
Progress In Electromagnetics Research, Vol. 125, 37–53, 2012

AN EFFICIENT METHOD FOR THE COMPUTATION
OF MIXED POTENTIAL GREEN’S FUNCTIONS IN
CYLINDRICALLY STRATIFIED MEDIA

L. F. Ye*, K. Xiao, L. Qiu, S. L. Chai and J. J. Mao

College of Electronic Science and Engineering, National University of
Defense Technology, Changsha 410073, China

Abstract—Closed-form mixed potential Green’s functions (MPGFs)
for cylindrically stratified media are derived in terms of quasistatic-
wave and surface-wave contributions. In order to avoid possible
overflow/underflow problems in the numerical calculations of special
cylindrical functions such as Bessel and Hankel functions, a novel
form of the spectral-domain MPGFs is developed. Then, a two-
level methodology is used for the approximation of the spectral-
domain MPGFs. In the first step, the qusistatic components are
extracted from the spectral-domain MPGFs, and then transformed
into the space domain with the use of the Sommerfeld identity and
its derivatives. In the second step, the remaining parts of the
spectral-domain MPGFs are approximated in terms of pole-residue
expressions via the rational function fitting method (RFFM). The
proposed method is efficient and fully automatic, which avoids an
analytical cumbersome extraction of the surface wave poles (SWPs),
prior to the spectrum fitting. In addition, this method can evaluate
the spatial-domain MPGFs accurately and efficiently for both the near-
and far-fields. Finally, numerical results for the spatial-domain MPGFs
of a two-layer structure are presented and discussed.

1. INTRODUCTION

Analysis and design of conformal structures play an important role in
many practical applications. As a special case of conformal structures,
the cylindrically stratified structures have been widely investigated in
recent years [1–5].

For the rigorous analysis of printed geometries in cylindrically
stratified structures, the method of moments (MoM) is most frequently
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applied. The MoM procedure can be applied either in the spatial
domain or in the spectral domain. as discussed in [13], the spatial
domain MoM is considered to be more robust for solving large and
complex problem.

The spatial domain MoM, based on the spatial-domain mixed
potential Green’s functions (MPGFs), are of great interest in the
analysis of cylindrical microstrip antennas (Fig. 1) [6–11]. These
spatial-domain MPGFs arise in the mixed potential integral equation
(MPIE). As well known, the spatial-domain MPGFs can be obtained
by computing infinite integrals of the spectral domain counterparts,
called Sommerfeld integrals (SIs). Since the integrands are both
highly oscillating and slowly converging, the brute-force numerical
computation is cumbersome and very time consuming.

In the literature, MPGFs were first developed for single-layered
cylindrical structure in [6], The extrapolation and interpolation
techniques had been used in [6] to evaluate the summation of cylindrical
eigenmodes. However, it only dealt with single-layered structures.
Following this development, a more general form of the MPGFs for
multilayered cylindrical structure was developed in [11, 12]. In order
to improve the convergence behavior of the summation of cylindrical
eigenmodes, a new method was proposed in [11–13] for the extraction
of the quasi-static components of the spectral domain MPGFs. In this
method, the slowly converging quasi-static components were extracted

Figure 1. Two-layered cylindrically stratified media with a PEC patch
located at the air-dielectric interface.



Progress In Electromagnetics Research, Vol. 125, 2012 39

and then transformed into the space domain analytically. After this
extraction, the remaining parts in series became fast convergent and
can be easily summed up, then the discrete complex image method
(DCIM) with the help of generalized pencil of function (GPOF)
method, similar to [14], was applied for obtaining a closed-form solution
of the MPGFs in spatial domain. Since the deformed path in [13] can
avoid the branch singularity and surface wave pole singularities, there
is no need to deal with them explicitly. The method in [13] can provide
a very accurate approximation within the range of validity on the order
of several wavelengths. However, when distances between the source
and field points are beyond several wavelengths where surface-wave
contributions become dominant, the extraction of surface wave poles
(SWPs) is necessary [11, 15]. To alleviate this problem, a numerical-
analytical method was proposed in [7, 16] for extracting the surface-
wave contributions explicitly, but since the pole singularities were more
complicated than the planar case, this procedure was time consuming.
Furthermore, to the best of our knowledge, this method was only
restricted to single-layered structure [8, 9].

