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Abstract—The design, fabrication, and characterization of an amulti-
section impedance transformer using Klopfenstein tapering method is
presented. The transformer is employed in a Ka-band traveling-wave
tube (TWT)for radar applications. The Klopfenstein tapering provides
the shortest length between the two different impedance levels with
continuous tapering sections.

1. INTRODUCTION

In helix-TWT amplifiers, a highly-efficient matching output section is
required in order to extract maximum power generated in the helix-
TWT circuit. To realize this, a transformer is required between the
helix circuit and the pillbox window for impedance matching. For
compact helix-TWTs, the transformer should yield the shortest length
with superior impedance matching characteristics.

The Klopfenstein taper is an impedance matching Dolph-
Tchebycheff transmission line taper designed to minimize the
reflections over a particular passband. The benefit of this design versus
other transformers is that there is no wavelength dependent length
requirement, which enables the taper design to be tailored to physical
constraints of a transmission line structure. The Klopfenstein taper
is an optimum transformer that provides lowest reflection coefficient
over the passband and yields the shortest matching section, thereby
allowing the device to be as compact as possible. The investigated
Klopfenstein-tapered transformer waveguide includes a segmented
transmission line of several sections to create a piecewise taper and
then smoothed out to create the continuous taper.
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In this paper, the Klopfenstein transformer was employed in
the helix-TWT for radar applications. The Klopfenstein transformer
is located between the pillbox window and the helix-TWT circuit.
The pillbox window includes a cylindrical waveguide between two
symmetrically shaped WR-28 waveguides. At the center of the
cylindrical waveguide is a ceramic disk, which serves as an RF dielectric
window. The Klopfenstein transformer is optimized to match the
impedances of the pillbox window and the helix-TWT structure. The
helix-TWT includes three dielectric support rods, a fifteen-turn helix
coil, and a cylindrical vacuum cavity. The design, fabrication, and
characterization of the transformer are described in the following
sections.

2. THEORY AND DESIGN OF A KLOPFENSTEIN
TRANSFORMER

Different types of tapers have different passband characteristics.
A taper transition, which has characteristic impedance that varies
continuously and smoothly from one impedance section to another,
is an alternative to a multi-section quarter-wave transformer. In
this study, we examined the Klopfenstein tapered transformer and
implement this between the pillbox window and helix-TWT circuit
to achieve impedance matching in the shortest possible length. The

Figure 1. Schematic diagram of the pillbox window.Cylindrical
waveguide is located between two symmetrically shaped WR-28
waveguide. Ceramic disk inside the cylindrical waveguide is shown.
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study of the pillbox window and helix-TWT circuit was performed to
determine the load and source impedances, respectively. The pillbox
window and the helix-TWT circuit were modeled to operate across the
frequency range of 30 to 34 GHz for radar applications. The pillbox
window consists of an aluminum nitride ceramic disk placed at the
center of the cylindrical waveguide that transitions to a rectangular
waveguide of standard WR-28 dimensions at both ends. A ceramic
disk with a dielectric constant of 8.4 was chosen due to its low loss
tangent properties and ease of manufacturing.The height of the WR-28
rectangular waveguide and the gradual cylindrical waveguide transition
were optimized to provide efficient coupling of the TE10 rectangular
mode to the linearly polarized TE11 circular mode. Figure 1 shows the
pillbox window that serves as the load impedance. The helix-TWT
includes a cylindrical vacuum tube, a tungsten helix coil, and three
beryllium oxide support rods that are placed around the helix coil with
each rod oriented 120◦ apart. To ensure a strong contact between the
support rods and helix coil, a thin boundary condition of gold material
was placed between the flat portion of the rod and the helix coil. The
helix-TWT was modeled using the single-turn approach to minimize
simulation time and then optimized to fifteen turns. Figure 2 shows
the helical TWT structure that serves as the source impedance.
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Figure 2. Configuration of Helix-TWT circuit showing one turn of
helix coil with three supporting rods, (a) cross sectional view, (b) side
view.



256 Resley and Song

2.1. Analytic Approach

The analytical theory of transmission lines, analogous to the theory
for a multi-section transformer, was used in the design. First,
a transmission line was considered to be composed of several
sections having differential lengths for which the impedance change
by differential amounts from section to section. Then a tapered
transmission line was used to match a line with normalized impedance
unity to the pillbox coupler with normalized load impedance, ZL, of
311 ohms and the helix-TWT with normalized source impedance, Z0,
of 208 ohms. The taper line has normalized impedance, Z, which is
a function to the distance z along the taper. The following equations
demonstrate the analytic approach for solving the Klopfenstein taper
design problem [1, 2].

2.1.1. Theory of Small Reflection

For a transmission line shown in Figure 3, the reflection coefficient of
a gradual impedance tapered line can be determined using the theory
of small reflection and is expressed as [1]

Γ(θ) =
1
2

L∫

z=0

e−2jβz d

dz
ln

(
Z

Z0

)
dz (1)

where Z0 represents the reference impedance at the input end of the
taper upon which the reflection coefficient is defined, z is the position
along the taper, L is the taper length, β is the propagation constant,
θ is the phase response from position 0 to z, and θ =

∫ z
0 2βdz′. This

 θ 
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Figure 3. Schematic of impedance transformation between
transmission line of length L.
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implies that if the impedance value at each point along the tapered line
is known, the reflection coefficient can be determined based on (1).

