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Abstract—Linear double-layered feature extraction (DFE) technique
has recently appeared in radar automatic target recognition (RATR).
This paper develops this technique to a nonlinear field via parallelizing
a series of kernel Fisher discriminant (KFD) units, and proposes a
novel kernel-based DFE algorithm, namely, multi-KFD-based linear
discriminant analysis (MKFD-LDA). In the proposed method, a multi-
KFD (MKFD) parallel algorithm is constructed for feature extraction,
and then the projection features on the MKFD subspace are further
processed by LDA. Experimental results on radar HRRP databases
indicate that, compared with some classical kernel-based methods, the
proposed MKFD-LDA not only performs better and more harmonious
recognition, but also keeps higher robustness to kernel parameters,
lower training computational cost, and competitive noise immunity.

1. INTRODUCTION

Double-layered feature extraction (DFE) technique via connecting two
linear methods in series has appeared in radar target recognition
over the last few years. With respect to these linear DFE methods,
principal components analysis (PCA) was usually employed in the
first stage to process the original features for noise and dimension
reduction, and then the compressed projection features on the PCA
subspace were further processed by other linear methods, such as
independent component analysis (ICA) [1, 2], linear discriminant
analysis (LDA) [3, 4], pseudo spectrum multiple signal classification
(MUSIC) [5], for more reliable or better discrimination performance.
In fact, PCA can be applied not only in the first stage, but
also in the second stage. For example, Turhan-Sayan used the
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Wigner transformation to characterize the target’s scattered energy
distribution over a selected late-time segment of the joint time-
frequency plane in the first stage, and then the processed features are
fused by PCA to obtain a single characteristic feature vector that can
effectively represent the target of concern over a broad range of aspect
angles [6].

Although successful in many applications, these DFE methods
cannot perform well for nonlinear problems due to their linear nature.
To overcome this weakness, kernel-based methods have been recently
applied in pattern recognition [7–14]. Mika et al. formulated kernel
Fisher discriminant (KFD) for two-class problems [9], while Baudat
and Anouar developed generalized discriminant analysis (GDA) for
multi-class cases [10]. As the direct extension of KFD, GDA usually
outperforms many other nonlinear methods in radar high resolution
range profile (HRRP) target recognition [12, 13], but it deals with
multi-class problems by extending the kernel scatter matrices, which
may result in the computation and storage problem for large scale
dataset.

Motivated by the linear DFE technique, this paper develops it to
a nonlinear field, and proposes another KFD extension for multi-class
cases, in which the first feature extraction sub-process is implemented
by a multi-KFD (MKFD) parallel algorithm, and then the projection
features on the MKFD subspace are further processed by LDA. The
total process is defined as MKFD-based LDA (MKFD-LDA) algorithm.
The efficiency of the proposed method is demonstrated by experiments
on the measured and simulated radar HRRP databases.

2. NEW FORMULATIONS OF GDA AND KFD

Throughout this paper, consider a set of M training samples {X|xi, i =
1, 2, . . . , M} defined on a n-dimensional space Rn, containing g classes
with each class consisting of mξ training samples (ξ = 1, 2, . . . , g). Let
{Xξ|xξ,j , j = 1, 2, . . . ,mξ} denote class ξ’s training sample subset,
thus we have M =

∑g
κ=1 mκ and X = [X1, X2, . . . , Xg].