Recently, a novel approach was proposed for extracting the surface
wave poles by the rational function fitting method (RFFM) in the
planar stratified media [17–19]. In this approach, the spectrum of the
Green’s functions was fitted via the RFFM, based on the vector fitting
algorithm (VECTFIT) presented in [20, 21], after the extraction of the
quasistatic part of the spectrum. Then the spatial domain Green’s
functions can be expressed in terms of quasistatic-wave and surface-
wave contributions with the use of integral identities. Without the
process of extracting all the surface-wave poles explicitly, this method
was direct and convenient to implement. In [22], this approach was
extended to the cylindrically stratified structure. The numerical results
obtained for the spatial-domain field Green’s functions showed good
agreement with the direct numerical results.

The major contribution of this paper is to extend the RFFM
method in [22] to the calculation of spatial-domain MPGFs of
cylindrically stratified structure. For the sake of consistency, the
spectral domain MPGFs for the ejωt time convention are derived,
which have not yet been found from other published literature.
Furthermore, in order to avoid possible overflow/underflow problems
in the numerical calculations of special cylindrical functions such as
Bessel and Hankel functions, which arise in the MPGFs, a novel
form of the spectral-domain MPGFs is developed. Since the infinite
series involved converges slowly however, or even diverge, the series
acceleration technique should be applied, according to [13]. After the
quasistatic parts are completely extracted from the spectral-domain
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MPGFs, the RFFM method [22] can be applied for the approximation
of the remaining parts. In Section 2, the details of the novel form
spectral-domain MPGFs and the approximating RFFM method are
presented, In Section 3, some numerical examples of the spatial domain
MPGFs are presented for a cylindrically two-layered structure. The
numerical results for the spatial-domain MPGFs via the proposed
RFFM method are compared with the exact solutions obtained by the
direct numerical integrals. Conclusions are summarized in Section 4.

2. THEORY AND FORMULATION

Figure 1 illustrates the geometry for a cylindrically stratified media.
The structure is assumed to be infinite in the z-direction. A perfect
electric conductor (PEC) forms the innermost region with a radius a0,
and is surrounded coaxially with two dielectric layers up to radii a1

and a2. The outmost region is free-space. Meanwhile, a PEC patch
is printed at the air-dielectric interface. Each dielectric layer has a
permittivity and permeability denoted by εrj , and µrj , respectively.

Following [14], the spatial domain field Green’s functions for
cylindrically stratified structure for the ejωt time convention can be
defined as follows

GE,H
pq

(
z − z′

)
=

1
2π

∫ ∞

−∞
e−jkz(z−z′)G̃E,H

pq (kz)dkz (1)

where GE,H
pq denotes the spatial domain field Green’s functions (p, and

q can be replaced by z, φ, or ρ). G̃E,H
pq denotes the spectral domain

field Green’s functions, which can be expressed as follows

G̃E,H
pq = − 1

4ω

∞∑
n=−∞

ejn(φ−φ′)G̃En,Hn
pq . (2)

The complete set of G̃En,Hn
pq can be found in the Appendix of [23].

Next, we will derive the spectral-domain MPGFs for the ejωt time
convention. Similar to [11], the electric field due to the current can be
expressed in a mixed potential form as follows

E = −jωA−∇φ (3)

where

A =
∫∫

S
ḠA · J

(
r′

)
ds′ (4)

φ =
∫∫

S
∇′ · Ḡφ · J

(
r′

)
ds′. (5)
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Note that ˜̄GE , ˜̄GA, ˜̄Gφ are the spectral domain counterparts of ḠE ,
ḠA, Ḡφ, respectively, according to [11, 12]

˜̄GE = −jω ˜̄GA −∇∇′( ˜̄Gφ) (6)

with

˜̄GE =




G̃En
ρρ G̃En

ρφ G̃En
ρz

G̃En
φρ G̃En

φφ G̃En
φz

G̃En
zρ G̃En

zφ G̃En
zz


 (7a)

˜̄GA =




G̃An
ρρ G̃An

ρφ G̃An
ρz

G̃An
φρ G̃An

φφ G̃An
φz

G̃An
zρ G̃An

zφ G̃An
zz


 (7b)

˜̄Gφ =




G̃φn
ρρ 0 0
0 G̃φn

φφ 0
0 0 G̃φn

zz


 (7c)

Following the same procedure and assumptions in [11, 12], we have




G̃En
zz = −jωG̃An

zz − k2
zG̃

φn ,

G̃En
zφ = −jωG̃An

zφ +
kzn

ρ
G̃φn ,

G̃En
φz = −jωG̃An

φz +
kzn

ρ′
G̃φn ,

G̃En
φφ = −jωG̃An

φφ −
n2 − 1

ρρ′
G̃φn .

