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Abstract—This paper presents lumped dual-frequency impedance
transformers for frequency-dependent complex loads. According
to different dual-frequency allocations of a complex load in Smith
chart, three types of impedance matching networks are presented
respectively. Several kinds of lumped circuit blocks are used as basic
elements for constructing these transformers with design formula
deduced. Various examples are given for describing the design
procedures. Good features such as big frequency ratio and big
matching bandwidths are demonstrated. These lumped dual-frequency
impedance transformers have advantage of much compacter dimensions
compared to distributive solutions.

1. INTRODUCTION

Impedance transformers are basic building blocks for microwave
components such as power amplifiers, power dividers, antennas.
Recently as dual-band microwave components are becoming a trend [1–
16], the demand for dual-frequency impedance transformers has been
increasing. Dual-frequency impedance matching were firstly realized
between real impedances [17, 18]. In [17] two sections of transmission
line of same length are cascaded to realize a dual-frequency transformer
between real impedance load and real impedance source. L-shaped
network containing a transmission line and a shunt stub can also
realize the same function [18]. As it is usually demanded to realize
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impedance matching from complex loads (such as the input or output
impedance of a power amplifier) to a real-impedance source new
techniques are proposed [19–22]. In [19] two unequal transmission line
sections are cascaded to realize dual-frequency impedance matching
for a frequency-independent complex load. As to frequency-dependent
complex loads, a three-section impedance transformer is proposed
in [20] to realize dual-frequency impedance matching. As an alternative
of [20], two sections of transmission lines and a two-section shunt
stub are cascaded to form a dual-frequency impedance transformer
at the expense of big dimension [21]. A T-shaped network is also
introduced for dual-frequency matching for complex loads [22]. In
a more general problem, [23] discusses the situation in which both
the source and the load are complex and frequency dependent in
impedance, and a circuit containing four sections of transmission lines
is adopted. The above distributive impedance transformers are always
bulky especially when the operating frequencies are below several
GHzs, so some lumped and hybrid types of dual-frequency transformers
are also developed for decreasing the dimensions [24, 25]. In [24] single-
band impedance transformers which are constructed by transmission
lines and lumped tanks are cascaded to form multi-band transformers.
A frequency mapping technique is adopted in [25] to synthesis a
dual-frequency transformer which is realized with lumped elements,
but the technique is only limited to conduct impedance matching
between real impedances. In this paper, traditional L type impedance
transformers are extended while lumped circuit blocks are used to
realize frequency-dependent reactances and admittances. According to
the dual-frequency allocation of a complex load in Smith chart, three
types of topologies are presented. The new impedance transformers
contain limited number of lumped elements and are much compacter
than transformers constructed by transmission lines.

2. THEORY

2.1. Topologies and Matching Processes

Figure 1(a) and Fig. 1(b) are two L-network impedance transformers
(type I and type II) which were commonly used for single-frequency
impedance matching in the past. Type-I L-network is suitable for
impedance matching of a complex load which is located outside the
1 + jx circle (unit resistance circle) while type-II L-network is for a
complex impedance located outside the 1+ jb circle (unit conductance
circle).

If the normalized impedances (referring to matched impedance
Z0) of a frequency-dependent load at two specified frequencies (f1 and
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f2) are: zl(fn) = zln (n = 1, 2), then three cases can be classified: A),
zl1 and zl2 are both located outside the 1 + jx circle; B), zl1 and zl2

are both outside of the 1 + jb circle; C), zl1 and zl2 are located within
the 1 + jb and the 1 + jx circle, respectively. It should be noted that
it can be classified into either case A or case B when zl1 and zl2 are
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Figure 1. Topologies of dual-frequency impedance transformers.
(a) L1 and L2 are outside of 1+ jx circle. (b) L1 and L2 are outside of
1 + jb circle r. (c) L1 and L2 are within 1 + jb circle and 1 + jx circle
respectively.
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both outside the two circles.
Case A: Each of zl1 and zl2 can separately get matched via a type-