Let Φ : x ∈ Rn → Φ(x) ∈ F be a nonlinear mapping from the
input space Rn to an implicit high-dimensional feature space F. Given
two random subsets Xw and Xv (w, v = 1, 2, . . . , g), without knowing
Φ explicitly, we can obtain the kernel matrix Kw,v on F by applying a
Mercer kernel k(xw,i,xv,j) = 〈Φ(xw,i), Φ(xv,j)〉 as that:

Kw,v = (k(xw,i,xv,j))i=1,2,...,mw; j=1,2,...,mv

∆= k(Xw,Xv), (1)

where k (Xw, Xv) is defined as the kernel matrix function, and Kw,v

is a mw ×mv kernel matrix, here w, v = 1, 2, . . . , g.
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Given the kernel symmetric matrix (KSM) Q = k (X,X) and the
block diagonal matrix W = diag(1m1 , 1m2 , . . . , 1mg), here the mean
value matrix 1η (η = m1, m2, . . . , mg) is a η× η matrix with elements
all equal to 1/η, Q and W are all M ×M matrices. Then the kernel
scatter matrices can be defined by

Kb = QWQ, Kt = QQ, Kw = Kt −Kb, (2)

where Kb, Kw and Kt, respectively, denote the between-class, within-
class and total kernel scatter matrices, and they are all M × M
symmetric matrices.

As explored in [10], the essence of GDA is to find an optimal
feature extraction subspace (FES) by maximizing the between-class
distance and minimizing the within-class distance. Under a variant of
Fisher criterion, it aims to solve an optimization problem:

J(uopt) = arg max
u

uTKbu
uTKtu

⇔ arg max
u

uTKbu
uTKwu

. (3)

Then according to the solution offered in [10], we can obtain a series
of optimal coefficient vectors ui (i= 1, 2, . . . , τ ; τ ≤ g − 1) from (3),
which can be arranged as the FES of GDA by

U = [u1 u2 . . . uτ ] ∆= FGDA (X,m) , (4)

where FGDA (X, m) is defined as the GDA function for the FES U
(τ ×M), and the vector m is given by m = [m1 m2 . . . mg ].

As the direct extension of KFD, when GDA is applied for two-class
cases, it is mathematically equivalent to KFD. Suppose that GDA is
used to discriminate class γ and ξ, then only one optimal coefficient
vector uγ,ξ is adopted to construct the FES of KFD, that is,

uγ,ξ = FGDA(Xγ,ξ,mγ,ξ)
∆= FKFD(Xγ,ξ,mγ,ξ)

(γ, ξ = 1, 2, . . . , g; γ 6= ξ)
, (5)

where FKFD (Xγ,ξ, mγ,ξ) is defined as the KFD function for the FES
uγ,ξ, the training sample subset Xγ,ξ and the vector mγ,ξ, respectively,
are given by Xγ,ξ = [Xγ Xξ ] and mγ,ξ = [mγ mξ ]. Obviously, uγ,ξ

is a (mγ + mξ)-dimensional column vector.

3. MKFD-LDA ALGORITHM

As aforementioned in Section 1, the proposed MKFD-LDA realizes the
DFE process via connecting MKFD and LDA in series. The analysis
is detailed as follows.
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3.1. Feature Extraction Process

When the traditional KFD is applied in a g-class recognition system
under the so called “one-against-one” strategy [7, 8], it needs C2

g

units to cover the whole system, here Cξ
g =

∏g
i=1 i/((

∏g−ξ
j=1 j)(

∏ξ
k=1 k)),

(ξ = 1, 2, . . . , g). The total parallel process of these g(g−1)
2 KFD units

is defined as MKFD in this paper. According to (1, 5), the projection
subset yγ,ξ of each KFD unit is obtained by

yγ,ξ = k(X,Xγ,ξ)uγ,ξ (γ, ξ = 1, 2, . . . , g; γ 6= ξ), (6)

and then the first projection features are constructed in series by

Y = [y1,2 y1,3 . . . y1,g y2,3 y2,4 . . . yg−1,g ] , (7)

where the M × (g(g − 1)/2) matrix Y is the first projection feature
subset, in which each row vector denotes the projection feature of a
related training sample.