(8)

Then let G̃An
zφ = G̃An

φz = 0, the spectral-domain MPGFs can be obtained

G̃φn =
1
εj
·
(

f11
n +

jρωµi

kzn

∂f21
n

∂ρ

)
(9a)

G̃An
zz =

j

εjω
·
(

k2
i f

11
n +

jρωµikz

n

∂f21
n

∂ρ

)
(9b)

G̃An
φφ =

j

εjωk2
ρi

·
{

k2
j (

n2f11
n

ρρ′
+

jnωµi

ρ′kz

∂f21
n

∂ρ
)

−jωεj

(
nkz

ρ

∂f12
n

∂ρ′
+jωµi

∂2f22
n

∂ρ∂ρ′

)}
− j

εjωρρ′
·
(

f11
n +

jρωµi

nkz

∂f21
n

∂ρ

)
.

(9c)
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In the above, f11
n , f12

n , f21
n , and f22

n are the entries of F̄n, which is a
2× 2 matrix given by [15]

F̄n =H(2)
n (kρjρ)Jn

(
kρjρ

′)
[
Ī +

Jn(kρjρ)

H
(2)
n (kρjρ)

˜̄Rj,j+1

]

˜̄Mj+

[
Ī +

H
(2)
n

(
kρjρ

′)

Jn

(
kρjρ

′) ˜̄Rj,j−1

] (10)

where kρj =
√

k2
j − k2

z , with kj being the wave number of layer j.

Note that Equations (9a)–(9c) are now derived for the ejωt time
dependence. In addition, in the above expressions, ρ and ρ′ are kept
distinct, according to [15].

For the sake of derivation’s convenience, Equation (9c) can be split
into three terms

G̃An
φφ = G̃Aan

φφ + G̃Abn
φφ + G̃Acn

φφ (11)

where

G̃Aan
φφ =

jk2
j

εjωk2
ρi

·
(

n2f11
n

ρρ′
+

jnωµi

ρ′kz

∂f21
n

∂ρ

)
+

1
k2

ρi

· nkz

ρ

∂f12
n

∂ρ′
(12a)

G̃Abn
φφ =

1
k2

ρi

jωµi
∂2f22

n

∂ρ∂ρ′
(12b)

G̃Acn
φφ = − j

εjωρρ′
·
(

f11
n +

jρωµi

nkz

∂f21
n

∂ρ

)
. (12c)

Then (9a)–(9b), and (12a)–(12c) can be modified for ρ = ρ′ case and
rewritten in the following forms

G̃n
u =

[(
∂2

k2
ρj

∂ρ∂ρ′

)q(
H(2)

n (kρjρ)Jn

(
kρjρ

′))
]
[(

n/kρj

)p×fu(n, kz)
]

(13)

where G̃n
u stands for G̃φn , G̃An

zz , G̃Aan
φφ , G̃Abn

φφ or G̃Acn
φφ . q = 0, p = 2 for

G̃Aan
φφ , q = 1, p = 0 for G̃Abn

φφ , and q = 0, p = 0, otherwise. The term
fu (n, kz) can be explicitly given by

fφn(n, kz) =
1
εj
·
(

f11
r1 +

jρωµjkρj

kz
f21

r2

)
(14a)

fAn
zz (n, kz) =

j

εjω
· (k2

j f
11
r1 + jρωµjkzkρjf

21
r2

)
(14b)

fAan
φφ (n, kz) =

jk2
j

εjω

(
f11

r1

ρρ′
+

jωµjkρj

ρ′kz
f21

r2

)
+

kzkρj

ρ
f12

r3 (14c)

fAbn
φφ (n, kz) = jωµjf

22
r4 (14d)
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fAcn
φφ (n, kz) = − j

εjωρρ′
·
(

f11
r1 +

jρωµjkρj

kz
f21

r2

)
(14e)

where f11
r1 , f21

r2 , f12
r3 , and f22

r4 are the corresponding entries of the 2× 2
matrix F̄r1, F̄r2, F̄r3, and F̄r4, which are the same as Equations (6)–(9)
in [24].

