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Abstract—This paper deals with the evaluation of the electric
and magnetic field generated by a set of N periodically distributed
filamentary conductors, in a circular arrangement. The results
obtained lead to the computation of a continuous product of distances.
In close connection with the computation of such a continuous product,
the general problem of the factorization of a sum or difference of two
powers, aN ± bN , where a and b are positive real numbers and N a
positive integer, is addressed.

1. INTRODUCTION

Quoting Leonhard Euler: “We have nothing particular to observe with
regard to the addition and subtraction of powers” [1].

In fact, by perusing the vast literature on number theory, high
arithmetics, and algebraic geometry, very scarce references are found
on the subject of the sum and difference of powers of type aN±bN , with
the exception of the square and cubic cases, N = 2 and 3. However,
when a and b are integers, abundant literature, connected with the
Diophantine equation, is available, e.g., [2–7]. The major contribution
of this work is to offer an absolutely new geometrical interpretation
of the algebraic operations aN + bN and aN − bN , where a and b are
positive real numbers and N a positive integer. We show that such
operations can be interpreted as the result of a continuous product of
distances: the distances between a fixed point in a circumference and N
points periodically distributed around a new circumference concentric
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with the first. This mathematical result may find application in a
number of electromagnetic problems with axisymmetric fields [8, 9],
with periodically located parallel conductors (field sources), as, for
example, in the case of bundle conductors in high-voltage overhead
power lines [10, 11].

This paper is organized as follows. In Section 2, the
electromagnetic potentials generated by a circular arrangement of N
periodically distributed filamentary parallel conductors, with total
charge q and total current intensity i, are evaluated, showing that
both potentials are expressed in terms of a continuous product of
distances. In Section 3, a heuristic approach to the subject of the
sum and difference of powers is presented, giving rise to a conjecture
about its geometrical interpretation (a product of distances); a formal
proof of the conjecture being presented afterwards. In Section 4 we go
back to the electromagnetic field problem posed in Section 2 and write
its solution making use of the mathematical results of Section 3. An
illustrative numerical example is provided in Section 5. Conclusions
appear in Section 6.

2. POTENTIAL FUNCTIONS GENERATED BY N
PARALLEL WIRES

Consider the cage-like structure depicted in Figure 1, made of N
parallel filamentary wires periodically distributed along the periphery
of a cylinder of radius R. In a cylindrical reference frame the position
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Figure 1. Cross sectional view of a cylindrical cage made of N
filamentary wires uniformly distributed. Each wire has a per-unit-
charge q/N and carries a z-oriented current intensity i/N .
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of the generic kth wire is defined by r = R and θ = 2π(k−1)/N , with k
an integer running from 1 to N . Each wire possesses a per-unit-length
electric charge qk = q/N and, in addition, it carries a current intensity
ik = i/N . A stationary field regime is assumed.

The electric and magnetic fields originated by charges and currents
can be determined from E = −∇Φ, B = ∇×A, where Φ is the electric
scalar potential and A is the magnetic vector potential.

Fields are to be evaluated inside and outside the wire cage at
discrete points P and Q, whose coordinates are

PointP

{
r=rP , 0 ≤ rP <R
θ=θP =2π(l−1)/N , PointQ

{
r=rQ, R < rQ <∞
θ=θQ =2π(l−1)/N (1)

where l is an integer number freely chosen in the interval 1 to N . The
example in Figure 1 refers to the situation l = 1.

Our first goal is to determine the electric potential ΦP and ΦQ at
points P and Q.

The contribution for the electric potential arising from the
individual kth wire charge qk = q/N is given by [12, 13],

(ΦP )k = − q

2Nπε0
ln (rPk

) ; (ΦQ)k = − q

2Nπε0
ln (rQk

) (2)

where ε0 is the free-space permittivity, and rPk
and rQk

respectively
denote the distances from wire k to points P and Q.

The total electric potential at P and Q is obtained by summing
all the qk contributions from k = 1 to k = N .