Let’s consider the optimal coefficient vector uγ,ξ obtained by (5),
which can be divided into two sub-vectors, that is,

uγ,ξ =

[
u(γ)

γ,ξ

u(ξ)
γ,ξ

]
, (γ, ξ = 1, 2, . . . , g; γ 6= ξ) , (8)

where u(γ)
γ,ξ and u(ξ)

γ,ξ denote the coefficient sub-vectors with mγ and mξ

elements, respectively. Then we construct a M -dimensional column
vector vγ,ξ via arranging u(γ)

γ,ξ , u(ξ)
γ,ξ and zeros vectors by

vγ,ξ =




v(1)
γ,ξ

v(2)
γ,ξ
...

v(g)
γ,ξ




s.t. v(κ)
γ,ξ =

{
0mκ κ /∈ {γ, ξ}
u(κ)

γ,ξ κ ∈ {γ, ξ}

(κ, γ, ξ = 1, 2, . . . , g; γ 6= ξ)

, (9)

where 0η (η = m1, m2, . . . , mg) is defined as a η-dimensional column
zeros vector with elements all equal to 0.

According to (6)–(9), the projection subsets yγ,ξ are computed by

yγ,ξ = k(X,Xγ,ξ)uγ,ξ = k(X,X)vγ,ξ

(γ, ξ = 1, 2, . . . , g; γ 6= ξ) , (10)

and hence the first projection feature matrix Y is obtained by{
Y = k(X,X)UM

UM
∆= [v1,2 v1,3 . . . v1,g v2,3 v2,4 . . . vg−1,g ]

, (11)

where the M × (g(g − 1)/2) matrix UM denotes the FES of MKFD.
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After achieving the first projection feature subset Y on the FES of
MKFD, we can directly discriminate it by the traditional LDA without
any preprocessing [3, 4], and thereby obtain the FES of LDA, on which
the second projection feature subset Z can be calculated by{

Z = YUL = k(X,X)UMUL = k(X,X)UML

UML
∆= UMUL

, (12)

where the g(g−1)
2 ×(g−1) matrix UL denotes the FES of LDA, and the

M × (g− 1) matrix UML denotes the FES of MKFD-LDA. Obviously,
UML can be considered as the series connection of UM and UL.

3.2. Operation Efficiency Analysis Compared with GDA

Different from several classical kernel-based algorithms, such as GDA,
by extending the kernel scatter matrices for multi-class cases, the
proposed MKFD-LDA algorithm implements another extensional style
of KFD via using many traditional KFD units “one-against-one” for
multi-class discrimination. As two different extensional styles of KFD,
although MKFD-LDA and GDA have the same test time-complexity
(TC), but their training TCs are somewhat different. Due to the fact
that the training sample number M is usually far greater than the class
number g in practical application, the training TC of the LDA sub-
process can be overlooked compared with that of MKFD in MKFD-
LDA. Then compared with GDA, MKFD-LDA partially reduces the
training TC via dividing the large KSM k (X, X) into a series of
small ones k (Xγ, ξ, Xγ, ξ), here γ, ξ = 1, 2, . . . , g and γ 6= ξ. On
condition that all classes have the same training sample number, the
training TCs of MKFD-LDA and GDA can be approximately given
by O (nM2+4g−1

g2 M3) and O (nM2+M3), respectively [10, 12, 14].
Obviously, with the class number g increasing, the training TC ratio
of MKFD-LDA to GDA is decreasing accordingly.

Also we can find that the space-complexity of MKFD-LDA is only
about 4/g2 times of GDA’s. Even though the computation cost in the
training phase can be ignored for an off-line training system, the EMS
memory is still a gordian knot in radar HRRP-based recognition due
to the huge storage requirement and computation burden which may
lead to the program error “out of memory”.

Furthermore, MKFD-LDA is naturally convenient for distributed
computing and dynamic database building, thereby further depressing
the processing time. When a new class is put into this g-class system,
the large KSM k (X, X) in GDA changes accordingly, so its pseudo
inverse should be recomputed for new FES. But for MKFD-LDA, it
only needs to add other g KFD units while the previous ones are still
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effective. Although the first projection feature subset Y changes partly,
but the dimension of the training database has been greatly reduced,
so it can be rapidly processed by LDA in the next phase.

