain a much
boarder PBG that is of technical use in semiconductor optoelectronics.
Finally in our calculations, we have considered all the losses coming
from the metal layer as well as the n-Si. Such factors are usually
neglected in the previous reports.
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