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THE PERMITTIVITY FOR ANISOTROPIC DIELECTRICS
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Romania

Abstract—A new permittivity is defined for anisotropic dielectrics
with permanent polarization, which allows obtaining simple connec-
tions between the quantities of electric field. As an application, using
the defined quantity, we will demonstrate advantageous forms of the
refraction theorems of the two-dimensional electric field lines at the
separation surface of two anisotropic dielectrics with permanent polar-
ization, anisotropic by orthogonal directions.

1. INTRODUCTION

We know that [1–3], for dielectrics with permanent polarization, the
connection law, among electric flux density D, electric field strength
E and polarization P , is given by

D = ε0E + P τ + P p, (1)
where ε0 is permittivity of the vacuum. The separation in temporary
(P τ ) and permanent (P p) components is unique only if P p is
independent of E, and P τ — which is depending on E — is null
at the same time with E. From (1) follows that, for materials with
permanent polarization (P p 6= 0), the relation between D and E

(which for materials with P p = 0 represents the classic permittivity) is
not univocally determined by material, because P p could have several
values. In the case of the ferroelectric materials, for various electrical
hysteresis cycles, the value of D for E = 0, i.e., remanent electric flux
density

Dr = D
∣∣
E=0 = P p, (2)

may have multiple values, depending on the considered electric
hysteresis cycle (Figure 1).
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Figure 1. Remanent electric flux densities-specification.

In this context it is useful to define another permittivity (for
dielectrics with permanent polarization), with which the equations
have advantageous forms, and it is possible to identify some useful
analogies with simpler case of the materials without permanent
polarization.

2. ANOTHER PERMITTIVITY FOR ANISOTROPIC
DIELECTRICS WITH PERMANENT POLARIZATION

The temporary polarization value of anisotropic materials depends on
electric field, and the temporary polarization law is

P τ = ε0χeE, (3)

where, for the nonlinear materials, the components of electric
susceptivity χe depend on electric field intensity.

Consequently, in case of the dielectrics with permanent
polarization, nonlinear and anisotropic, (1) becomes

D = ε0

(
1 + χe

)
E + Dr, (4)

where the tensor’s components are nonlinear functions depending on
the components of E.

If we introduce the calculation quantity

Dp = D −Dr = D − P p, (5)

(4) becomes
Dp = ε0

(
1 + χe

)
E. (6)
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From (4), (5), (6), the relative (εrp) and absolute (εp) calculation
permittivity tensors of anisotropic dielectrics with permanent
polarization are defined with these equations:

εrp = 1 + χe; εp = ε0εrp. (7)

By defining the vector Dp (in (5)) and new absolute permittivity
εp (in (7)), for anisotropic dielectrics with permanent polarization we
obtain

Dp = εpE. (8)

With classical quantities [1–3], for anisotropic dielectrics with
permanent polarization, we have D = εE + P p, so (8) is a more
concentrated expression and simpler.

Formally, (8) is similar with the classical equation D = εE, but
the latter written for the materials without permanent polarization.

For isotropic materials, even if they are with permanent
polarization, (8) becomes Dp = εpE which shows that the spectra lines
of Dp and E are the same in this case. We know that for materials
with permanent polarization (even if they are isotropic) the spectra
lines of D and E are different [1, 2, 4].

Following the polarization main directions, tensor χe has only
three components [1–3]. If we note these directions (that in many
cases are rectangular) with x, y, z indices, from (4) we have

Dυ = ε0 (1 + χeν) Eυ + Drυ; υ = x, y, or z, (9)

and all the three components of tensor εrp are

εrpυ =
Dυ −Drυ

ε0Eυ
=

Dpυ

ε0Eυ
; υ = x, y, z. (10)

Because (10) also contains the components of permanent polarization
P p (which means the components of Dr), with that new permittivity
we have taken into account, in advantageously way, the nonlinearity of
the depolarization curves of the dielectric with permanent polarization,
any minor electric hysterezis cycles, i.e., for any P p = Dr.

