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Abstract—An equivalent circuit model of coaxial probes is derived
directly from the intrinsic via circuit model. As all the higher-order
evanescent modes have been included analytically in the parasitic
circuit elements, only the propagating mode needs to be considered
by the simplest uniform-current model of a coaxial probe in numerical
solvers such as finite element method (FEM) or finite difference time
domain (FDTD). This avoid dense meshes or sub-gridding techniques
and greatly reduces the computational efforts for accurate calculation
of the probe input impedance. The derived equivalent circuit model
and the new feeding technique have been validated by both analytical
formulas and numerical simulations.

1. INTRODUCTION

Coaxial probes are widely used as feeding structures for microstrip
patch antennas as well as other applications. Many authors have
found a transverse electromagnetic (TEM) field distribution across the
probe aperture is a reasonable approximation for simulations of coaxial
probes [1–7]. Therefore, a coaxial probe feeding a patch antenna can be
viewed as a mode-converter which converts the TEM mode across the
probe aperture into the parallel plate modes. While the higher-order
parallel plate modes are usually evanescent waves localized near the
probe, the zero-order parallel plate mode can propagate away, excite
curtain resonant mode of the entire patch antenna, and thus radiate
into surrounding environments. It is much more difficult for numerical
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methods to obtain accurate input-impedances of a probe than the
radiation patterns. It is because input impedance of an antenna is
sensitive to the reactive energy stored in the complicated higher-order
modes near tiny feeding structures.

Three widely used probe feeding models have been compared in [7]
for patch antennas. The simplest one is called uniform-current model
which assumes a constant current source along the probe. while it is
very easy to implement in numerical methods such as finite element
method (FEM) and finite difference time domain (FDTD), the uniform
current can only excites the zero-order parallel plate model, i.e., it
neglects all the higher-order modes. This means although it can predict
the radiation pattern correctly, it cannot get accurate input impedance
for a probe-feeding patch antenna with thick substrates [7, 8].

The second model is called magnetic-frill model, in which the
TEM field distribution across the probe aperture is assumed and
replaced by the equivalent magnetic frill current backed by a perfectly
electric conductor wall. It is regarded as the most accurate probe
feeding model for both the radiation pattern and the input impedance
simulations as all the propagating and evanescent parallel plate modes
are included [1–7]. However, magnetic-frill model requires special
treatment of the probe exciting source, very dense meshes or sub-
gridding (subcell) techniques in FEM and FDTD solvers [9–12]. So
the magnetic-frill model usually requires a lot of computing resources
and complex mesh-generating technique.

The third feeding technique is gap-feed model, which was well
studied in [7]. In this model, the probe is replaced by a conducting rod
with one end shorting to one plate and another end having a small
gap to another plate. A constant gap voltage source is impressed
to excite both zero- and higher-order parallel plate modes. In the
gap-feed model, a constant source, instead of the space-varied source
in the magnetic-frill model, is used. At the same time, it can also
take into account the parasitics caused by the higher-order modes.
However, according to the Fourier transform, the amplitude of the
modes are determined by the gap size versus the probe height (the
separation of two plates). Different gap size leads to different amplitude
of each mode and thus different parasitic values. To relate the gap size
with the correct parasitic values, an empirical formula is given for the
gap size in [7] by comparing the results of the gap-feed model with
those obtained by full-wave numerical simulations. Another drawback
of the gap-feed model is that in numerical solutions, the small gap
structure still requires dense mesh to capture the rapidly varied fields
nearby. Therefore, the gap-feed model is still facing similar difficulties
in computational resources and mesh generations as the magnetic-frill
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model.
This paper provides a novel feeding approach to calculate the

probe input impedance, which can achieve the same accuracy as the
magnetic-frill model but using the simplest uniform-current model.
This is achieved by an equivalent probe circuit derived from the
intrinsic via circuit model in which all the higher-order evanescent
modes have been considered analytically and only the zero-order
propagating mode excited by the uniform-current along the probe
needs to be calculated numerically.