Referring to (2), the spectral-domain components which are
related to G̃n

u can be expressed as

G̃u = − 1
4ω

∞∑
n=−∞

ejn(φ−φ′)G̃n
u (15)

where G̃u stands for G̃φ, G̃A
zz, G̃Aa

φφ , G̃Ab
φφ, or G̃Ac

φφ.
Since in (13), all Bessel and Hankel functions are in the form

of ratios, the possible overflow/underflow problems in the numerical
calculations of special cylindrical functions in (15) can be avoided,
and the efficiency can be improved. In order to further improve
the efficiency and accuracy of (15), an envelope extraction method
in [11, 12] with respect to n should be used to yield

G̃u = − 1
4ω

∞∑
n=−∞

{[(
∂2

k2
ρj

∂ρ∂ρ′

)q (
H(2)

n (kρjρ)Jn

(
kρjρ

′))
]

· (n/kρj

)p · [fu(n, kz)− Cu(kz)] ejn∆φ
}

− 1
4ω

Cu(kz)F1u

[
H

(2)
0 (kρj

∣∣ρ− ρ′
∣∣)

]
(16)

where Cu (kz) is the limit of fu (n, kz) when n → ∞.
F1u[H(2)

0 (kρj |ρ− ρ′|)] corresponds to each component of G̃u and is
given by

F φ
1

[
H

(2)
0

(
kρj

∣∣ρ−ρ′
∣∣)

]
=FA

1zz

[
H

(2)
0

(
kρj

∣∣ρ−ρ′
∣∣)
]
=FAc

1φφ

[
H

(2)
0

(
kρj

∣∣ρ−ρ′
∣∣)
]

= H
(2)
0

(
kρj

∣∣ρ− ρ′
∣∣) (17a)

FAa
1φφ

[
H

(2)
0

(
kρj

∣∣ρ−ρ′
∣∣)

]
=

∂2H
(2)
0

(
kρj |ρ− ρ′|)

k2
ρj

∂φ∂φ′
(17b)

FAb
1φφ

[
H

(2)
0

(
kρj

∣∣ρ−ρ′
∣∣)

]
=

∂2H
(2)
0

(
kρj |ρ−ρ′|)

k2
ρj

∂ρ∂ρ′
. (17c)

Apparently, from Equation (16), we find that the spectrum G̃u will
decay slowly at a small angle of (φ− φ′) due to the Hankel functions,
when kz tends to infinity. Thus another envelop extraction with respect
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to kz should be applied, according to [11, 12]. As a result, the spatial
domain Green’s function expression becomes

Gu =
1
2π

∫ ∞

−∞

(
G̃u+

1
4ω

Cu(kz∞)F1u

[
H

(2)
0

(
kρj

∣∣ρ−ρ′
∣∣)

])
e−jkz(z−z′)dkz

− j

4πω
Cu(kz∞)F2u (18)

where Gu stands for Gφ, GA
zz, GAa

φφ , GAb
φφ, or GAc

φφ and is the limit of
Cu(kz) when kz →∞. F2u corresponds to each component of Gu and
is given by

F φ
2 = FA

2zz = FAc
2φφ =

e−jk|r− r′|

| r− r′|
=
−j

2

∫ ∞

−∞
H

(2)
0

(
kρj

∣∣ρ− ρ′
∣∣) e−jkz(z−z′)dkz (19a)

FAa
2φφ =

−j

2

∫ ∞

−∞

1
k2

ρj

∂2

∂φ∂φ′
H

(2)
0

(
kρj

∣∣ρ− ρ′
∣∣) e−jkz(z−z′)dkz (19b)

FAb
2φφ =

−j

2

∫ ∞

−∞

1
k2

ρj

∂2

∂ρ∂ρ′
H

(2)
0

(
kρj

∣∣ρ− ρ′
∣∣) e−jkz(z−z′)dkz. (19c)

The explicit expressions of (19b)–(19c) are presented as (A5a)–(A5b)
in Appendix A.

