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Abstract—In this paper, a new look at the electromagnetic field in
a reverberating chamber (RC) is presented. It follows the fractional
Brownian motion (fBm) model and exploits the Hurst parameter as
the key parameter to discriminate among various RC configurations.
Experiments accomplished at the RC of the Universita di Napoli
Parthenope, formerly Istituto Universitario Navale (IUN), confirm the
physical soundness of the proposed model.

1. INTRODUCTION

Reverberating Chamber (RC) enjoys growing popularity as a very
attractive emulator of real-life environments. Hence, the RC first
used only as high field amplitude test facility for electromagnetic
interference (EMI) and compatibility (EMC), is now currently used for
a wide range of other measurements and applications, which include,
but are not limited, to radiated emission, shielding characterization
of material, antenna efficiency, exposition of biological material.
Moreover, since wireless applications have gained more and more
importance, the RC has attracted some interest as a repeatable test
facility where the devices and the communications can be tested.

The RC is an electrically large metallic enclosure in which
the input electromagnetic field is properly randomized by means
of an appropriately tailored process. The general principle of this
randomization is the generation of a statistically distributed field,
uniform, isotropic and randomly polarized.

In order to emulate and analyze the field in a RC appropriate
models and procedures have been conceived and applied [1-10].
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In [1,2] the well-established mode theory is proposed. By means
of the modal analysis it is shown that the amplitude of the RC electric
field is Rayleigh distributed. The main drawback in the employment
of the mode theory for RC description lies in the not convenient use
for predicting the response of the reference antenna or the test object
in the chamber environment.

In [3,4] the plane wave integral representation of the field, that
satisfies Maxwell’s equations and also include the statistical properties
expected for a well-stirred field, is presented. The statistical nature of
the field is introduced through the statistical properties of the plane
wave coefficients. In this way, it is simple to use it to calculate the
responses of the test object or reference antenna.

Last but not least, the RC field has been described in terms of
replicas of the transmitting field with proper polarization, phase and
time delay that are superimposed at the receiver side [5-8]. When only
scattered waves arrive at the terminal, the chamber emulates a NLOS
propagation channel [5-7]. Differently, when also a direct link between
the receiver and the transmitter antenna is present, a LOS propagation
channel occurs [8-10].

An alternative description of the RC field is given in terms of
chaotic model. The chaotic behavior of a mode-stirred RC is illustrated
in [11,12]. In [11] the chaotic properties of the RC field are gauged
in terms of Lyapunov exponent. Orjubin in [12] presents a study of
the chaoticity of an RC through the statistic of the eigen-frequencies
that are numerically determined by Finite Elements Method (FEM).
In both papers the chaotic behavior is numerically assessed but no
experimental results is provided to validate the theoretical model.

In this paper, the fractal model based on the fractional Brownian
motion (fBm) is used and tested over real measurements.

The fBm model is a physically grounded tool to look for alternative
RC parameter descriptors and estimators that could enhance the
comprehension of the RC electromagnetic fields.

Conceptually, this model can be framed within the chaotic
approach although the specific model that is used here is new. Further,
for the first time, a test on real experimental measurements of a chaotic
model is done.

2. THE fBm MODEL OF THE ELECTROMAGNETIC
FIELD IN THE RC

In this section, the fBm model, used in this paper, is described
and discussed. From chaos theory, a chaotic system is defined as a
dynamical system that exhibits a random-like behavior. When such
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behavior occurs, the system is said to possess a strange attractor and
the system itself is said to be chaotic [13]. Since strange attractors are
fractal sets [13], chaotic systems, such as the electromagnetic field in
an RC, can be therefore studied by means of the fractal theory.

The electromagnetic field received by a linearly polarized receiving
antenna is random and can be written as the sum of a large number,
say N, of elementary scattered fields [14]. By using the complex phasor
representation, the phasor at time ¢ is given by

Za )e —ion(t) (1)

where the factors a, (t) and <I)n( ) are random variables which represent
the amplitude and the phase associated to the n-th elementary field.
This model well matches the NLOS behavior of the electromagnetic
field in a RC [5, 6].

Mathematically, (1) can be seen as a random walk in a complex
plane in which the number of steps is ruled by N [14]. By sampling the

field at uniform time step T we can construct the sequence Bt =

{El,Eg,...,EM} where E,, = E (t = t,, = m7), with m spanning

from 1 to M. This sequence is a set of complex and stationary Gaussian
random variables, and hence the m-th sample can be expressed as

Em:Eﬁ +jE7i?T7 (2)

where j is the imaginary unit and E'¢ and EI™ are the real and the
imaginary part of the received field. These latter are both Gaussians
and stationary random variables.