In Section 2, the equivalent probe circuit is directly derived from
the intrinsic via circuit model derived in [13, 14]. The equivalent probe
circuit is a two port network with one coaxial port of the probe and one
radial port of the parallel plate waveguide. The radial port impedance
reflects the plate geometry and surrounding environments. It provides
a new feeding approach as all higher-order evanescent modes have been
included analytically. Only the radial port impedance, which reflects
the effects of the propagating zero-order mode, needs to be extracted
by numerical solvers. Section 3 illustrates how to extract the radial
port impedance using the simplest uniform-current model in finite
element method (FEM). This means this new approach can achieve
the same accuracy of magnetic-frill model yet remain the benefits
of uniform-current model in mesh generation as well as computer
resources. Section 4 discusses the properties of parasitics and provides
several analytical and numerical examples to validate the equivalent
probe circuit, which is followed by a short conclusion.

2. RIGOROUS EQUIVALENT CIRCUIT MODEL OF A
PROBE

Consider a probe located at the center of a circular patch antenna with
radius of R as shown in Fig. 1. Perfect electric/magnetic conductor
(PEC/PMC) as well as the non-reflective perfectly matched layer
(PML) boundary conditions are used at the outer boundary ρ = R.
Various boundaries here are beneficial for the validation of the circuit
model derived although only PMC boundary is a useful approximation
for a patch antenna analysis. The inner and outer radii of the probe are
denoted as a and b, respectively. The probe height or the separation
of two plates is h. Between two plates is a dielectric material with
a relative permittivity of εr. Note that a probe in an infinite plate
pair, the case studied in [7], is a special case with the PML boundary
condition at ρ = R.

The input impedance of the probe at the center of a circular plate
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Figure 1. Cross section of a probe in a parallel plate pair.

pair has been derived analytically in (23) of [13] as
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The equivalent circuit of a probe can be derived directly from the
intrinsic via circuit model in Fig. 7 of [13] by shorting the coaxial port
on the top plate as shown in Fig. 2. It can be seen that the probe can be
described as a two-port network with a coaxial port and a radial port.
It shows clearly the parasitics due to by the higher-order evanescent
parallel plate modes, Cp, as well as those due to the zero-order mode,
the capacitance C0, the inductance L0 and the transformer ratio R0.
The plate pair can be simply modeled as an impedance of the radial
port located at ρ = b, the radius of the probe aperture.

We assume any higher-order mode cannot reach the edges of
patch antennas. Therefore, Cp is only related to the geometry of
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Figure 2. Equivalent probe circuit and its connection with the radial
port impedance.

the probe and doesn’t vary with the size and shapes of the patch
antennas. The admittance Y0 represents the admittance due to the
zero-order or propagating mode. The reason we can use a parasitic
capacitance Cp here is that evanescent TM modes or E-modes always
store capacitive electromagnetic energy. The capacitance Cp has been
given analytically as [13, 15]

Cp =
8πε

h ln(b/a)
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R
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}
. (5)

Here, we assume that all the higher-order parallel plate modes decay so
rapidly away from the probe that they cannot reach to the plate-pair
edges. This means for Cp calculation, the reflection coefficients Γ(n)

R
can be put to be zero for any n ≥ 1. In other words, for any higher-
order mode, the parallel plate seems infinite large. Then, (5) can be
simplified as
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Using the identity H0(−jx) = jπ/2K0(x), it can be further written as

Cp =
8πε

h ln(b/a)

N∑
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where K0(·) is the zero-order modified Bessel function of the second
kind and νn = jkn =

√
(nπ/h)2 − k2

0εr. Note that the number N is
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used to denote the truncated mode number in the practical summation
of (6) and (7).

The capacitance C0, the inductance L0 and the transformer ratio
R0 can be expressed in their concise forms as [13]

L0 = − µh

2πkb

W00(kb, ka)
W10(kb, ka)

(8)

C0 =
jεπ2a
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−RmRe (10)
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where an auxiliary function Wmn (x, y) defined as a determinant of the
Bessel and Hankel functions
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∣∣∣∣

Jm(x) Jn(y)
H

(2)
m (x) H
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∣∣∣∣ . (13)

Thus we have derived a formula to calculate the input admittance of
a probe in a circular plate pair as

Yin = jω(Cp + C0) +
R2

0

jωL0 + Z+
b

(14)

where Z+
b is the outward impedance of the radial port at ρ = b. For the

probe at the center of a circular plate pair given in Fig. 1, analytical
Z+

b is

Z+
b =

jωµh

2πkb

H
(2)
0 (kb) + Γ(0)

R J0(kb)

H
(2)
1 (kb) + Γ(0)
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where J0(1)(·) and H
(2)
0(1)(·) denote the zero- (first-) order Bessel

function and the zero- (first-) order Hankel functions of second kind,
respectively.