Based on the analysis above, MKFD-LDA is theoretically superior
to GDA in terms of operation efficiency.

4. EXPERIMENTS

An original HRRP represents the projection of the complex returned
echoes from the target scattering centers onto the radar line-of-
sight (LOS), so it contains abundant target information, such as
target size, scatterer distribution, etc., and can be applied for target
recognition [1–4, 12–19]. In this paper, several experiments are
performed on the simulated and measured radar HRRP database,
respectively. Before experiments, each original HRRP is aligned by
cross-correlation and preprocessed by energy normalization [15, 16].
In addition to MKFD-LDA, three discriminant mehthods, i.e., GDA,
kernel direct discriminant analysis (KDDA) [11] and LDA, are also
adopted for a performance comparison. Note that in KDDA the
original kernel between-class scatter matrix is adopt instead of the
compressed one. For MKFD-LDA, GDA and KDDA, the typical
Gaussian kernel k(x,y) = exp(−||x − y||2/2σ2) is employed with σ
set to 0.8 except additional description. Finally, the nearest neighbor
classifier is implemented for classification, and the Euclidean metric is
used as the distance measure [14].

All the implementations are based on MATLAB 7.1 and performed
on a 2.66-GHz Pentium(R)-4 machine which has 1-GB EMS memory
and runs Windows XP operation system.

4.1. Experiment on Operation Efficiency

To demonstrate the operation efficiency of MKFD-LDA, we sim-
ulate the radar backscattering data of seven airplanes by a soft-
ware [14, 15, 20]. The airplane simulated parameters are offered in
Table 1, and the radar simulated parameters are mainly provided with
center frequency 5520 MHz, bandwidth 400 MHz, sampling frequency
800MHz and pulse repetition frequency 1000 Hz. As these airplanes
are all symmetrical in horizontal, we only simulate HRRPs with az-
imuthal angle ranging from 0◦ to 180◦ at interval 0.5◦, and the sampling
length is set to 400. All the simulated HRRP data is used in the train-
ing phase to evaluate the operation efficiency of MKFD-LDA, GDA,
KDDA and LDA. Their average training runtimes in the Ck

7 k-class
subsystems are list in Table 2, here k = 2, 3, . . . , 7. Note that in the
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Table 1. The simulated parameters of seven airplanes.

airplanes B-52 B-1B Tu-16 F-15 Tornado Mig-21 An-26
length (m) 49.50 44.80 33.80 19.43 16.72 15.76 23.80
width (m) 56.40 23.80 33.00 13.05 13.91 7.15 29.21

scale 1 : 1 1 : 1 1 : 1 1 : 1 1 : 1 1 : 1 1 : 1

Table 2. Average training runtimes (s) in the simulated experiment.

class number 2 3 4 5 6 7
MKFD-LDA 5.8660 16.6083 32.7359 54.3036 81.2987 113.8206

GDA 5.7404 16.6719 36.1482 67.3263 111.7887 173.0470
KDDA 5.1669 15.3703 33.9777 64.5225 108.8133 171.3137

LDA 0.2616 0.2718 0.2807 0.2897 0.2995 0.3161

simulated experiments, each subsystem repeats experiments 20 times
to obtain the average training time-consuming.

Firstly, let’s consider the three nonlinear methods. From Table 2
we can see that, in terms of training runtime, the proposed MKFD-
LDA is obviously lower than GDA in most cases while GDA and KDDA
are roughly similar. With the class number increasing, although their
training runtimes are all increasing rapidly, but the difference between
MKFD-LDA and GDA becomes more and more apparent. When the
class number is 7, the training runtime of MKFD-LDA decreases about
34.23%, compared with that of GDA.

Secondly, let’s consider the linear method. It can be found from
Table 2 that, compared with the three nonlinear methods, LDA keeps
a far lower training runtime. Note that the sample dimension is no
more than 7×(7−1)

2 = 21 in the LDA sub-process of MKFD-LDA while
200 in LDA, so the training time-consuming of the LDA sub-process
can be overlooked, compared with that of MKFD in MKFD-LDA.