After the quasistatic-wave part is extracted in (16), the remaining
dynamic part can be approximated by the RFFM method, which was
proposed in [22]. Thus, the following expression is obtained

G̃u +
1
4ω

Cu(kz∞)F1u

[
H

(2)
0

(
kρj

∣∣ρ− ρ′
∣∣)

] ∼=
Nsw∑

l=1

al

k2
z − k2

zl

(20)

where −π < arg{kzl} ≤ 0 is enforced to ensure that the solution
obtained for G̃u fulfills the causality and radiation conditions [18].

Then, with the use of the following integral identity
∫ ∞

−∞

e−jkz(z−z′)

k2
z − k2

zl

dkz = −πj
e−jkzl(z−z′)

kzl
(21)

the spatial domain MPGFs for cylindrically stratified media can be cast
into a finite sum of quasistatic-wave and surface-wave contributions as

Gu
∼= − j

4πω
Cu(kz∞)F2u −

j

2

Nsw∑

l=1

al
e−jkzl(z−z′)

kzl
. (22)
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Figure 2. Sommerfeld integration path (SIP), deformed integration
path (DIP) and possible singularities on the complex kz plane.

In order to apply the RFFM method, the deformed integration
path (DIP) is defined in Fig. 2, and the parameters are shown as [22]

for Γ1 : kz = k0(1 + jT1)
t1
T1

, 0 ≤ t1 < T1,

for Γ2 : kz = k0


1 + jT1 +

(√
1 + T 2

2 − 1− jT1

)
t2

T2 − T1


 ,

0 ≤ t2 < T2 − T1,

for Γ3 : kz = k0

√
1 + (t3 + T2)2, 0 ≤ t3 < T3 − T2,

(23)

where k0 is the wavenumber of free space.
The DIP parameter T2 should be chosen to ensure that k0

√
1 + T 2

2
is greater than the wavenumbers of all layers, according to [22], and T3

should be large enough, as discussed in [13]. The value of T1 should
be carefully chosen to meet the justification for shifting the path from
the physical poles and branch point, according to [22]. In this paper,
T1 = 1e−3 suffices to obtain the accurate results for the calculation
of the spatial-domain MPGFs. In addition, the number of sampling
points and poles should be large enough to capture and describe the
behavior of the spectrum.

Lastly, we find it useful to add a brief discussion on the axial line
problem (ρ = ρ′ and φ = φ′). In this case, the H

(2)
0 (kρj |ρ− ρ′|) related

terms in (16) are singular since the argument of the Hankel function is
zero. Thus, (16) and (20) are not valid in the proposed RFFM method,
and (22) can not be applied for obtaining the spatial domain MPGFs.
To alleviate this problem, a hybrid method [23] or a small argument
Hankel function approximation method [15] should be applied in the
MoM-based algorithm.
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2.1. Numerical Results and Discussions

In this section, numerical examples are presented to demonstrate the
validity of the proposed method for calculating the spatial-domain
MPGFs of a two layer structure when ρ = ρ′ and φ 6= φ′. All algorithms
are programmed in Matlab and performed on a PC desktop computer
with Intel (R) Core (TM) 2 Duo CPU 2.20GHz.

Consider a two-layer structure, as shown in Fig. 1. The parameters
that define the structure are as follows: Layer 1: εr1 = 2.0, µr1 = 1.
Layer 2: εr2 = 4.0, µr2 = 1. a0 = 50 mm, a1 = 52 mm, a2 = ρ′ =
54mm, ρ = ρ′, φ − φ′ = 0.2. The operating frequency is f = 6 GHz.
For the sake of convenience, we take the calculation of spatial-domain
component GA

φφ as an example, which can be expressed as

GA
φφ = GAa

φφ + GAb
φφ + GAc

φφ. (24)
The proposed RFFM method is applied on the DIP shown in Fig. 2.
Fig. 3 shows results for G̃A

φφ along the deformed path Γ1 and Γ2 of
Fig. 2. It is noted that the values arising from the proposed RFFM
method are in good agreement with the exact values of G̃A

φφ, and the
maximum relative error between the two values is found to be below
0.06%. This maximum relative error is obtained by computing the
relative error between the exact and the approximation values of G̃A

φφ

along the path Γ1 and Γ2 of Fig. 2. Please note that the exact values
are obtained via (16), and the approximate values are obtained via (16)
and( 20).