If the source of electric field is considered, a dielectric with
permanent polarization for the operating point is obtained, D < Dr

(for components: Dν < Drν) and E < 0 (for components: Eν < 0).
The depolarization curve is the part from the second quadrant of the
hysteresis cycle; the terminology is similar to that used in the magnetic
field. Therefore, the components of tensor εrp are positive scalars.

It is interesting to specify that we should determine the nonlinear
functions εrpυ(E) following the procedure used by the author for the
permeability of permanent magnets in [5], if we know all the three
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electric hysteresis cycles following the polarization main axes. For these
three main directions x, y, z the nonlinear function plots have similar
forms, but they will be quantitatively different, as the depolarization
curves following the three main directions of the anisotropic dielectric
are different.

The numerical solution for the electric field problem in systems
with permanent polarization is obtained with an iterative process,
because the systems are, generally, nonlinear. The parameter used to
control the convergence of the problem can be the relative permittivity
defined with (10). For anisotropic materials, it is clear that the
convergence of the calculation is made with the components of
tensor εrp following the polarization main axes. Trough this defined
calculation quantity we take, univocally and advantageously, into
account the nonlinearity of the depolarization curves, no matter how
the permanent polarization is (i.e., remanent electric flux density).

Obviously, if lacking the permanent polarization (P p = 0), Dp

is identical to D, and the calculation permittivity εp is identical to
classical ε, i.e., εrp ≡ εr. If the temporary polarization is negligible,
from (1), (6) and (8) follows that all the components of tensor εrp are
approximated with 1.

Figure 2. Refraction of Dp.
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3. APPLICATIONS FOR THE REFRACTION
THEOREMS

Consider two different dielectric media 1 and 2 at rest, with permanent
polarization, separated by smooth surface S12, without free electric
charge. The demonstration refers the electric field lines of E and
the calculation flux density Dp (defined by (5)), for two-dimensional
(2D) field, in dielectrics with permanent polarization, anisotropic
by orthogonal directions. For medium 1, main directions of the
polarization are noted with (x1, y1) and unit vectors (i1, j1) and for
medium 2 are noted with (x2, y2) and unit vectors (i2, j2) (Figures 2
and 3).

In order to express the normal and tangent components of the
electrical field at the separation surface S12, in point 0 (where the
refraction is analyzed) we attach the rectangular system ((n, t), with
unit vectors n, t). The main axes of polarization in both media —
therefore rectangular systems (x1, y1) and (x2, y2) — are different
from each other and different from the system (n, t).

In order to write the projections on axes of quantities Dp and E,

Figure 3. Refraction of E.
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Figure 4. Components of Dp.

we introduce the angles (see Figures 2 and 3):

αλ = ^
(
Dpλ, n

)
, λ = 1 or 2;

βλ = ^
(
Eλ, n

)
, λ = 1or 2;

ϕλ = ^
(
iλ, n

)
, λ = 1 or 2.

(11)

Since the media in contact was anisotropic considered, the spectra
lines of D, E and P p are different, therefore also the spectra lines of
Dp and E are different. Consequently, generally αλ 6= βλ (λ = 1, 2).

If we take into account the local form of electric flux law
for a discontinuity surface without free electric charge, the normal
components of electric flux density D at the separation surface S12

are preserved, which means

D1n = D2n = Dn. (12)

From the local form of electromagnetic law for the considered
conditions result, the conservation of the components of E,

E1t = E2t = Et. (13)

For 2D field in anisotropic media with permanent polarization, if
we write (8) for both media, we obtain the following relation:

Dpλ = εpλEλ, λ = 1, 2, (14)
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where εpλ = ‖εpλxεpλy‖ are the tensors of calculation absolute
permittivity in both dielectrics with permanent polarization. If we
emphasize the components following the main directions (see also (10),
where ε0εrpυ = εpυ), (14) becomes