ΦP = − q
2Nπε0

N∑
k=1

ln(rPk
) = − q

2Nπε0
ln

(
N∏

k=1

rPk

)

ΦQ = − q
2Nπε0

N∑
k=1

ln(rQk
) = − q

2Nπε0
ln

(
N∏

k=1

rQk

) (3)

Our second goal is to determine the magnetic vector potential
AP and AQ at points P and Q. The contribution for the magnetic
vector potential arising from the individual kth wire current ik = i/N ,
oriented along z, is given by [12],{

(AP )k = AP~ez, AP = − µ0i
2Nπ ln (rPk

)
(AQ) = AQ~ez, AQ = − µ0i

2Nπ ln (rQk
)

(4)

where µ0 is the free-space permittivity.
The total magnetic vector potential at P and Q is obtained by

summing all the ik contributions from k = 1 to k = N .



AP = − µ0i
2Nπ

N∑
k=1

ln(rPk
) = − µ0i

2Nπ ln
(

N∏
k=1

rPk

)

AQ = − µ0i
2Nπ

N∑
k=1

ln(rQk
) = − µ0i

2Nπ ln
(

N∏
k=1

rQk

) (5)
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Note that the potential functions in (2)–(3) and (4)–(5) are defined
apart from an arbitrary additive constant. As matter of fact, both
potential functions are not univocally defined [12, 13]; one can add to
Φ an arbitrarily chosen constant scalar and add to A an arbitrarily
chosen constant vector, and, despite that, the associated E and B
fields remain unaffected. In Section 5, we will come back to (3) and (5),
and add the necessary constants in a manner such that the logarithm
functions operate over dimensionless quantities.

3. A CONJECTURE ON THE FACTORIZATION OF
POWERS

At the end of this section, we will conclude that the results shown

in (3) and (5), which involve continuous products of distances,
N∏

k=1

rPk

and
N∏

k=1

rQk
, can be considerably simplified.

3.1. Heuristic Approach

Consider two concentric circumferences of radii, a and b, where a > b.
On the inner circumference of radius b, two diametrically opposite
points (called foci) are defined: point F1 occupies the position r = b,
θ = 0, and point F2 occupies the position r = b, θ = π. Next, consider a
set of N periodically distributed points, S1 . . . Sk . . . SN , called sources
and placed along the outer circumference of radius a. The length of
the line segment connecting the source Sk to the focus F1 is denoted
by rk. Likewise, the length of the line segment connecting the source
Sk to the focus F2 is denoted by r̂k. See Figure 2.
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Figure 2. Concentric circumferences of radii a and b, showing foci F1

and F2, and periodically distributed sources S1 to SN .
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Figure 3. Factors rk and r̂k for k = 1 to N , with N = 1 and N = 3
(odd number of sources). Outer and inner circumferences have radii a
and b, respectively.

Let us analyze the cases N = 1, N = 3 (odd numbers), and N = 2,
N = 4 (even numbers).

N odd (Figure 3):

a) One source: S1 (r = a, θ = 0).
b) Three sources: S1 (r = a, θ = 0), S2 (r = a, θ = 2π/3), S3 (r = a,

θ = 4π/3).

By examining Figure 3 we see that

Case a) N = 1:
{

r1 = a− b

r̂1 = a + b

Case b) N = 3:





r1 = a− b; r2 =r3 =(a2 + ab + b2)1/2

→ r1r2r3 = a3 − b3

r̂1 = a + b; r̂2 = r̂3 =(a2 − ab + b2)1/2

→ r̂1r̂2r̂3 = a3 + b3
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Figure 4. Factors rk and r̂k for k = 1 to N , with N = 2 and N = 4
(even number of sources). Outer and inner circumferences have radii
a and b, respectively.

N even (Figure 4):

c) Two sources: S1 (r = a, θ = 0), S2 (r = a, θ = π).
d) Four sources: S1 (r = a, θ = 0), S2 (r = a, θ = π/2), S3 (r = a,

θ = π), S4 (r = a, θ = 3π/2).