I L-Network with certain values of jbp and jxs, thus they can share
one type-I L-network provided that the jbp and jxs blocks can afford
required susceptances and reactances at f1 and f2, respectively. We
can see the matching processes in the Smith chart of Fig. 1(a). Here
L1 and L2 are the positions of the complex impedances at f1 and f2.
By serially connecting the jxs block, the input impedances at the two
frequencies run from L1 and L2 to A1 and A2 via resistance circles.
Here A1 and A2 are required to be located on the 1 + jb circle. The
values of xs are given as below:

xs(fn) = ±
√

rln − r2
ln − xln n = 1, 2 (1)

Here rln and xln are the real and imaginary parts of zln. By
parallel connecting the shunt admittance of jbp, the impedances run
on the 1 + jb circle and reach the matching point O respectively. The
values of bp are:

bp(fn) =
xs(fn) + xln

r2
ln + (xs(fn) + xln)2

n = 1, 2 (2)

Case B: If zl1 and zl2 are both outside of the 1 + jb circle, they can
share one type-II L-network and concurrently get matched if the serial
and shunt circuit blocks have needed reactances and suceptances at the
two frequencies. As shown in the Smith chart of Fig. 1(b), the input
impedances start from L1 and L2 and reach B1 and B2 via conductance
circles. Here B1 and B2 are located on the 1 + jx circle. This is
realized by parallel connecting a jbp block whose susceptances at the
two frequencies are:

bp(fn) = ±
√

gln − g2
ln − bln n = 1, 2 (3)

Here gln and bln are the real and imaginary parts of the complex
admittances of the load. Then by serially connecting a jxs block,
the imaginary part of zin1 is compensated at both the two frequencies
resulting in matched input impedance zin. As a corresponding process
in the Smith chart, the impedances go from B1 and B2 and arrive at
the matching point O respectively. The formula of the serial reactances
are as below:

xs(fn) =
bp(fn) + bln

g2
ln + (bp(fn) + bln)2

n = 1, 2 (4)

Case C: If zl1 and zl2 are located within 1 + jb circle and 1 + jx circle
respectively, zl1 can get matched using a type-II L-network and zl2 can
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be matched by a type-II L-network, but they can not share the same L-
network. For the purpose of dual-frequency impedance matching, the
first step is to convert case C to case A or B. As shown in Fig. 1(c),
the load is firstly parallel connected with a susceptance jbp1 under the
constraint condition that bp1(f1) = 0, thus the input impedance at f1

keeps unchanged in the Smith chart while the input impedance at f2

runs on a conductance circle and reaches L′2 which is on the vertical
axe (the real part of reflection coefficient is zero), being outside of the
1+ jx circle. After this we can follow the same matching procedure as
case A. We give the needed susceptance at f2 as:

bp1(f2) = ±
√

1− g2
l2 − bl2 (5)

2.2. Lumped Blocks for Dual-frequency Susceptances and
Reactances

An important task in realizing the dual-frequency impedance
transformers of Fig. 1 is to construct lumped blocks which afford
the needed values of susceptances or reactances at two specified
frequencies.

To realize various two-frequency susceptances, four types of
lumped circuit blocks as shown in Fig. 2 can be adopted. The
susceptance of a parallel LC block in Fig. 2(a) is monotone increasing
thus suitable for the case that bp(f2) is greater than bp(f1). Serial
LC block as shown in Fig. 2(b) is suitable for the case that bp(f1) is
positive and bp(f2) is negative For the case that 0 ≥ bp(f1) > bp(f2),
an inductor should be parallel connected to a serial LC resonator as
shown in Fig. 2(c). On the contrary, if we need bp(f1) > bp(f2) > 0,
we need to parallel connect a capacitor with the serial LC resonator,
as shown in Fig. 2(d).

Based on the needed values of susceptances at two frequencies we
can have two equations with two or three unknowns. For the cases of
Fig. 2(a) and Fig. 2(b), the element values can be directly solved. For
the other two cases, we should select the value of one element and the
other two unknowns can be solved then.

As to the serial reactances, we also have four types of circuit
blocks as shown in Fig. 4. We choose the suitable serial circuit blocks
according to the needed values of xs(f1) and xs(f2).

3. DESIGN EXAMPLES AND DISCUSSIONS

We construct a frequency-dependent complex load which contains an
inductor Ll = 5nH, a capacitor Cl = 1 pF and a resistor Rl = 200 Ω,
as shown in Fig. 4.
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Figure 2. Dual-frequency susceptance circuits. (a) bp(f1) < bp(f2).
(b) bp(f1) > 0 > bp(f2). (c) 0 ≥ bp(f1) > bp(f2). (d) bp(f1) > bp(f2) >
0.