Dpλυ = εpλυEλυ, λ = 1, 2 and ν = x, y (15)

We remark that between Dp and E components, we can write relations
similar to (15) only following the polarization main directions (ν =
x or y), but not following n and t directions. We must specify that
Dpλν and Epλν are the projections of vectors Dpλ and Eλ, following
the polarization main directions, i.e., for the cases of 2D field showed
in Figures 2 and 3 and the notices (11), we can write these equations
(see also Figures 4 and 5):

Dp1 = Dp1xi1 + Dp1yj1

= Dp1 cos (α1 − ϕ1) i1 + Dp1 cos
(
α1 − ϕ1 +

π

2

)
j1

= Dp1

[
cos (α1 − ϕ1) i1 − sin (α1 − ϕ1) j1

]
;

Dp2 = Dp2xi2 + Dp2yj2

= Dp2 cos (α2+2π−ϕ2) i2+Dp2 cos
(
α2+2π−ϕ2+

π

2

)
j2

= Dp2

[
cos (ϕ2 − α2) i2 + sin (ϕ2 − α2) j2

]
;

E1 = E1xi1 + E1yj1

= E1 cos (β1 − ϕ1) i1 + E1 cos
(
β1 − ϕ1 +

π

2

)
j1

= E1

[
cos (β1 − ϕ1) i1 − sin (β1 − ϕ1) j1

]
;

E2 = E2xi2 + E2yj2

= E2 cos (β2 + 2π − ϕ2) i2 + E2 cos
(
β2 + 2π − ϕ2 +

π

2

)
j2

= E2

[
cos (ϕ2 − β2) i2 + sin (ϕ2 − β2) j2

]
.

(16)

It is obvious that Dp1, Dp2, E1 and E2 are the modules of vectors, so
they are positive scalars. The components Dpλυ and Eλυ (λ = 1, 2;
υ = x, y) are positive or negative scalars, as result of (16), Figures 4,
and 5, i.e., for the case considered, we obtain the following relations:
Dp1x = Dp1 cos (α1 − ϕ1) > 0; Dp1y =−Dp1 sin (α1 − ϕ1) < 0;
Dp2x = Dp2 cos (ϕ2 − α2) < 0; Dp2y =Dp2 sin (ϕ2 − α2) > 0;
E1x = E1 cos (β1 − ϕ1) < 0; E1y =−E1 sin (β1 − ϕ1) < 0;
E2x = E2 cos (ϕ2 − β2) < 0; E2y =E2 sin (ϕ2 − β2) > 0.

(17)

In Figures 2 and 3, only the components following the axes (n, t)
are represented. In Figures 4 and 5 (at another scale and without
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unit vectors), the components following the polarization main axes
(x, y, z) are also represented. Figures 4 and 5 illustrate the components
of vectors Dp1 and Dp2, respectively E1 and E2, which appear in
relations.

If we write the vectors Dpλ and Eλ depending on their components
following the rectangular system (n, t), we could write the equations:

Dpλ = Dpλnn + Dpλtt;

Eλ = Eλnn + Eλtt, λ = 1, 2,
(18)

where the components may be positive or negative, depending on the
considered case.

3.1. The Refraction Theorem of Electric Field Strength
Lines E

The normal component of electric flux density D in medium 1 can
be written as sum of projections on normal direction of the two
components following the polarization main directions (D1x and D1y):

D1n = D1xn + D1yn. (19)

Figure 5. Components of E.



Progress In Electromagnetics Research M, Vol. 23, 2012 271

Writing (5) for medium 1 (D1 = Dp1 + P p1), the two components
are:

D1xn = Dp1xn + Pp1xn, D1yn = Dp1yn + Pp1yn, (20)

where Dp1xn and Dp1yn are the projections on normal axe (n) of the
components Dp1x and Dp1y of the calculation electric flux density Dp1

following the polarization main directions (x1, y1) in medium 1; Pp1xn

and Pp1yn similarly, but regarding the permanent polarization P p1 of
the medium 1. These are illustrated in Figure 4 and Equation (21) —
for Dp1 — and in the Equation (22) for P p1.

