
Progress In Electromagnetics Research, Vol. 125, 119–135, 2012

INHOMOGENEOUS PLANAR LAYERED CHIRAL ME-
DIA: ANALYSIS OF WAVE PROPAGATION AND SCAT-
TERING USING TAYLOR’S SERIES EXPANSION

D. Zarifi*, A. Abdolali, M. Soleimani, and V. Nayyeri

Antenna and Microwave Research Laboratory, Department of
Electrical Engineering, Iran University of Science and Technology,
Tehran 1684613114, Iran

Abstract—In this paper, an analytic frequency domain method
based on Taylor’s series expansion approach is introduced to analyze
inhomogeneous planar layered chiral media for an arbitrary linear
combination of TM and TE polarizations. In the presented method,
electromagnetic parameters of inhomogeneous chiral media and also
the electric and magnetic fields are expressed using Taylor’s series
expansion. Finally, the validity of the method is verified considering
some special types of homogeneous and inhomogeneous chiral media
and comparison of the obtained results from the presented method
with the exact solutions.

1. INTRODUCTION

The interaction of electromagnetic fields with chiral media has
attracted many scientists and engineers over the years. The term chiral
media was first used by Jaggard et al. in 1979 [1], who defined chiral
media as consisting of macroscopic chiral objects randomly embedded
in a dielectric. The word chiral describes something that is handed, i.e.,
an object whose mirror image cannot be produced solely by rotating
and translating the original object. In addition to pioneering studies,
recently, there is rapid development on the study of electromagnetic
wave propagation in chiral media, such as chiral plate [2], chiral slab [3],
electromagnetic scattering with chiral objects [4–15], and coating with
chiral material for reducing radar cross-section of targets [16–20]. More
recently, chiral nihility as a special case of chiral media with many
applications has attracted increasing attention [21–32].
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The time-harmonic constitutive relations of an isotropic and
homogeneous chiral medium assuming ejωt as time dependence are
given by [33]:

D = εrε0E− jκ
√

ε0µ0H, B = jκ
√

ε0µ0E + µrµ0H, (1)
where ε0 and µ0 are the permittivity and permeability of vacuum,
εr and µr are the relative permittivity and permeability of the
chiral medium, respectively, and κ is the chirality parameter. Chiral
media have two important properties: the first one is optical (or
electromagnetic) activity, which can rotate the polarization plane of
a linearly polarized wave propagating through it; and the second
property is circular dichroism, which is attributed to the different
absorptivity of the right and left circularly polarized waves (RCP and
LCP) inside chiral medium. The wave equation in a homogeneous
chiral medium is:

∇2E + 2
κω

c0
∇×E +

ω2

c2
0

(
µrεr − κ2

)
E = 0 (2)

where c0 and ω are the speed of light in vacuum and the angular
frequency, respectively. It can be easily seen that the RCP and LCP
waves are the eigenpolarization of the wave equation in a homogeneous
chiral medium [33].

The study of wave propagation in inhomogeneous chiral media,
which have some applications in the polarization correction of the
lens and aperture antennas [34, 35], is much more complicated
than homogeneous chiral media. In order to study of wave
propagation and electromagnetic scattering from inhomogeneous non-
chiral media, several approaches have been presented such as Richmond
method [36, 37], solving Riccati equation [38], full-wave analysis [39–
41], rigorous full vectorial analysis [42], finite difference method [43],
using of Taylor’s series expansion [44], using of Fourier series
expansion [45], method of moments [46], equivalent source method [47],
and cascading thin linear layers method [48]. In this study, a general
method to frequency domain analysis of inhomogeneous planar layered
chiral media is introduced. The presented analytic approach is based
on the use of Taylor’s series expansion. In order to verify the validity
of the presented method, some special types of homogeneous and
inhomogeneous chiral media are considered and the obtained results
from the presented method are compared with the exact solutions.