For a probe in an irregular plate pair, the radial waveguide
impedance Z+

b cannot be obtained analytically for an irregular plate
pair, as in (15) for a circular plate pair. Next section will use FEM
as an example to explain how to extract the impedance Z+

b for any
irregular plate pair using the uniform-current model.
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Figure 3. Finite element method extraction of the input impedance
of a probe in an irregular patch antenna.

3. PLATE PAIR IMPEDANCE BY NUMERICAL
METHODS

For example, consider a probe excite a patch antenna as shown in
Fig. 3. The electric field inside the region V can be formulated into an
equivalent variational problem with a functional given by [16, 17]

F (E) =
1
2

∫

V

(∇×E · ∇ ×E− k2
0εrE ·E)

dV

+jk0η

[∫

V
E · JdV +

∫

S
E×H · ndS

]
(16)

where J is the assumed probe current located at r = r′ from the point
A on the bottom plate to the point B on the top plate, and H is the
magnetic field. n is the unit normal vector of the boundary S.

In the uniform-current model, the probe current is supposed to be
constant along the probe as

J(r) = δ(r− r′)eAB (17)

where eAB is the unit vector along the probe. Following the routine
FEM procedure, the electric fields on each node or edge can be
obtained [16, 17]. Then, the input impedance can be calculated by
an integration along the probe as

ZU
in =

∫ B

A
E · eABdl (18)

Note that the infinitesimal current filament J (r) is an
approximation for the current along the probe surface of ρ = a.
Therefore, the impedance ZU

in can be regarded as the outward radial
impedance at ρ = a of the radial waveguide defined at the center of
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(a) (b)

Figure 4. (a) A segment of radial waveguide, (b) the approximate
circuit for the small segment of radial waveguide.

the probe instead of that at ρ = b of Z+
b which is required in the probe

circuit model of Fig. 2. Therefore, we need to derive radial impedance
transform between the radial port at ρ = a and that at ρ = b. Here,
a simple LC is used to connect these two radial ports because it is a
very electrically small segment of a radial transmission line as shown
in Fig. 4.

The input impedance at port a can be expressed from (15) as

Z+
a =

jωµh

2πka

H
(2)
0 (ka) + ΓbJ0(ka)

H
(2)
1 (ka) + ΓbJ1(ka)

(19)

where Γb is the reflection coefficient of the zero-order radial waveguide
mode at port b. As the probe is usually electric small comparing to
the operating frequency, this segment of the radial waveguide can be
approximately represented by a LC-circuit as shown in Fig. 4(b). Using
PEC and PMC boundary conditions at ρ = b respectively, inductance
Ls and Cs can be derived from (19) as

Ls =
Z+

a

jω
=

µh

2πka

W00(kb, ka)
W01(kb, ka)

(20)

Cs =
1

jωZ+
a

=
−2πaε0εr

kh
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(21)

Note that in the derivation of Ls, the capacitance Cs is neglected.
Assuming ka and kb are very small in the frequency of interests, Ls

and Cs can be simplified using the small argument approximation of
Bessel/Hankel functions as

Ls ' L′s =
µh

2π
ln

b

a
(22)

Cs ' C ′
s =

π
(
b2 − a2

)
ε0εr

h
(23)

Clearly, Cs is the parallel plate capacitance of the concentric plate
pair ring with inner and outer radii of a and b, and Ls is a radial loop
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(b)(a)

Figure 5. A probe with inner and outer radii of 0.635 mm and
2.188mm in a dielectric material of relative permittivity of 2.2. (a) Ls

and L′s. (b) Cs and C ′
s.

inductance from the port at ρ = a to the port at ρ = b. Fig. 5 shows
that the frequency-dependent Ls and Cs can be simplified by as the
constant L′s and C ′

s at low frequencies.
From the equivalent circuit shown in Fig. 4(b), the impedance Z+

b

can be extracted from ZU
in by

Z+
b =

ZU
in

1− jωCsZU
in

− jωLs (24)

Therefore, the input admittance or impedance of the probe
in an irregular patch antenna can be accurately extracted by
substituting (24) into (14) as