Figure 3. Real and imaginary parts of the spectral-domain Green’s
function G̃A

φφ for the structure of Fig. 1 along the path Γ1 and Γ2 of
Fig. 2. The exact results (solid and dashed line) are compared with
those obtained via (16) and (20) (‘×’, ‘∗’).
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In Table 1, we present results for the normalized poles and residues
of G̃A

φφ of Fig. 3 via (20), and we compare these values with the
numerical exact results obtained by the contour integrals [25]. it is
observed that the poles obtained by the proposed method coincide with
the poles obtained by the method in [25] within six significant figures.
The real part of the residues by the former method also coincide within
three significant figures. It shows a good agreement between the two
methods. On the other hand, the CPU time needed to obtain the
poles and residues by the proposed method is about 14 seconds, which
is much less than 30 seconds by the method in [25].

Due to the accurate approximation provided by the spectral-
domain expression (16) and (20), we can conclude that the
approximation provided by its spatial-domain counterpart (22) should
also be very accurate. This is verified in Fig. 4 where the results
for GA

φφ obtained with the closed-form expression (22) are compared
with results obtained via numerical integration of Sommerfeld integrals
(exact). It is noted that the numerical integration method cannot be
applied to the Sommerfeld integrals directly, since the spectral domain
Green’s functions are slowly convergent or even divergent. As discussed
in [13], we use the following equation to obtain the exact results,

Gu = Gquasi + Gnumer (25)

where Gquasi stands for the quasi-static parts, and can be obtained
by the same method in Section 2. Gnumer stands for the integrals of
the remaining spectral domain Green’s functions after the quasi-static

Figure 4. Magnitude of the spatial-domain Green’s function GA
φφ

for the structure of Fig. 1. Exact integration results (solid line) are
compared with those obtained via (22) and the three-level method
proposed in [13] (‘◦’, and dotted line with ‘×’).
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Table 1. Normalized poles and residues of the spectral-domain
Green’s functions studied in Fig. 3. The results obtained by the
proposed RFFM method are compared with the results obtained by
using the exact expression via a numerical algorithm [25].

 [25] Eqn. (20) [25] Eqn. (20) 

kz1 /k0 1.007017 1.007019 Res1 -6.079 10
-9

-6.088 10
-9
 − j2.299 10

-11

kz2 /k0 1.046748 1.046747 Res2 -2.481 10
-9

-2.483 10
-9

 + j1.704 10
-12

kz3 /k0 1.071425 1.071424 Res3 1.080 10
-9

1.080 10
-9
 − j1.614 10

-12

kz4 /k0 1.079684 1.079683 Res4 1.213 10
-9

1.214 10
-9
 − j1.567 10

-12

×

×

×

×

×

×

×

×

×

×

×

×

Figure 5. Magnitude of the spatial-domain Green’s function GA
zz

for the structure of Fig. 1. Exact integration results (solid line) are
compared with those obtained via (22) and the three-level method
proposed in [13] (‘◦’, and dotted line with ‘×’).

parts are extracted, and can be obtained via the Romberg integration
method, Meanwhile, the integration path is the SIP shown in Fig. 2,
and the relative error is selected with of 10−4. In addition, the results
obtained by the three-level method [13] is also demonstrated in Fig. 4.
It is noted that the proposed RFFM method is quite successful and
coincides perfectly with the results of the numerical integration, while
the three-level method fails in fitting the far field. For the sake of
completeness, the spatial domain components GA

zz, and Gφ are also
plotted in Figs. 5 and 6. From Figs. 5, 6, the same conclusions
can be obtained. The relative errors between exact results and the
approximate formulas of (22) for GA

φφ, GA
zz, and Gφ are shown in Fig. 7,

it is observed that the relative errors are all basically below 1%. The
CPU time required by the proposed RFFM method is about 14s for
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Figure 6. Magnitude of the spatial-domain Green’s function Gφ

for the structure of Fig. 1. Exact integration results (solid line) are
compared with those obtained via (22) and the three-level method
proposed in [13] (‘◦’, and dotted line with ‘×’).

Figure 7. Relative errors of the spatial-domain Green’s functions GA
φφ,

GA
zz, and Gφ between the results calculated by the proposed RFFM

method and the exact results.

each component, while the CPU time required by the exact numerical
integration method is about 228s for each component.