2. PROPAGATION OF PLANE WAVES IN
INHOMOGENEOUS CHIRAL MEDIA

In order to obtain the solution for the reflection and transmission co-
efficients and even internal electromagnetic field of an inhomogeneous
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planar layered chiral media, the problem illustrated in Figure 1 have
to be solved. As previously mentioned, a linearly polarized wave prop-
agating in chiral media undergoes a rotation of its polarization, and so
TE and TM waves scattered by or transmitted through chiral media
are coupled. Since, it is assumed that a plane wave with an arbitrary
polarization (an arbitrary linear combination of TM (E‖

i ) and TE

(E⊥
i ) polarizations):

Ei =
[
E
‖
i (cos(θ0)x̂− sin(θ0)ẑ) + E⊥

i ŷ
]
e−j(kxx+kzz) (3)

where kx = (ω/c0) sin(θ0), and kz = (ω/c0) cos(θ0), is obliquely
incident with incident angle of θ0 from free space onto an
inhomogeneous chiral slab which occupies the region 0 ≤ z ≤ t.
The chiral layer has inhomogeneous material parameters ε(z, ω) =
ε0εr(z, ω), µ(z, ω) = µ0µr(z, ω), and κ(z, ω) which are assumed to be
z and frequency dependent. Henceforth, for simplicity, the frequency
dependence of these parameters is not shown.

Substituting the constitutive equations, Equation (1), into
Faraday’s and Ampere’s laws, respectively, the differential equations
describing inhomogeneous chiral layer are given by:

∂Ex

∂z
=

ωκ(z)
c0

Ey − jkxEz − jωµ0µr(z)Hy (4)

∂Ey

∂z
= −ωκ(z)

c0
Ex + jωµ0µr(z)Hx (5)
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Figure 1. A typical inhomogeneous planar layered chiral media
exposed to an incident plane wave with an arbitrary linear combination
of TM (E‖

i ) and TE (E⊥
i ) polarizations.
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−jkxEy =
ωκ(z)

c0
Ez − jωµ0µr(z)Hz (6)

∂Hx

∂z
= jωε0εr(z)Ey +

ωκ(z)
c0

Hy − jkxHz (7)

∂Hy

∂z
= −jωε0εr(z)Ex − ωκ(z)

c0
Hx (8)

−jkxHy = jωε0εr(z)Ez +
ωκ(z)

c0
Hz (9)

in which the following conditions

∂

∂y
= 0,

∂

∂x
= −jkx (10)

have been used; because the planar structure is of infinite extent along
the y-direction, and so the derivative of the fields with respect to the
y variable vanishes. In addition, in the inhomogeneous chiral layer,
kx must take on the same value as in free space in order to satisfy
the boundary conditions on tangential fields at the boundaries. By
eliminating Ez and Hz from Equations (4)–(9), one can write:

∂Ex

∂z
=

ω

c0
κ(z)

(
1− sin2(θ0)

κ2(z)− εr(z)µr(z)

)
Ey

−jωµ0µr(z)
(

1 +
sin2(θ0)

κ2(z)− εr(z)µr(z)

)
Hy (11)

∂Ey

∂z
= − ω

c0
κ(z)Ex + jωµ0µr(z)Hx (12)

∂Hx

∂z
= jωε0εr(z)

(
1 +

sin2(θ0)
κ2(z)− εr(z)µr(z)

)
Ey

+
ω

c0
κ(z)

(
1− sin2(θ0)

κ2(z)− εr(z)µr(z)

)
Hy (13)

∂Hy

∂z
= −jωε0εr(z)Ex − ω

c0
κ(z)Hx (14)

Furthermore, there are four boundary conditions enforcing continuity
of tangential electric and magnetic fields at the two boundaries.
According to Figure 1, at z = 0 one can write:

E
‖
i cos(θ0) + E‖

r cos(θ0) = Ex(0), E⊥
i + E⊥

r = Ey(0) (15)

− 1
η0

E⊥
i cos(θ0)+

1
η0

E⊥
r cos(θ0) = Hx(0),

1
η0

E
‖
i −

1
η0

E‖
r =Hy(0) (16)