4.2. Experiments on Recognition Performance

The practical HRRP data used to evaluate the recognition performance
was measured from three flying airplanes [12–16], including the 1st,
2nd, 4th and 7th segments of An-16, the 1st, 2nd, 4th and 7th segments
of Jiang (Cessna Citation S/II), and the 1st, 2nd, 4th and 5th segments
of Yak-42. The projections of target flying trajectories onto the ground
plane are shown in Fig. 1, from which the aspect angle of an airplane
can be estimated according to its relative position to radar. Each
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Table 3. Correct recognition rates (%) in the measured experiment.

methods An-16 Jiang Yak-42 average
standard
deviation

MKFD-LDA 89.89 93.11 94.44 92.48 2.34
GDA 85.78 92.44 92.22 90.15 3.78

KDDA 84.11 90.67 90.67 88.48 3.79
LDA 77.89 79.56 67.56 75.00 6.50

(a)

(b) (c)

Figure 1. The projections of target trajectories onto the ground plane.
(a) An-26. (b) Jiang. (c) Yak-42.

target provides 1000 profiles, of which the training samples are selected
at interval 10 profiles along the flying trajectory and the rest ones for
test.

The recognition rates of each target are listed in Table 3, which
indicate that MKFD-LDA not only achieves the best results on
each airplane and average, but also performs the most harmonious
recognition in terms of standard deviation. As compared with LDA,
the recognition superiority of the three nonlinear methods, especially
MKFD-LDA, is very apparent.
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Figure 2. Variation of the recognition performance with σ2.

Figure 3. Variation of the recognition performance with SNR.

To further compare the performance of MKFD-LDA, GDA and
KDDA, sensitivity analysis is also performed with respect to the kernel
parameter σ2. Fig. 2 depicts the averaged recognition rates of the three
methods as functions of σ2 ranging from 0.05 to 1, in which the results
show that GDA and KDDA are both very sensitive to the variations of
kernel parameter σ2. In contrast, we can easily see that MKFD-LDA
performs the best and is relatively stable within the whole ranges of
σ2, which is highly desirable in practical applications since it is usually
not easy to determine very suitable parameter values.

Additionally, to evaluate the noise effect on these methods, a series
of simulated white noises are added to the inphase and quadrature
components of the original test data [16]. Each SNR level repeats 50
times to obtain the average. Fig. 3 depicts the average recognition
rates versus signal-to-noise ratio (SNR), from which we can find that
the three kernel-based methods have a similar stability and sensitivity
to noises within the whole ranges of SNR. From a global look at
their recognition performances, the three nonlinear methods are all
apparently better than LDA while more sensitive to noises within SNR
ranging from 15 dB to 22.5 dB. When the SNR surpasses 20 dB, the
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average recognition rates are labeled from high to low by MKFD-LDA,
GDA, KDDA and LDA. One opinion worth pointing out is that some
pretreatment methods are usually employed to denoise the original
signals in practical applications [21], so we usually obtain the HRRPs
with high SNR before discriminant analysis.

5. CONCLUSION

Different from several classical kernel-based methods by extending the
kernel scatter matrices for multi-target discrimination, a novel MKFD-
LDA algorithm is proposed in which the first feature extraction sub-
process is implemented by a MKFD parallel algorithm, and then the
first projection features on the FES of MKFD are further processed by
LDA for the second feature extraction. In terms of operation efficiency,
MKFD-LDA is superior to GDA in theory. Experimental results on the
simulated and measured radar HRRP databases show that, compared
with the two classical kernel-based methods, i.e., GDA and KDDA, the
proposed MKFD-LDA not only performs better and more harmonious
recognition, but also keeps higher robustness to kernel parameters,
lower training computational cost, and competitive noise immunity.
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