Y C
in = jω(Cp + C0) +

R2
0

jω(L0 − Ls) + ZU
in

1−jωCsZU
in

. (25)

Comparing (22) with (60) in [13], it is clear that we have Ls = L0.
Therefore, (25) can be simplified as

Y C
in = jω(Cp + C0) + R2

0

(
1− jωCsZ

U
in

)
Y U

in (26)

(26) can be regarded as an improved input admittance of patch
antenna from the input admittance by unform constant current model,
Y U

in , and the parasitics caused by the higher-order evanescent modes.
At low frequencies, we have R0 ' 1 and jωCs ≤ 1, then

Y C
in = jω(Cp + C0) + Y U

in (27)

Clearly, the equivalent probe circuit can improve the accuracy of
the input impedance calculation by the unform current model by
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considering the higher-order modes with the parasitic capacitance Cp

and C0.
Clearly, Cp, the capacitance from the probe barrel to the

unconnected plate due to the higher-order modes is the critical
parameter in the input impedance calculation. For a probe in a
thin substrate, Cp is too small to affect the first resonant frequency
of the patch antenna. However, Cp increases with the thickness of
the substrate and becomes unable to be neglected as demonstrated
in [8, 19].

The admittance (or impedance) obtained by FEM or FDTD using
the uniform-current model can be regarded as an approximation of Y U

in
which is defined at the port a at ρ = a. (26) is a good approximation
for the input impedance evaluation and will be validated by both
analytical formulas and numerical examples in next section.

4. VALIDATIONS AND DISCUSSIONS

4.1. Properties of the Parasitics

Using the above derived formulas, Fig. 6 investigates the properties
of the parasitics versus frequencies. It can be seen that at lower
frequencies (less than 20 GHz for this case), all the parasitics almost
remain as constant values for a typical probe. This verifies the derived
lumped parasitics in the probe circuit model. Note that from Fig. 6(a),
the transformer ratio R0 is almost not varied with the probe height or
plate separation h. At lower frequency, R0 is almost one but increases
rapidly with frequencies after 10 GHz. It can even reach nearly 3 at
40GHz, which is not negligible.

(b)(a)

Figure 6. Frequency dependence of the parasitics R0, L0, Cp and
C0 (a = 0.254mm, b = 0.8384mm, εs = 4.3, ε∞ = 4.1, τ =
3.1831× 10−11 s).
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Figure 7. Parasitics L0, Cp and C0 versus the separation h of the
plate pair (a = 0.1mm, εr = 1.0, frequency is 1 MHz).

Figure 7 provides the variations of the parasitics with different
outer radius of the coaxial probe and probe height. It shows in Fig. 7(a)
that the inductance L0 increase linearly with the increase of probe
heights. Also the larger outer radius leads to large probe inductance.
This agrees with the fact that the probe inductance L0 is the input
impedance of a small segment of a radial waveguide terminated by
a short circuit. Fig. 7 indicates that with the increase of the probe
aperture radius b, Cp decreases but C0 increases. Moreover, larger
probe height results larger Cp but smaller C0.

4.2. Probe in a Circular Patch Antenna

To validate the probe equivalent circuit derived above, a probe in a
circular plate pair is studied whose analytical input impedance has
been given in (1). The radii of the probe inner and outer conductor
are 0.254 mm and 0.8384 mm, respectively. The separation of the
top and bottom plate is 1.4732 mm. The embedded dielectric is
described as one term Debye model whose parameters are, respectively,
4.1 for relative infinity permittivity, 4.3 for static permittivity and
3.1831× 10−11 seconds for its relaxation time.

Figure 8 compares both the real and imaginary parts of the probe
in an infinite plate pair using (1) and (14) while the reflection coefficient
Γ(n)

R vanishes in the calculations. It can be seen that the analytical
formula of ZA

in obtained in (1) agrees very well with that obtained by
the probe equivalent circuit in (14). The maximum relative error is
2.5%. Fig. 9 compares the input impedance of the plate pair with a
radius of 200 mm with PML and PMC boundaries. It clearly shows
that the discretized resonant frequencies of the finite cavity of the patch
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Figure 8. Comparison of the real and imaginary parts of the probe
input impedance in an infinite plate pair obtained by the equivalent
circuit and the analytical formula.