Progress In Electromagnetics Research, Vol. 125, 2012 123

where η0 =
√

µ0/ε0 is the wave impedance in the free space. By
eliminating E

‖
r and E⊥

r from these equations, we can write:

Ex(0) + η0 cos(θ0)Hy(0) = 2E
‖
i cos(θ0) (17)

Ey(0)− η0

cos(θ0)
Hx(0) = 2E⊥

i . (18)

Similarly, the boundary conditions at z = t, are given by:

Ex(t)− η0 cos(θ0)Hy(t) = 0 (19)

Ey(t) +
η0

cos(θ0)
Hx(t) = 0 (20)

By solving the system of differential equations including the
Equations (11)–(14), the reflection and transmission coefficients can
be obtained.

3. SOLUTION TO THE SYSTEMS OF EQUATIONS
USING TAYLOR’S SERIES APPROACH

It can be clearly seen that solving analytically the system of differential
equations describing inhomogeneous chiral layer is very challenging.
Thus, in this section, we discuss the use of Taylor’s series expansion
to solve the system of differential equations. Assuming material
parameters of inhomogeneous chiral layer could be expanded using
Taylor’s series approach, one can write:

εr(z) =
∞∑

n=0

En

(z

t

)n
(21)

µr(z) =
∞∑

n=0

Mn

(z

t

)n
(22)

κ(z) =
∞∑

n=0

Kn

(z

t

)n
(23)

where En, Mn, and Kn are known coefficients. For convenience, it
is better to expand the impedance, the admittance, and the cross-
coupling terms as follows:

Z(z) = jωµ0µr(z) =
∞∑

n=0

Zn

(z

t

)n
(24)

Y (z) = jωε0εr(z) =
∞∑

n=0

Yn

(z

t

)n
(25)
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C(z) =
ω

c0
κ(z) =

∞∑

n=0

Cn

(z

t

)n
(26)

1
κ2(z)− εr(z)µr(z)

=
∞∑

n=0

An

(z

t

)n
(27)

where Zn, Yn, Cn, An are also known coefficients. It should be noticed
that Equation (27) is valid only if the use of Taylor’s series expansion is
possible. Afterwards, using the Taylor’s series expansion of the electric
and magnetic fields, one can write:

Ex(z) =
∞∑

n=0

Exn

(z

t

)n
, Ey(z) =

∞∑

n=0

Eyn

(z

t

)n
(28)

Hx(z) =
∞∑

n=0

Hxn

(z

t

)n
, Hy(z) =

∞∑

n=0

Hyn

(z

t

)n
(29)

where Exn, Eyn, Hxn, and Hyn are unknown coefficients, which
have to be determined. In order to determine the unknown
coefficients of Taylor’s series expansions of electric and magnetic fields,
Equations (24)–(29) have to be substituted in Equations (11)–(14),
which gives:

1
t

∞∑

n=0

(n + 1)Exn+1

(z

t

)n

=
∞∑

p=0

∞∑

q=0

CpEyq

(z

t

)p+q
(

1− sin2(θ0)
∞∑

r=0

Ar

(z

t

)r
)

−
∞∑

p=0

∞∑

q=0

ZpHyq

(z

t

)p+q
(

1 + sin2(θ0)
∞∑

r=0

Ar

(z

t

)r
)

(30)

1
t

∞∑

n=0

(n + 1)Eyn+1

(z

t

)n

= −
∞∑

p=0

∞∑

q=0

CpExq

(z

t

)p+q
+

∞∑

p=0

∞∑

q=0

ZpHxq

(z

t

)p+q
(31)

1
t

∞∑

n=0

(n + 1)Hxn+1

(z

t

)n

=
∞∑

p=0

∞∑

q=0

YpEyq

(z

t

)p+q
(

1 + sin2(θ0)
∞∑

r=0

Ar

(z

t

)r
)
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+
∞∑

p=0

∞∑

q=0

CpHyq

(z

t

)p+q
(

1− sin2(θ0)
∞∑

r=0

Ar

(z

t

)r
)