For the sake of comparison, the parameters used in the proposed
RFFM method for the structure of Fig. 1 are as follows: T1 = 0.001,
T2 = 1.9, and T3 = 6, number of samples are M1 = 100, M2 = 600,
M3 = 2, and number of rational functions is Nsw = 30; while the
parameters used in the method [13] are as follows: T1 = 0.2, T2 = 5,
and T3 = 7, number of samples are M1 = 100, M2 = 300, and M3 = 2.
The number of harmonics is Nh = 200, and the number of samplings
of each component of the spatial domain MPGFs is N = 601 for all
the methods.
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3. CONCLUSIONS

An efficient and fully numerical methodology for the computation
of spatial-domain MPGFs in cylindrically stratified media has been
presented. The RFFM method is applied for the approximation of
spectral-domain MPGFs after the quasistatic-wave parts are extracted.
Then the closed-form Green’s functions are obtained with the use of
integral identities, which can be applied in both the near- and far-
field. Since the proposed methodology is fully automatic, analytical
determination and extraction of surface wave poles of the spectrum
are avoided prior to the fitting.
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APPENDIX A. SOME IDENTITIES

We define W0 as follows

W0 =
e−jk|r−r′|

|r− r′| =
−j

2

∫ ∞

−∞
H

(2)
0

(
kρj

∣∣ρ− ρ′
∣∣) e−jkz(z−z′)dkz (A1)

where ∣∣r− r′
∣∣ =

√
(z − z′)2 + ρ2 + ρ′2 − 2ρρ′ cos (φ− φ′)

∣∣ρ− ρ′
∣∣ =

√
ρ2 + ρ′2 − 2ρρ′ cos (φ− φ′).

It can be derived that
∂2

∂φ∂φ′
H

(2)
0 (kiρ

∣∣ρ−ρ′
∣∣)=

[
ρ2ρ′2 sin2 (φ−φ′)

|ρ−ρ′|2 H
(2)
0 (kiρ

∣∣ρ−ρ′
∣∣)k2

iρ

+
ρρ′

(
ρ2 + ρ′2

)
cos (φ− φ′)− 2ρ2ρ′2

|ρ− ρ′|3 kiρH
(2)
1

(
kiρ

∣∣ρ− ρ′
∣∣)

]
(A2a)

∂2

∂ρ∂ρ′
H

(2)
0

(
kiρ

∣∣ρ− ρ′
∣∣) =

[
2ρρ′ − (

ρ2 + ρ′2
)
cos (φ− φ′)

|ρ−ρ′|3 H
(2)
1 (kiρ

∣∣ρ− ρ′
∣∣)kiρ

− [ρ− ρ′ cos (φ−φ′)] [ρ′−ρ cos (φ−φ′)]
|ρ−ρ′|2 H

(2)
0

(
kiρ

∣∣ρ−ρ′
∣∣) k2

iρ

]
. (A2b)
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Meanwhile, we define the following integral W1

W1 = − j

2

∫ ∞

−∞

1
kiρ

H
′(2)
0

(
kiρ

∣∣ρ− ρ′
∣∣) e−jkz(z−z′)dkz. (A3)

According to the same method of (A-7a) in [13], the closed form
solution to W1 can be obtained

W1 = −je−jks|r−r′|

ks |ρ− ρ′| . (A4)

So the closed form solutions to (19b)–(19c) can be obtained with the
help of (A1)–(A4)

FAa
2φφ = − j

2

∫ ∞

−∞

1
k2

iρ

∂2

∂φ∂φ′
H

(2)
0

(
kiρ

∣∣ρ− ρ′
∣∣) e−jkz(z−z′)dkz

=
ρ2ρ′2sin2(φ−φ′)

|ρ−ρ′|2 W0−
(
ρ2+ρ′2

)
ρρ′cos(φ−φ′)−2ρ2ρ′2

|ρ−ρ′|3 W1 (A5a)

FAb
2φφ = − j

2

∫ ∞

−∞

1
k2

iρ

∂2

∂ρ∂ρ′
H

(2)
0

(
kiρ

∣∣ρ− ρ′
∣∣) e−jkz(z−z′)dkz

= −2ρρ′ − (
ρ2 + ρ′2

)
cos (φ− φ′)

|ρ− ρ′|3 W1

= − [ρ− ρ′ cos (φ− φ′)] [ρ′ − ρ cos (φ− φ′)]
|ρ− ρ′|2 W0. (A5b)
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