By examining Figure 4 we see that

Case c)N = 2:

{
r1 = a− b; r2 = a + b → r1r2 = a2 − b2

r̂1 = a + b; r̂2 = a− b → r̂1r̂2 = a2 − b2

Case d)N = 4:





r1 = a− b; r2 = r4 = (a2 + b2)1/2; r3 = a + b

→ r1r2r3r4 = a4 − b4

r̂1 = a + b; r̂2 = r̂4 = (a2 + b2)1/2; r̂3 = a− b

→ r̂1r̂2r̂3r̂4 = a4 − b4

The above results suggest the following propositions concerning
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the factorization of the sum and difference of powers:

ForN odd:





N∏
k=1

rk = aN − bN

N∏
k=1

r̂k = aN + bN

(6a)

ForN even:
N∏

k=1

rk =
N∏

k=1

r̂k = aN − bN (6b)

Therefore, the propositions that need to be proven are:
P1. For N an integer, the subtraction of powers aN − bN is

interpreted as the continuous product of the lengths rk of the N line
segments connecting the focus point F1 to the N source points Sk.

P2. For N an even integer, the subtraction of powers aN − bN is
interpreted as the continuous product of the lengths r̂k of the N line
segments connecting the focus point F2 to the N source points Sk.

P3. For N an odd integer, the addition of powers aN + bN is
interpreted as the continuous product of the lengths r̂k of the N line
segments connecting the focus point F2 to the N source points Sk.

The propositions P2 and P3 are a natural consequence of the
assertion in P1. In fact, we can convert the expressions of rk into
expressions of r̂k by merely substituting +b for −b. Therefore:

For N an even number, where (−b)N = bN , we find
∏

rk =
∏

r̂k = aN − bN (7)

For N an odd number, where (−b)N = −bN , we find
∏

rk = aN − bN →
∏

r̂k = aN + bN (8)

This shows that P2 and P3 are corollaries of the proposition P1.
In short: all we need to do is to prove the following conjecture, for any
integer N :

N∏

k=1

rk = aN − bN (where a > b) (9)

3.2. Proof of the Conjecture

To prove the conjecture we analyze separately the situations N
even and N odd. See Figure 5. The analysis takes into account
the sequential numbering of the source points along the outer
circumference and the existence of mirror-like symmetry.
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Figure 5. (a) Factor rk for N even, N = 2n. (b) Factor rk for N odd,
N = 2n + 1.

3.2.1. N Even, (N = 2n)

Noting (Figure 5(a)) that the angular separation between adjacent
sources is π/n we can determine the lengths rk and r2n+2−k by using
the well-know law of cosines

r2n+2−k = rk =
(
a2 + b2 − 2ab cos θk

)1/2 ; θk = (k − 1)
π

n
(10)

Next we write
N=2n∏

k=1

rk = r1rn+1

(
n∏

k=2

rk

)(
2n∏

k=n+2

rk

)
= (a− b)(a + b)

(
n∏

k=2

rk

)2

= (a− b)(a + b)
n∏

k=2

r2
k (11)

Plugging (10) into (11) and making use of the formula 2.22 in [14]
yields:
N∏

k=1

rk = (a− b)(a + b)

(
n∏

k=2

(
a2 + b2 − 2ab cos

(
(k − 1)

π

n

)))

= (a− b)(a + b)
(
a2 + b2 − 2ab cos

π

n

)(
a2 + b2 − 2ab cos

2π

n

)

. . .