Dp1 = Dp1x + Dp1y,

Dp1x = Dp1xi1 = Dp1xnn + Dp1xtt = Dp1xn + Dp1xt, (21)

Dp1y = Dp1yj1 = Dp1ynn + Dp1ytt = Dp1yn + Dp1yt;

P p1 = P p1x + P p1y,

P p1x = Pp1xi1 = Pp1xnn + Pp1xtt, (22)

P p1y = Pp1yj1 = Pp1ynn + Pp1ytt.

The permanent polarizations are not represented in Figures 4 and 5,
because their normal/tangent components are not preserved. Their
values and directions are generally arbitrary.

From (19) and (20), we obtain

D1n = (Dp1xn + Dp1yn) + (Pp1xn + Pp1yn) , (23)

where, for Figure 4, the components are:

Dp1xn = Dp1x cosϕ1 > 0, Dp1yn = Dp1y sinϕ1 < 0.

Taking into account these equations and (15), (23) becomes

D1n = Dp1x cosϕ1 + Dp1y sinϕ1 + (Pp1xn + Pp1yn)
= εp1xE1x cosϕ1 + εp1yE1y sinϕ1 + (Pp1xn + Pp1yn) . (24)

For normal component of electric flux density in medium 2, we
can write

D2n = D2xn + D2yn. (25)

Writing (5) for medium 2 (D2 = Dp2 + P p2), the two components
are:

D2xn = Dp2xn + Pp2xn, D2yn = Dp2yn + Pp2yn, (26)

where Dp2xn and Dp2yn are the projections on normal axe (n) of the
components Dp2x and Dp2y of the calculation electric flux density Dp2

following the polarization main directions (x2, y2) in medium 2; Pp2xn

and Pp2yn similarly, but regarding the permanent polarization P p2 of



272 Bere

medium 2. These are illustrated in Figure 4 and (27) — for Dp2 —
and in (28) for P p2.

Dp2 = Dp2x + Dp2y,

Dp2x = Dp2xi2 = Dp2xnn + Dp2xtt = Dp2xn + Dp2xt,

Dp2y = Dp2yj2 = Dp2ynn + Dp2ytt = Dp2yn + Dp2yt;

(27)

P p2 = P p2x + P p2y,

P p2x = Pp2xi2 = Pp2xnn + Pp2xtt,

P p2y = Pp2yj2 = Pp2ynn + Pp2ytt.

(28)

From (25) and (26), we obtain

D2n = (Dp2xn + Dp2yn) + (Pp2xn + Pp2yn) , (29)

where, for Figure 4, the components are:

Dp2xn = |Dp2x| cos (ϕ2 − π) = − |Dp2x| cosϕ2 > 0;

Dp2yn = Dp2y cos
(
ϕ2 − π

2

)
= Dp2y sinϕ2 < 0.

Taking into account these (where −|Dp2x| = Dp2x < 0) and (15), (29)
becomes

D2n = Dp2x cosϕ2 + Dp2y sinϕ2 + (Pp2xn + Pp2yn)
= εp2xE2x cosϕ2 + εp2yE2y sinϕ2 + (Pp2xn + Pp2yn) . (30)

By replacing (24) and (30) in (12), we obtain

(εp1xE1x cosϕ1−εp2xE2x cosϕ2)+(εp1yE1y sinϕ1−εp2yE2y sinϕ2)
+(Pp1xn − Pp2xn) + (Pp1yn − Pp2yn) = 0. (31)

If we emphasize the projections on normal direction of the vectors Eλ

(λ = 1, 2), from (31) we write

(εp1xE1xn − εp2xE2xn) + (εp1yE1yn − εp2yE2yn) + (Pp1xn − Pp2xn)
+(Pp1yn − Pp2yn) = 0, (32)

where:
E1xn = E1x cosϕ1 > 0; E2xn = E2x cosϕ2 > 0;
E1yn = E1y sinϕ1 < 0; E2yn = E2y sinϕ2 < 0.