(32)

1
t

∞∑

n=0

(n + 1)Hyn+1

(z

t

)n

= −
∞∑

p=0

∞∑

q=0

YpExq

(z

t

)p+q
−

∞∑

p=0

∞∑

q=0

CpHxq

(z

t

)p+q
. (33)

Since the coefficients of a Taylor expansion of a function are unique, it
follows that if two functions are equal, their Taylor’s series coefficients
must agree. This argument justifies equating the coefficients terms
with the same power in two sides of Equations (30)–(33) and leads to
the following recursive relations:

Exn+1 =
t

n + 1

[
n∑

p=0

Cn−pEyp − sin2(θ0)
n∑

p=0

n−p∑

q=0

Cn−p−qAqEyp

−
n∑

p=0

Zn−pHyp − sin2(θ0)
n∑

p=0

n−p∑

q=0

Zn−p−qAqHyp

]
(34)

Eyn+1 =
t

n + 1


−

n∑

p=0

Cn−pExp +
n∑

p=0

Zn−pHxp


 (35)

Hxn+1 =
t

n + 1




n∑

p=0

Yn−pEyp + sin2(θ0)
n∑

p=0

n−p∑

q=0

Yn−p−qAqEyp

+
n∑

p=0

Cn−pHyp − sin2(θ0)
n∑

p=0

n−p∑

q=0

Cn−p−qAqHyp


 (36)

Hyn+1 =
t

n + 1


−

n∑

p=0

Yn−pExp −
n∑

p=0

Cn−pHxp


 (37)

Equations (34)–(37) for n = 0, 1, 2, . . . give a system of infinitive
coupled equations. Moreover, substituting Equations (28) and (29)
into the boundary conditions, Equations (17)–(20) gives:

Ex0 + η0 cos(θ0)Hy0 = 2E‖
i cos(θ0) (38)

Ey0 − η0

cos(θ0)
Hx0 = 2E⊥

i (39)
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∞∑

n=0

[Exn − η0 cos(θ0)Hyn] = 0 (40)

∞∑

n=0

[
Eyn +

η0

cos(θ0)
Hxn

]
= 0. (41)

Truncating Taylor’s series expansions at the positive integer N ,
Equations (34)–(37) for n = 0, 1, 2, . . . , N − 1, and Equations (38)–
(41) give a (4N + 4) × (4N + 4) system of coupled equations. Thus,
to find the unknown coefficients, a system of coupled equations should
be solved, either by an iterative procedure or by the inverse matrix
method. It should be noticed that the necessary condition for the
convergence of the solutions is the capability of expressing each of the
electric and magnetic material parameters, i.e., Equations (24)–(27),
by a converged Taylor’s series expansion at all points on the region
0 ≤ z ≤ t.

Once, unknown coefficients of Taylor’s series expansions were
determined, reflection and transmission coefficients could be identified.
It should be noticed that due to the chiral nature of medium, the
co- and cross-reflections and also co- and cross-transmissions should
be considered. The co- and cross-reflection coefficients of the planar
layered inhomogeneous chiral media at z = 0 can be expressed based on
the Taylor’s series coefficients of the electric field using Equation (28)
as the following:

RTE-TE =
[
E⊥

r

E⊥
i

]

E
‖
i =0

=
Ey(0)− E⊥

i

E⊥
i

=
Ey0

E⊥
i

− 1 (42)

RTM-TM =

[
E
‖
r

E
‖
i

]

E⊥i =0

=

[
Ex(0)− E

‖
i cos(θ0)

]
/ cos(θ0)

E
‖
i

=
Ex0

E
‖
i cos(θ0)

− 1 (43)

RTE-TM =

[
E⊥

r

E
‖
i

]

E⊥i =0

=
Ey(0)

E
‖
i

=
Ey0

E
‖
i

(44)

RTM -TE =

[
E
‖
r

E⊥
i

]

E
‖
i =0

=
Ex(0)/ cos(θ0)

E⊥
i

=
Ex0

E⊥
i cos(θ0)