The normalized impedance of the load is given in Equation (6).
Fig. 4(b) gives the plots of the real parts of the input impedance and
admittance.

zl (ω) =
(

jωLl +
1

1/Rl + jωCl

)/
Z0 (6)

Here Z0 is matched impedance 50 Ω.

3.1. Design Examples for Case A

As can be observed in Fig. 4(b), the real part of zl is below unit line
within the frequency range of 1.35 ∼ 4GHz, meaning the complex
load is outside of the 1 + jx circle in Smith chart. Type-I topology
is suitable for dual-frequency impedance matching if f1 and f2 are in
this frequency range. For example if f1 = 1.6GHz and f2 = 3.5GHz,
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Figure 3. Dual-frequency reactance circuits. (a) xs(f1) < xs(f2).
(b) xs(f1) > 0 > xs(f2). (c) 0 ≥ xs(f1) > xs(f2). (d) xs(f1) >
xs(f2) > 0.

we have normalized input impedances and admittances as:
zl (f1) = 0.7932− 0.5896j; zl (f2) = 0.1966 + 1.3344j
yl(f1) = 0.8120 + 0.6036j; yl(f2) = 0.1081− 0.7335j

3.1.1. Step 1: L1- > A1 and L2- > A2.

According to Equation (1) we get the reactances of the jxs block:
xs (f1) = 0.9946 or 0.1846; xs (f2) = −0.9369 or − 1.7318

We choose: xs (f1) = 0.9946; xs (f2) = −0.9369.

3.1.2. Step 2: A1- > O and A2- > O.

By using Equation (2) we get the sucepatances of the jbp block as:

bp (f1) = 0.5105; bp (f2) = 2.0314
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According to Fig. 2 and Fig. 3, both the jxs block and jbp block
can be realized with a parallel LC circuit thus we get the circuit of the
impedance transformer as shown in Fig. 5.

The values of Cp1 and Lp1 can be achieved by solving the following
two equations:

ω1Cp1 − 1/(ω1Lp1) = 1/(xs (f1) · Z0)
ω2Cp1 − 1/(ω2Lp1) = 1/(xs (f2) · Z0)

We get: Cp1 = 1.7556 pF; Lp1 = 2.6345 nH.
Similarly we get: Cp2 = 2.0557 pF; Lp2 = 9.5136 nH.
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With the same circuit topology, we have designed two other dual-
frequency transformers which have different matching frequencies and
the data of all the three designs are listed in Table 1.

Table 1. Design data of dual-frequency impedance transformers
(Case A).

f1/f2 (GHz) xs(f1) xs(f2) bp(f1) bp(f2)
1.6/3.5 0.9946 −0.9369 0.5105 2.0314
1.8/3.2 0.8240 −0.6511 0.7274 1.8145
2.0/3.0 0.6152 −0.4534 0.9106 1.6742

Cp1(pF) Lp1(nH) Cp2(pF) Lp2(nH)
1.7556 2.6345 2.0557 9.5136
3.2282 1.4547 2.0450 10.304
6.2816 0.7140 2.0382 10.752

The s11 plots of the three impedance transformers are compared in
Fig. 6. For each design, perfect matching is achieved at the specified
two frequencies with 15 dB matching bandwiths of several hundreds
MHzs.

Figure 6. S11 plots of designed dual-frequency impedance
transformers (Case A).

3.2. Design Examples for Case B

The real part of normalized admittance is below unit line within the
frequency range of DC-1.7GHz, so the topology of Fig. 1(b) can be used
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for dual-frequency impedance matching when f1 and f2 are within this
range.

3.2.1. Step 1: L1- > B1 and L2- > B2.

If we choose f1 = 0.4 GHz and f2 = 0.8GHz the susceptances of the
jbp block can be achieved using Equation (3):

bp (f1) = −0.5541 or 0.3290; bp (f2) = 0.2253 or − 0.7083

We choose bp (f1) = −0.5541 and bp (f2) = 0.2253 thus the jbp

block can be realized with a parallel LC circuit with the element values:

Cp = 2.6651 pF; Lp1 = 22.378 nH

3.2.2. Step 2: B1- > O and B2- > O.

Then from Equation (4) we get the reactances of the jxs block at f1

and f2:
xs (f1) = −1.6635 and xs (f2) = 1.4548

The jxs block can be realized with a serial LC circuit whose
element values are solved from the equations:

ω1Ls − 1/(ω1Cs) = xs (f1) · Z0

ω2Ls − 1/(ω2Cs) = xs (f2) · Z0

We get Cs = 2.4963 pF and Ls = 30.326 nH. The circuit of the
designed transformer is then shown in Fig. 7.