(
a2 + b2 − 2ab cos

(n− 1)π
n

)

= a2n − b2n = aN − bN . (12)
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3.2.2. N Odd (N = 2n + 1)

Noting (Figure 5(b)) that the angular separation between adjacent
sources is 2π/(2n+1) we can determine the lengths rk and r2n+3−k by
using the law of cosines

r2n+3−k = rk =
(
a2 + b2 − 2ab cos θk

)1/2 ; θk = (k − 1)
2π

2n + 1
(13)

Next we write
N=2n+1∏

k=1

rk = r1

(
n+1∏

k=2

rk

)(
2n+1∏

k=n+2

rk

)
= (a− b)

(
n+1∏

k=2

rk

)2

= (a− b)
n+1∏

k=2

r2
k (14)

Plugging (13) into (14) and making use of the formula 2.20 in [14]
yields:

N∏

k=1

rk = (a− b)

(
n+1∏

k=2

(
a2 + b2 − 2ab cos

(
(k − 1)

2π

2n + 1

)))

= (a−b)
(
a2+b2−2ab cos

2π

2n+1

)(
a2+b2−2ab cos

4π

2n+1

)

. . .

(
a2 + b2 − 2ab cos

2nπ

2n + 1

)

= a2n+1 − b2n+1 = aN − bN . (15)

The conclusions in (12) and (15) prove the assertion in (9).
The proof presented here considered the case when the focus point

is internal to the source points. However, following the same procedure,
the conjecture could as well be proven (commuting a and b) for the
case when the focus point is external to the source points, in which
case we would get

N∏

k=1

rk = bN − aN ; (where b > a) (16)

The results in (6) are absolutely general and valid for any values of
a, b, and N . The conclusions in (6) were obtained resorting to simple
trigonometric operations, however, we believe that, the same results
could as well be derived by using complex polar coordinates, as in [15].

To conclude this section, we would like to add a parenthetical
remark concerning Fermat’s Last Theorem, which Wiles demonstrated,
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in 1995, from the modularity conjecture for elliptic curves [16].
Fermat’s Last Theorem states that the inequality aN + bN 6= cN is
always insured for any a, b, c, and N positive integers, with N > 2.
By using (8), substituting a/c for a and b/c for b we can rewrite the
preceding inequality in the form

(a/c)N + (b/c)N =
N∏

k=1

r̂k 6= 1 (17)

Therefore, if it could be proven that for any a, b, c, and N positive
integers, with N > 2, the continuous product of distances r̂k is always
different from unity, one would be able to find a geometrical proof of
Fermat’s Last Theorem. Of course this is highly speculative, but if
Fermat really managed (in 1637) to find a proof of his theorem he
must have used simple math, probably based on a geometric rationale.

4. ELECTRIC AND MAGNETIC FIELDS GENERATED
BY N PARALLEL WIRES

The electric scalar potentials ΦP and ΦQ in (3), and the magnetic
vector potentials AP and AQ in (5), can now be greatly simplified by
making use of the key results in (9) and (16):





ΦP = − q
2Nπε0

ln
(

N∏
k=1

rPk

)
= − q

2Nπε0
ln

(
RN − rN

P

)

ΦQ = − q
2Nπε0

ln
(

N∏
k=1

rQk

)
= − q

2Nπε0
ln

(
rN
Q −RN

) (18)





AP = − µ0i
2Nπ ln

(
N∏

k=1

rPk

)
= − µ0i

2Nπ ln
(
RN − rN

P

)

AQ = − µ0i
2Nπ ln

(
N∏

k=1

rQk

)
= − µ0i

2Nπ ln
(
rN
Q −RN

) (19)

From a physical point of view, the results in (18) and (19) are a
little discomforting, for the logarithm functions are not operating over
dimensionless quantities. To circumvent the problem, we can add to
Φ an extra constant Φ′ such that ΦP = 0 for rP = 0, likewise, we can
add to A an extra constant A′ such that AP = 0 for rP = 0. In other
words, we are arbitrarily setting to zero the potential functions on the
longitudinal axis of the wire cage, Φ0 = A0 = 0.