(33)

The components Dpλυn, Eλυn and Ppλυn (λ = 1, 2; ν = x, y) are
positive or negative depending on the particular laying of vectors Dpλ,
Eλ and P pλ in comparison with the axes systems. We must remark that
the sign (> 0 or < 0) of scalars Dpλυn and Eλυn could be easy to find
for particular cases considered in Figures 4 and 5. Alike, we should
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proceed also with Ppλυn, the components of permanent polarization
P pλ of the two media. Ppλυn are no longer represented because of the
reasons specified previously (please see the explanations included after
relation (22)).

Consequently, the normal components of the electric field strength
E (components which are not conserved) follow (32); this relation
will be named the refraction theorem of the 2D electric field strength
lines, in media with permanent polarization, anisotropic by orthogonal
directions.

3.2. The Refraction Theorem of Calculation Electric Flux
Density Lines Dp

The tangent component of electric field strength in medium 1 could
be written as a sum of projections on tangent directions of the two
components following the polarization main directions (E1x and E1y):

E1t = E1xt + E1yt. (34)

Regarding the meaning of E1xt and E1yt, the case of Figure 4, as
well as (15), (34), becomes

E1t = −E1x sinϕ1 + E1y cosϕ1 = −Dp1x

εp1x
sinϕ1 +

Dp1y

εp1y
cosϕ1. (35)

Alike, for the tangent component of E in medium 2, we can write
the following relation:

E2t = E2xt + E2yt = |E2x| cos
(
ϕ2 − π +

π

2

)
+ E2y cosϕ2

= −E2x sinϕ2+E2y cosϕ2 = −Dp2x

εp2x
sinϕ2+

Dp2y

εp2y
cosϕ2. (36)

By replacing (35) and (36) in (13), the following relation is obtained:
(
−Dp1x

εp1x
sinϕ1+

Dp2x

εp2x
sinϕ2

)
+

(
Dp1y

εp1y
cosϕ1−Dp2y

εp2y
cosϕ2

)
=0. (37)

If we put into evidence the projections on the tangent of the
components following the magnetization main axes for Dpλ (λ = 1,
2), from (37) we obtain:

(
Dp1xt

εp1x
− Dp2xt

εp2x

)
+

(
Dp1yt

εp1y
− Dp2yt

εp2y

)
= 0, (38)

where:
Dp1xt = −Dp1x sinϕ1 < 0; Dp2xt = −Dp2x sinϕ2 < 0;
Dp1yt = Dp1y cosϕ1 < 0; Dp2yt = Dp2y cosϕ2 < 0.

(39)
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Components Dpλυt and Eλυt (λ = 1, 2; ν = x, y) are positive or
negative depending on the particular laying of vectors Dpλ and Eλ in
comparison with the axes systems.

Consequently, the tangent components of calculation electric flux
density Dp follow (38); this equation will be named the theorem of 2D
refraction of calculation electric flux density Dp lines, in media with
permanent polarization, anisotropic by orthogonal directions. Since
the materials are anisotropic, we can observe that the spectra lines
of Dp and E are different. We should remark that the theorem (38)
has a simpler form (see also [4], Equation (20)) than the refraction
theorem of the electric flux density lines where we have considered
the classical quantities (D and ε). So, in addition to the advantages
shown in paragraph 2, the introduction of new quantities (Dp and εp)
are helping us to express the refraction theorem in a simpler form.

If we write (5) for the normal components, in the two media, we
obtain the relation

Dp1n = Dp2n − (Pp1n − Pp2n), (40)

which reveals that, for different normal components of the permanent
polarization in the two media (Pp1n 6= Pp2n), the normal components
of vector Dp are not preserved, even if the separation surface S12 has
no free electric charge (under these conditions, the relation (12) was
written).