0 10 20 30 40
0

50

100

150

200

Frequncy  [GHz]

|Z
in

| 
[  

]

PMC R=200  mm

PML

Figure 9. The input impedance
of a probe in a circular plate
pair with PMC and non-reflective
PML boundaries (R = 200 mm).
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antenna is strongly correlated to the the continuous resonant spectrum
of the infinite ‘cavity’ of the patch, especially at high frequencies.

For a circular patch with a radius of 20 mm with PMC and PEC
edge boundary conditions, Fig. 10 compares the input impedance
using (1) and (14). Again, excellent agreement between two formulas
is observed.

Both Figs. 8 and 10 indicate that the derivation of the equivalent
probe circuit is correct no matter what kinds of edge boundary
conditions. This also proves that the parasitics in the probe circuit
are really intrinsic parameters which are valid for any irregular patch
antennas.
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Figure 11. A coaxial probe feeding for a rectangular patch antenna.

4.3. Probe in a Rectangular Patch Antenna

A rectangular microstrip patch antenna is, as shown in Fig. 11, used
to validate the derived equivalent circuit feeding model for a coaxial
probe. The length, width and height of the patch are L, W and h
respectively. The relative permittivity of the substrate is denoted as
εr. The probe is located at (x0, y0) and its inner and outer conductor
radii are a and b, respectively.

A rectangular patch, as an example for an irregular patch antenna,
is chosen due to the reason that an analytical port impedance, called
cavity model, available as given in [18] or (18) in [7], can be regarded
as an approximation to the impedance ZU

in in the probe circuit model
in case of electrically small probes. Furthermore, the patch antenna
can be analyzed by a two dimensional (2D) FEM for extraction of ZU

in
using the uniform-current model. Then, the probe circuit derived in
this paper can be used to obtain more accurate probe input impedance
using (25) as it includes the capacitance, Cp, due to the higher-order
modes.

Figure 12 shows the input impedance of a probe in a square patch
antenna with different substrate thickness. The sidewall length of
the patch is 28.3 mm and the substrate is a material with a relative
permittivity of 2.33 and a loss tangent of 0.02. A probe is located at
(15.565, 20.565)mm and with inner and outer radii of a = 0.635mm
and b = 2.1884mm.

The first resonant frequency of the cavity is 3.4724 GHz (TM10

mode). However, the resonant frequency shifts to 3.41 GHz in the
case of a thick substrate of 5 mm. The main reason is that the
capacitance Cp increases from 34.47 fF when h = 1mm to 146.25 fF
when h = 5 mm.

It can be seen that for a thin substrate of 1 mm, 2D FEM corrected
by the probe circuit given in (25) agrees very well with the cavity
model in either the input amplitude or the resonant frequency of the
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Figure 12. Comparison of input impedance obtained by the probe
circuit model, 2D FEM and 3D FEM for a probe in a rectangular
patch antennas (W = L = 28.3mm, (x0, y0) = (15.565, 20.565)mm,
a = 0.635 mm and b = 2.1884mm; εr = 2.33, tan δ = 0.02).

patch antenna. For the thick substrate of 5mm, however, the cavity
model cannot match the 3D FEM results obtain by HFSS (Ansoft,
Inc.) because it neglects all higher-order modes excited by the probe.

On the other hand, 2D FEM with probe circuit by (25) can predict
the resonant frequency shift due to the parasitics caused by the think
substrate and agree very well with the results by 3D FEM of HFSS.
Therefore, the equivalent probe circuit model is validated.

5. CONCLUSIONS

An equivalent probe circuit is first derived rigorously through
electromagnetic analysis for a probe located at the center of a circular
patch antenna, and then the probe circuit is proved to be intrinsic and
valid for any irregular patch antennas. As all parasitics caused by the
evanescent higher-order modes have been evaluated analytically, only
the radial impedance due to the propagating zero-order mode requires
numerically calculation. Therefore, the simplest uniform-current
model can be used to extract the radial impedance in numerical solvers,
such as finite element method. This avoids computational burdens
caused by dense meshes or sub-gridding techniques for modeling the
complicated higher-order modes near the probe. Analytical and
numerical examples are provided to validate the probe circuit derived.
The new method is as simple as the uniform-current model, and at the
same time, it is as accurate as the magnetic-frill model for probes in
any irregular patch antennas.
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