Without loss in generality let us now to consider only the real part
of (2). It is possible to define the function B} (-) as the cumulative
sum of the field samples [15]

B (1) ZE . (3)

A sequence Bj (-) of values can be obtalned by spanning from m = 1
to M.
From (3), each sample can be written in terms of the function
B () as follows
By = B (1) "
E}° = By (tm) — By (tm-1), Ym > 1.
Eq. (4) shows that since the field sequence is a set of Gaussian variable,
the time difference of Bjj(-) values, also knows as increments, are
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Gaussian and stationary. This suggests that the function Bjj (-) is a
fBm [15], with H being the Hurst parameter, which can assume any
value in the range 0 < H < 1 [15].

In summary, the fBm of parameter H is defined to be a random
process on some probability space such that for any ¢ > 0 ad 7 > 0 the
increment {By(t + 7) — Br(t)} has the normal distribution with zero
mean and variance 727 [15].

When H = 1/2, the correlation between the past and the future
increments of B} () vanishes [15] and the special case of a Brownian
motion [15], with independent, stationary and normally distributed
increments, is obtained [15]. In terms of RC field, this corresponds to
the ideal case of a perfectly well stirred chamber which gives rise to a
completely randomized field, i.e., with independent field samples.

Cases where H # 1/2 are properly fractional [15], and the
correlation between the fBm increments is not zero [15], that is, the
variation of the chamber geometry with time gives rise to a correlated
field. In particular, two families of fBm’s corresponding respectively
to H > 1/2 and H < 1/2, can be defined. The first one corresponds to
a positive correlation between the increments of Bjj (-). In such a case
the fBm is said to be persistent [15]. For H < 1/2, the correlation is
negative, leading to an antipersistent fBm [15].

For the purpose of this paper, the most important fBm property is
the spectral behavior. The fBm is a non-stationary random process [16]
and therefore, its power spectrum cannot be defined by means of the
Wiener-Khinchin theorem. Nevertheless, the power spectral density
(PSD) of a fBm, i.e., the square of the absolute value of its Fourier
Transform (FT), is given by [16]

S () = 5 (5)

where 8 = 2H + 1. It must be pointed out that the evaluation of G is

a main step for the estimation of the Hurst parameter. If one uses the
logarithmic scale, (5) can be rewritten as follows

logyg (S8, (w)) = —Blogyg (w) - (6)
Eq. (6) is a linear relationship in a logarithmic plane. Therefore,
by means of a linear regression, for instance the Least Mean Square
method (LMS), we can get # and H

8—1
H = 5 (7)
It is important to note that in real case the fractal model must be
meant as physical fBm model, i.e., band-limited fractal.
Coming back to the complex field model we note that in our NLOS

RC case BY () and B (-), where B (-) is the fBm of the imaginary
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part, are two independent fBm’s having the same Hurst parameter.
Therefore, the function

By (tm) = B}; (tm) + ]B}—rln (tm) (8)

is an fBm in the complex plane [17], whose increments are normally
distributed, stationary and with the correlation depending on the H
values [16].

3. EXPERIMENTS: PRESENTATION AND DISCUSSION

This sections presents and discusses some experiments in support of the
fractal theory detailed in Section 2. The data analyzed are measured
at the IUN RC. It is a 2 m size cubic aluminum chamber whose internal
walls and in which three stirrers are used to randomize the field. The
first one (S1) is on the left of the entrance door, its shape is rectangular
of about 1.84m x 0.45m size; the second stirrer (S2) is in front of the
entrance door and its shape is approximately a Greek cross whose bars
are about of 1.84m x 0.25m size; the third stirrer (S3) is located on
the top of the chamber and is similar to S2 but for bars size which are
about of 1.20m x 0.18 m.

The three stirrers can rotate at 190rpm, 320 rpm and 390 rpm,
respectively. The transmitting and receiving antennas are both Ets-
Lindgren double-ridged waveguide horn certified to work in the 1-
18 GHz frequency range.

In all the experiments an Agilent Technologies Vector Network
Analyzer (VNA) is used to transmit and to receive monochromatic
signals: 16001 samples over a 3.6s period are acquired at a sampling
rate of 0.224 ms. The operating frequency used in these measurements
is 10GHz. A full calibration of the system is a priori undertaken.
The complex scattering coefficient S; is measured and an off-line data
analysis is accomplished.

In this study, the key parameter that is evaluated is the Hurst
parameter, associated to the fBm model of the field (Section 2).

Since the number of available data samples is large enough,
a consistent estimator of the fBm spectrum is the averaged
periodogram [18]. Data have been divided in L = 8 blocks, i.e., 2000
samples for each block. The spectrum evaluated for each block is
averaged on the total number of spectra obtained. In such a way, the
mean is the same and the variance is will be decreased by a factor of
L. In Fig. 1 a sketch of the measurement setup is shown.