(45)

Similarly, the co- and cross-transmission coefficients of the planar
layered inhomogeneous chiral media at z = t can easily be expressed
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based on the Taylor’s series coefficients of the electric field. For
instance, the co-transmission coefficients are given by:

TTE-TE =
[
E⊥

t

E⊥
i

]

E
‖
i =0

=
Ey(t)
E⊥

i

=
1

E⊥
i

N∑

n=0

Eyn (46)

TTM-TM =

[
E
‖
t

E
‖
i

]

E⊥i =0

=
Ex(t)/ cos(θ0)

E
‖
i

=
1

E
‖
i cos(θ0)

N∑

n=0

Exn. (47)

4. EXAMPLES, RESULTS AND DISCUSSIONS

In this section, three types of homogeneous and inhomogeneous chiral
layer are considered for analysis of the wave propagation and reflection
and transmission coefficients using the proposed approach. The first
and second examples have exact solutions and can be used to verify the
accuracy of the proposed method based on the Taylor’s series expansion
approach. The results presented in this section are obtained by solving
the system of coupled Equations (34)–(41) using the inverse matrix
method.

4.1. Example 1 (Homogeneous Chiral Slab)

Consider a homogeneous chiral slab with thickness of t = 0.2 m, and
the electromagnetic parameters as the following:

εr(z) = 4 (48)

µr(z) = 1 (49)

κ(z) = 1.5 (50)

illuminated by oblique incident of a linearly polarized plane wave
(TEz or TM z) with unity amplitude, and the excitation frequency of
1GHz. The problem of the plane wave propagation through an infinite
homogeneous chiral slab was analytically discussed in Ref. [3]. The
amplitudes of co- and cross-reflection and co-transmission coefficients
obtained from the exact solution and the presented method with
N = 40 versus the angle of incidence are compared in Figure 2.
It can be seen that for N = 40 or greater, the obtained solutions
from the presented method are in the excellent agreement with the
exact solutions. Further studies show that as the thickness of the
inhomogeneous chiral slab with respect to the wavelength increases,
the necessary number of unknown coefficients increases.
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Figure 2. Reflection and transmission coefficients as a function of
incident angle θ for homogeneous chiral slab. (a) Co- and cross-
reflection coefficients. (b) Co-transmission coefficients.

4.2. Example 2 (Inhomogeneous Chiral Nihility Slab)

In the second example, the propagation of a plane wave through an
infinite inhomogeneous chiral nihility slab of thickness t = 0.2m in
which both the permittivity and permeability are equal to zero [26],
is considered. Assume a plane wave with TEz polarization, unity
amplitude, and the frequency of 1 GHz illuminates normally the
assumed inhomogeneous chiral nihility slab whose the electromagnetic
parameters are as the following:

εr(z) → 0 (51)
µr(z) → 0 (52)
κ(z) = exp(z) (53)

The exact solution of this problem is presented in the Appendix A.
The amplitudes of the transverse components of the electric field in the
chiral nihility slab obtained from the exact solution and the proposed
method based on Taylor’s series expansion with N = 40 are shown
in Figures 3(a) and 3(b). Apparently, there is an excellent agreement
between the results from two different methods. It should be also
mentioned that the existence of x-component of electric field in the
chiral nihility slab is due to the polarization rotation of incident wave.

4.3. Example 3 (Inhomogeneous Chiral Slab)

In prior examples, the validity of the proposed method was verified. In
the third example, the problem of scattering from an inhomogeneous



Progress In Electromagnetics Research, Vol. 125, 2012 129

10.90.80.70.60.50.40.30.20.10

Analytic

Taylor N = 40

(a) (b)
z/t

Analytic

Taylor N = 40

10.90.80.70.60.50.40.30.20.10
z/t

1

0.8

0.6

0.4

0.2

0

|E
  
(z

)|
 [
V

/m
]

x

1

0.8

0.6

0.4

0.2

0

|E
  
(z

)|
 [
V

/m
]

y
Figure 3. Amplitudes of the transverse components of the electric
field in inhomogeneous chiral nihility slab for TEz polarization,
obtained from exact solution and from the presented method with
N = 40. (a) Ex(z), and (b) Ey(z).
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Figure 4. Reflection and transmission coefficients as a function of
incident angle θ for inhomogeneous chiral slab. (a) Co- and cross-
reflection coefficients. (b) Co-transmission coefficients.