4. PARTICULAR CASES OF THE REFRACTION
THEOREMS

4.1. 2D Field in Isotropic Media with Permanent
Polarization

For isotropic media, the calculation permittivity in the two materials
is:

εp1x = εp1y = εp1; εp2x = εp2y = εp2. (41)

If we take into account (41), the theorem (32) for refraction of electric
field strength lines becomes

εp1(E1xn + E1yn)− εp2(E2xn + E2yn)

+ [(Pp1xn + Pp1yn)− (Pp2xn + Pp2yn)] = 0. (42)

Considering the significations of (32), (42) may be written in this way:

εp1E1n = εp2E2n − (Pp1n − Pp2n). (43)
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In case of isotropic dielectrics, (5) and (8), written for both media,
become: Dpλ = Dλ − P pλ = εpλEλ. In this case, between the
normal components we can write Dpλn = εpλEλn = Dλn − Ppλn or
Dλn = εpλEλn + Ppλn (λ = 1, 2). Consequently, after a regrouping of
the theorems, from (43) we track down (12), as we expect.

Alike, taking into account (40), the theorem (38) for refraction of
calculation electric flux density lines becomes

1
εp1

(Dp1xt + Dp1yt)− 1
εp2

(Dp2xt + Dp2yt) = 0. (44)

Considering the significations of (38), (44) can be written in a more
concise form:

Dp1t

εp1
=

Dp2t

εp2
. (45)

Equations (43) and (45) represent the theorems of refraction for
E and Dp in 2D fields, for isotropic dielectrics with permanent
polarization. We can remark that, for the tangent components of
Dp, the theorem (45) of refraction in dielectrics with permanent
polarization has a similar form (but another content) with the classical
theorem of refraction in materials without permanent polarization.

4.2. 2D Fields in Isotropic Media without Permanent
Polarization

In this case, for P p = 0, from (5) we obtain Dp ≡ D. Also, from (8),
for isotropic media we can write εp = Dp/E = D/E. So εp = ε, which
means that the calculation permittivity is identical with the classical
permittivity. Particularizing (43) and (45) for this case and taking into
account the previous observations, we obtain

εp1

εp1
=

Dp1t

Dp2t
=

E2n

E1n
=

ε1

ε2
=

D1t

D2t
, (46)

that is the classical form of the refraction theorem for electric field
lines (2D field, without permanent polarization, isotropic dielectrics).
We should mention that in this case the lines spectra of the electric
flux density D and of the electric field strength E are identical and
refracting in the same way.

It is easy to remark that, from the general expression of the
refraction theorem of Dp and E or the particular forms already
mentioned, we can also obtain other particular forms. Such cases could
be those in which one of the media has permanent polarization and
the other one does not, when the permanent polarization vectors have
particular orientations, etc.
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5. CONCLUSIONS

The introduction of a new relative permittivity for dielectrics with
permanent polarization (as described in Section 2 of this paper) is
a useful operation, because the solution of field problem for nonlinear
systems with permanent polarization can be obtained more easily. The
relations obtained are more concise, so simpler. Also, it is possible to
make useful analogies with the simpler cases of the materials without
permanent polarization.

As an application, for anisotropic materials with orthogonal main
directions of polarization and also with permanent polarization, the
author has demonstrated new refraction theorems for 2D electric field,
which are given by (32) (for electric field strength E)), and by (38) (for
calculation electric flux density Dp). Starting from these general forms
of the theorems, some particular forms have been deduced: for 2D
field in isotropic dielectrics, with permanent polarization, respectively
for isotropic dielectrics without permanent polarization (par. 4), and
another are possible.

Similar theorems were demonstrated by the same author (see [5–
7]) for the magnetic field lines refraction in materials with permanent
magnetization, i.e., permanent magnets.
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3. Preda, M., P. Cristea, and F. Spinei, Bazele Electrotehnicii I, 82–
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