In the first set of measurements, the stirrers S1, S2, S3 are all
operated. The transmitting and receiving antennas are cross-polarized
and not faced to each other. The transmitting antenna is placed on
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the left side of the chamber, faced to the corner close to the entrance
door. The receiving antenna is faced to S2 stirrer (see Fig. 1 position
a and b respectively). The complex fBm corresponding to this case is
shown in Fig. 2. The real and the imaginary part of this process are
two independent real valued fBm’s, and therefore they satisfy the self-
affinity condition [16]. The auto-affinity property can be applied to
the data only when the estimation of H is provided. Let us determine
H.

S1 3

d>q
a\/

Figure 1. Schematic top view of he ITUN RC.
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Figure 2. fBm associated to completely randomized field samples.
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Figure 3. One-sided spectrum of the fBm (black line) and LMS fitting
line (red line) in a bi-logarithmic plane, in the case of uncorrelated field
samples. The operating frequency is 10 GHz.

Table 1. Values of H for different frequencies and different stirrer
working configurations.

RC Configuration H values | LMS error
S1, S2, S3 operated (Case I, 10 GHz) 0.504 4.72 x 1074
S1, S2, S3 operated (Case II, 10 GHz) 0.506 4.47 x 1074

S1, S2, S3 operated (1.8 GHz) 0.510 6.34 x 10~*
S1 operated at 190 rpm (10 GHz) 0.471 3.13 x 1074
S1 operated at 22rpm (10 GHz) 0.462 2.97 x 1074
S1 operated at 190rpm (1.8 GHz) 0.463 5.07 x 1074
S1 operated at 22rpm (1.8 GHz) 0.455 4.90 x 1074

The PSD of the fBm is shown in Fig. 3. It is important to note that
experimental results shown in this paper are all relative to an operating
frequency equal to 10 GHz. Measurements at different frequencies (not
shown to save space) have been also accomplished, see Table 1.

In order to obtain an estimation of 3, the data points in the
logarithmic plane are modeled by a linear regression by applying
the LMS method. Fig. 3 shows the one-side spectrum of the fBm
in a bi-logarithm plane (black line) and the linear regression which



164 Sorrentino et al.

corresponds to the related LMS estimation (red line). It is important to
note that the one-side spectrum has been normalized to the maximum
value. The good agreement of the LMS estimation is confirmed by the
fitting error In this case, the error in the fitting is ¢ = 4.72 x 1074,
Therefore, the good agreement between the spectrum and the LMS
linear regression confirms the physical soundness of describing the RC
field in terms of fBm, since the power spectrum of its cumulative sum
follows a power-law decaying. The LMS estimation results in a value of
0 equal to 2.008 which corresponds to the Hurst parameter H = 0.504.
Such a result indicates that the fBm increments, that is, the received
field samples, are uncorrelated and hence statistically independent.
The autocorrelation function (ACF, not shown to save space) confirms
the behavior of the RC field.

To further validate the obtained results, experiment on a new set
of data has been considered. It is important to point out that the
chamber configuration is the same of the previous experiment, but for
the receiving antenna in position ¢. The Hurst parameter is equal to
H = 0.506, that means the samples are uncorrelated and statistically
independent. Fig. 4 shows the spectrum of the fBm corresponding
to the second set of measurements. In such a case, the evaluation of
the error of LMS provides ¢ = 4.47 x 10~* confirming again the good
agreements between the two curves. Values of experimental results are
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Figure 4. One-side spectrum of the fBm (black line) and LMS line
(red line) in a bi-logarithmic plane for the second set of uncorrelated
field samples. The operating frequency is 10 GHz.
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Figure 5. One-sided spectrum of the fBm (black line) and LMS fitting
line (red line) in a bi-logarithmic plane in the case of correlated field
samples. The operating frequency is 10 GHz.

listed in Table 1.

In order to change the correlation in the RC field [6], measure-
ments with only the S1 stirrer working have been accomplished. The
S1 stirrer has operated at different rates. The transmitting and the
receiving antenna are both faced to S1 (see Fig. 1, position d and e re-
spectively). The average periodogram has been determined and then,
the LMS method provided the estimation of H. Results are listed in
Table 1. The error introduced by the LMS fitting and the agreement
between the value of H and the ACF of the field, in each case, confirm
the physical soundness of the proposed model. In particular, Fig. 5
shows the spectrum obtained in the case of correlated samples when
the S1 stirrer is moved to 190 rpm. The H value, in this case, is equal
to 0.462, as listed in Table 1.

4. CONCLUSIONS

A fractal-based model to characterize the field in a reverberating
chamber has been presented, discussed, and validated by a set of
experiments conducted at the IUN RC. It has been shown that the
fractal analysis of the field within the chamber, in terms of fBm, turns
out to be tailored as an alternative description of the field in the RC.
As matter of fact, it must be pointed out that:
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— The spectrum of the cumulative sum of the RC field samples

follows a power-law behavior, in agreement with the spectrum
of the fBm process.

— Accordingly, the electromagnetic field within the RC can be

characterized by the Hurst parameter, which represents a
synthetic indicator to describe the first and second order statistical
property of the field.
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