We list in Table 2 the data of three similar designs with different
ratios between f1 and f2. They share the same circuit topology as
shown in Fig. 7. Fig. 8 gives the compared S11 plots of the three

Table 2. Design data of dual-frequency impedance transformers
(Case B).

f1/f2 (GHz) bp(f1) bp(f2) xs(f1) xs(f2)
0.4/0.8 −0.5541 0.2253 −1.6635 1.4548
0.4/1.1 −0.5541 0.1310 −1.6635 1.1987
0.4/1.3 −0.5541 0.0446 −1.6635 0.9712

Cp(pF) Lp(nH) Cs(pF) Ls(nH)
2.6651 22.378 2.4963 30.326
1.1089 28.688 3.2893 15.036
0.58183 31.718 3.6714 10.027
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Figure 7. The circuit of the designed dual-frequency impedance
transformers (Case B).

Figure 8. S11 plots of designed dual-frequency impedance
transformers (Case B).

examples. Big matching bandwidths are observed around the two
frequencies of each example.

3.3. Design Examples for Case C

zl(f1) is within the 1 + jx circle when f1 is below 1.35 GHz while
zl(f2) is within 1 + jb circle when f2 is within 1.7 ∼ 2.6 GHz,as can be
observed in Fig. 4(b).

As an example, if we have f1 = 1GHz and f2 = 2 GHz, we
can list the normalized input impedances and admittances at the two
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frequencies as below:
zl (f1) = 1.5509− 1.3206j; zl (f2) = 0.5467− 0.1174j
yl(f1) = 0.3738 + 0.3183j; yl(f2) = 1.7485 + 0.3754j

3.3.1. Step 1: L2 unchanged and L1- > L′1.

As can be seen in the Smith chart of Fig. 9, the load impedances at f1

and f2 are located at L1 and L2 which are respectively within 1 + jx
circle and 1 + jb circle. The first step is to convert case C to case
A, making the impedances at the two frequencies to be outside of the
1 + jx circle. A shunt susceptance jbp1 should be parallel connected
to the load for this purpose and according to (5) we have:

bp1(f2) = 0; bp1(f1) = −1.2458 or 0.6092.
We choose bp1(f1) = −1.2458 so that the jbp1 block can be realized

using a parallel circuit of Cp1 and Lp1, which resonates on f2. We have
two equations:

jω1Cp1 − j/(ω1Lp1) = jbp1(f1)/Z0 = −j0.02492
jω2Cp1 − j/(ω2Lp1) = jbp1(f2)Z0 = 0

By solving the simultaneous equations we get:
Cp1 = 1.3218 pF and Lp1 = 4.7907 nH

Then we get the input impedance and admittances of z′l:

z′l(f1) = 0.3738 + 0.9275j; z′l(f2) = zl(f2)
y′l(f1) = 0.3738− 0.9275j; y′l(f2) = yl(f2)

The position of z′l(f1) is L′1 which is on the vertical axe. z′l(f2) is
still at the former position L2.

3.3.2. Step 2: L′1- > A1 and L2- > A2.

In the second step z′l is connected with a serial block jxs and we get
input impedance zA which is on 1+jb circle at both the two frequencies.
According to Equation (1) we have:

xs(f1) = −0.4437 or 1.4113 and xs(f2) = 0.6152 or − 0.3804
We choose xs(f1) = −0.4437 and xs(f2) = 0.6152 thus the

reactance block can be realized with a serial LC circuit whose elements
are: Ls = 4.4412 nH and Cs = 3.1767 pF. By now the normalized input
impedances and admittances are:

zA(f1) = 0.3738 + 0.4838j, yA(f1) = 1− 1.2944j;
zA(f2) = 0.5479 + 0.4978j, yA(f2) = 1− 0.9106j;

Both zA(f1) and zA(f2) are located on the 1 + jb circle.
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3.3.3. Step 3: A1- > O and A2- > O.