Noting that Φ′ = q ln RN/(2Nπε0) and A′ = µ0i lnRN/(2Nπ),
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the equations in (18) and (19) finally transform into




ΦP = − q
2Nπε0

ln
(

RN−rN
P

RN

)

ΦQ = − q
2Nπε0

ln
(

rN
Q−RN

RN

) ;





AP = − µ0i
2Nπ ln

(
RN−rN

P

RN

)

AQ = − µ0i
2Nπ ln

(
rN
Q−RN

RN

) (20)

The electric field strength and the magnetic induction field, at
points P and Q, are obtained from E = −∇Φ, B = ∇×A, using (20):





EP = −∂ΦP
∂rP

~er = q
2πε0rP

× rN
P

rN
P −RN ~er

BP = −∂AP
∂rP

~eθ = µ0i
2πrP

× rN
P

rN
P −RN ~eθ

(21)





EQ = −∂ΦQ

∂rQ
~er = q

2πε0rQ
× rN

Q

rN
Q−RN ~er

BQ = −∂AQ

∂rQ
~eθ = µ0i

2πrQ
× rN

Q

rN
Q−RN ~eθ

(22)

To check and validate the above results, we employ (21) and (22)
to analyze the particular problem of the electromagnetic field created
by the charge and current of a cylindrical conducting sheet — a
problem whose solution is quite well known [12, 13]. The results for the
cylindrical sheet can be determined by considering that the wire cage
is made of an infinite number of wire filaments. By making N → ∞
in (20) and (21), we readily find

{
EP = 0; BP = 0
EQ = q

2πε0rQ
~er; BQ = µ0i

2πrQ
~eθ

(23)

The electromagnetic field is zero everywhere inside the region
confined by the cylindrical conducting sheet. Conversely, outside the
conducting sheet, the electromagnetic field decreases with the radial
distance.

5. NUMERICAL EXAMPLE

To mitigate corona and breakdown phenomena in extra high
voltage (EHV) overhead power lines, phase conductors are made of
subconductor bundles. For exemplification purposes consider a bundle
made of 4 subconductors in a circular arrangement (see Figure 6).
The radius of each sub conductor is r0 and the bundle radius is rB.
Assume that the phase conductor runs parallel to a good conducting
soil at height h À rB. For simplification, let us assume that losses are
negligibly small and that the bundle is terminated by its characteristic
impedance Rw. Further, assume that the phase-to-ground voltage at a
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given observation point of the line is a sinusoidal voltage of amplitude
U .

Consider the following typical data: r0 = 14 mm, rB = 32 cm,
h = 15 m, U = 500 kV.

The maximum values of the per unit length charge of the bundle
and the current intensity of the bundle are respectively given by;

0 

r
B

z r

P(r)

2r

Figure 6. Bundle of 4 subconductors of an EHV power line.
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q = CU , and i = U/Rw, where [10, 13],

C =
2πε0

ln
(

2h
GMR

) ; Rw =
√

ε0µ0

C
, GMR = rB

(
Nr0

rB

)1/N

(24)

where GMR denotes the so-called geometric mean radius of the N
bundled conductor system [17]. For N = 4, we obtain: GMR ≈
207mm, C ≈ 0.11 pF/m and Rw ≈ 300Ω, which leads to q ≈
5.58µC/m and i ≈ 1.67 kA.

Equations (21) and (22) were employed to determine the radial E
field and the azymuthal B field at the point P (r) in Figure 6, letting r
vary in the range r = 0 to r = 3rB. The functions E(r) and B(r) are
plotted in Figure 7, where the horizontal axis is the normalized radial
distance r/rB.

6. CONCLUSIONS

Field solutions involving continuous products of distances frequently
occur in the analysis of electromagnetic problems with periodic circular
cylindrical symmetry. We have shown that those continuous product
operations are equivalent to the algebraic operation of difference of
powers. A novel geometrical interpretation for the sum and difference
of powers aN ± bN , for a and b real numbers, and N a positive
integer was established in this paper, showing that the result of
both operations correspond to a factorization process where each
factor is the distance between two points belonging to two concentric
circumferences of radii a and b. To the author’s best knowledge, this
novel interpretation is an original contribution, which can be very
useful in a variety of electromagnetic field problems with periodic
circular cylindrical symmetry.
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