chiral slab with thickness of t = 0.2m, which does not have an
exact solution and its relative permittivity, relative permeability, and
chirality parameter have the following typical profiles:

εr(z) = 4z (54)
µr(z) = 1 (55)

κ(z) =
1

1 + Qz
(56)
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which Q is an arbitrary constant, illuminated by oblique incident of a
linearly polarized plane wave (TEz or TM z) with unity amplitude, and
the excitation frequency of 1 GHz. Assuming Q = 0.5, the amplitudes
of co- and cross-reflection and co-transmission coefficients obtained
from the presented method with N = 40 versus the angle of incidence
are shown in Figures 4(a) and 4(b).

Finally, according the discussed examples, it can be concluded
that the proposed method for analyzing the inhomogeneous chiral
planar layered is efficiently applicable to such structures, whose
electromagnetic parameters and the cross-coupling term, i.e.,
Equation (27), can be expanded using Taylor’s series expansion.

5. CONCLUSIONS

A new analytic frequency domain approach was presented to solve the
problem of the propagation of electromagnetic waves in inhomogeneous
chiral media with arbitrary variations of dielectric permittivity,
permeability, and cross-coupling terms which could be expanded using
Taylor’s series approach. Using this method, the problem is then
equivalent to the solution of a system of coupled equations. In order to
verify the validity of the presented method, it was then used to solve the
scattering problem from the three special types of homogeneous and
inhomogeneous chiral slabs. The examples showed that the obtained
results from the presented method are in the excellent agreement
with the exact solutions. This method is very simple and fast, and
can be also generalized to solve the problem of the propagation of
electromagnetic waves in complex inhomogeneous bi-isotropic media.
In the future, it is expected that chiral inhomogeneous planar layers can
be optimally designed as microwave absorbers in a desired frequency
range and incidence angle range.

APPENDIX A.

In this section, the exact electric and magnetic fields in an
inhomogeneous chiral nihility slab are determined. Using εr(z) → 0
and µr(z) → 0 in Equations (11)–(14), one can obtain the following
differential equation for Ex:

d2Ex(z)
dz2

−
d
dz

(
κ(z)− sin2 θ0

κ(z)

)

κ(z)− sin2 θ0
κ(z)

dEx(z)
dz

+
(

ωκ(z)
c0

)2 (
1− sin2 θ0

κ2(z)

)
Ex(z) = 0 (A1)
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which Ex can be also replaced with Hx. It is seen that solving this
differential equation describing inhomogeneous chiral layer analytically
is difficult. For convenience, we consider Equation (A1) in the case of
normal incidence, i.e., θ0 = 0, which gives:

d2Ex(z)
dz2

− 1
κ(z)

dκ(z)
dz

dEx(z)
dz

+
(

ωκ(z)
c0

)2

Ex(z) = 0 (A2)

The general solution of this differential equation can be expressed as
the following:

Ex(z) = B1 sin
(

ω

c0

∫
κ(z)dz

)
+ B2 cos

(
ω

c0

∫
κ(z)dz

)
(A3)

and similarly:

Hx(z) = B3 sin
(

ω

c0

∫
κ(z)dz

)
+ B4 cos

(
ω

c0

∫
κ(z)dz

)
(A4)

which B1, B2, B3, B4 are unknown coefficients which have to be
determined using boundary conditions. Now, considering Example 2
and boundary conditions, Equations (17)–(20), we have:

B1 = −0.5, B2 = −0.866, B3 = −0.0023, B4 = 0.0013 (A5)

Once, unknown coefficients are determined, the transverse components
of electric field in the chiral nihility slab could be identified.
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