As a final step, a parallel jbp block is used to compensate the imaginary
parts of yA(f1) and yA(f2), we have:

bp(f1) = −Im(yA(f1)) = 1.2944
and bp(f2) = −Im(yA(f2)) = 0.9106

Since bp(f1) > bp(f2) > 0, we use a three-element circuit
containing Ce, Cs1 and Ls1, as shown in Fig. 10 to realize the
susceptance. If the serial circuit of Cs1 and Ls1 has a susceptance
of jB′

p, we have
bp(f1)/Z0 − ω1Ce = B′

p(f1) > 0
bp(f2)/Z0 − ω2Ce = B′

p(f2) < 0

So: bp(f1)Z0

ω1
> Ce >

bp(f2)Z0

ω2

For convenience, we choose:

Ce =
(

bp(f1)Z0

ω1
+

bp(f2)Z0

ω2

)/
2 = 2.7847 pF

And then we get the values of Cs1 and Ls1 as below:
Cs1 = 0.8013 pF and Ls1 = 12.645 nH

From Fig. 9 we can see the matching paths for the two frequencies
are: L1- > L′1- > A1- > O and L2- > A2- > O. We list in Table 3
three designs including the given example. They have the same circuit
topology as Fig. 10 but work on different frequencies. Fig. 11 compares
the S11 plots of the three designs and the matching bandwidths are
relatively big. The biggest frequency ratio of the three designs is five.
As the frequency ratio (f2/f1) is bigger, Cp1 becomes smaller and Lp1

becomes bigger, meaning the circuits are becoming unrealizable.

Figure 9. Dual-frequency impedance matching paths for a frequency-
dependent complex load (Case C).
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3.4. Discussions

The three types of design examples have demonstrated that the
proposed topologies are able to achieve dual-frequency impedance
matching for a variety of passive loads. The possible ratio between
the matching frequencies can be big enough, ensuring enough matching
bandwidths. The synthesized circuits have suitable element values that
can be realized without heavy nonlinearity in microwave frequency
ranges. We should note that different dual-frequency values of the
jbp and jxs will incur different selection of lumped circuit blocks,
thus having effect on the matching performances. Also, it can be
understand that a load with smoothly-varying impedance will have
bigger matching bandwidths than those with heavy fluctuations in
impedances. These topologies will be suitable except the synthesized
circuits have elements with unrealizable values, which happens when
the load impedances or the frequency ratios (f2/f1) become extreme.
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Figure 10. The circuit of the designed dual-frequency impedance
transformers (Case C).

Table 3. Design data of dual-frequency impedance transformers
(Case C).

f1/f2(GHz) bp1(f1) bp1(f2) Cp1(pF) Lp1(nH) xs(f1) xs(f2) Cs(pF) Ls(nH)

1.0/2.0 −1.2458 0 1.3218 4.7907 −0.4437 0.6152 3.1767 4.4412

0.7/2.3 −1.1600 0 0.53849 8.8921 −0.4942 0.2856 7.0998 1.6626

0.5/2.5 −1.1040 0 0.29286 13.839 −0.5151 0.0676 11.561 0.56564

f1/f2 (GHz) bp(f1) bp(f2) Ce(pF) Ls1(nH) Cs1(pF)

1.0/2.0 1.2944 0.9106 2.7847 12.645 0.8013

0.7/2.3 1.5205 1.1569 4.2577 3.9729 2.2062

0.5/2.5 1.6247 1.3105 6.0058 1.9467 4.0036
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Figure 11. S11 plots of designed dual-frequency impedance
transformers (Case C).

4. CONCLUSIONS

Three types of circuit topologies are proposed for dual-frequency
impedance matching for arbitrary frequency-dependent complex loads
by extending the impedance matching concepts of L-type networks.
Impedance matching processes are described on Smith chart with
design formula deduced. For realizing the needed dual-frequency
susceptances and reactances, different lumped circuit blocks are
adopted. A variety of design examples are given and compared
validating the feasibility of the method. Big frequency ratios and
bandwidths are achieved. These dual-frequency transformers use
limited number of lumped elements and will afford much compacter
dimension compared to other distributive alternatives.
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