2.1.2. The Klopfenstein Taper

We first observe the Klopfenstein impedance taper for TEM structures
to be optimum in the sense that the reflection coefficient is minimized
over the passband [1]. With pre-designated minimum reflection
coefficient in the passband Γm, taper length L, input impedance Z0,
and load impedance ZL, the logarithm of the characteristic impedance
variation for the Klopfenstein taper is given by

ln Z (z) =
1
2

lnZ0ZL + ΓmA2φ

(
2z

L
− 1, A

)
, for 0 ≤ z ≤ L (2)

where

A = cosh−1

(
Γ0

Γm

)
(3)

Γ0 =
1
2

ln
(

ZL

Z0

)
(4)

Γm =
Γ0

coshA
(5)

and the function φ(z, A) is defined as

φ (z, A) = −φ (−z, A) =

z∫

0

I1

(
A

√
1− y2

)

A
√

1− y2
dy, for |z| < 1 (6)

where I1 is the modified Bessel function which has the following special
values

φ (0, A) = 0 (7)

φ (z, 0) =
z

2
(8)

φ (1, A) =
coshA− 1

A2
(9)

The reflection coefficient is given by

Γ (θ) = Γ0e
−jβL

cos
√

(βL)2 −A2

coshA
for βL > A (10)

and

Γ (θ) = Γ0e
−jβL cos

√
A2 − (βL)2

coshA
for βL < A (11)
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where θ is the electrical length.
The reflection coefficient at zero frequency is given by

Γ0 =
ZL − Z0

ZL − Z0

∼= 1
2

ln
(

ZL

Z0

)
(12)

The maximum ripple in the passband is governed by Γm defined by
(5).

Observation of the Klopfenstein taper design reveals a lower-
end cutoff frequency at the passband, while no upper-end cutoff
frequency exists as defined in the relationship of βL > A. The
cutoff frequency decreases when either the taper length increases
(may not be desired for microwave circuit design) or the value of the
factor A decreases. As described in (3) and (4), the larger the ratio
of impedance transformation ZL/Z0 and the smaller the minimum
reflection coefficient, Γm, the higher the cutoff frequency, fc, with
increasing A. Generally, these factors act counter conducive of each
other, so one factor may have to compromise in order to achieve the
other for certain desired performance.

2.2. Design Methodology — Optimal Taper for Non-TEM
Waveguide Structures

Although the Klopfenstein taper was proposed with intended
applications for TEM structures, where the propagation constant β
is non-dispersive and the characteristic impedance is well defined,
modifications needed to be made in order to make use of the concept
of Klopfenstein taper for non-TEM structures. Given the physical
dimensions of the input and output ports, along with the specified
bandwidth and return loss parameters, the shape of the taper can be
realized. Using the relationship described in (1) makes it possible to
find the input reflection coefficient of the gradual impedance taper for
a non-TEM line as follows

Γin (f) =
1
2

θt∫

0

e−jθ d

dθ
ln

(
Z (θ)
Z0

)
dθ (13)

where

θ (f, z) =

z∫

0

2β
(
f, z

′)
dz′ (14)

is the phase response to a point z along the taper and the total phase
delay as θt = θ (f, L). The function Z(θ) is the modified characteristic
impedance variation along the non-TEM taper, and is an implicit
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function of z. In order to maintain an input reflection coefficient
Γ < Γm over the desired bandwidth, it has been shown [1, 2] that
Z(θ) can be calculated as follows

ln
(

Z (θ)
Z0

)
=

1
2

ln
(

ZL

Z0

)
+ ΓmA2φ

(
2θ

θt
− 1, A

)
(15)

where the passband is defined as θt > 2A Given that for a non-TEM
structure, the propagation constant, β, becomes dispersive and the
phase response, θ, is no longer a linear function of β and z we can
assume that β is a monotonically increasing function of frequency and
make the lowest operating frequency defined by

θt (fc) = 2A (16)

which is an implicit relationship between the taper length, L, the lower
cutoff frequency, fc, and the maximum reflection coefficient, Γm.

The main difficulties in applying the above results are the
frequency dependence of the wave impedance and propagation
constant, coupled with the difficulty in translating the impedance as a
function of θ into a function of z and subsequently in determining
the physical parameters required to design the Klopfenstein taper.
Moreover, the frequency dependence of the wave impedance and
propagation constant means that the result in (15) would require a
different physical taper at each frequency. However, since the dominant
mode along the rectangular waveguide is found to be TE in nature, the
relationship between the wave impedance and propagation constant
can be evaluated as

Z =
ωµ

β
(17)

then (15) can be rewritten in terms of β

β (f, z) =
√

βLβ0 exp
[
−ΓmA2φ

(
2θ (f, z)

θt
− 1, A

)]
(18)

where β, βL and β0 correspond to Z, ZL and Z0, respectively
using (16). To compute the required propagation constant as a function
of the position along the taper β(z), the taper structure is divided into
N sections of length ∆z = L/N , and θ can be approximated as

θ (zi) =
i−1∑

k=0

2β (zk)∆z = θ(zi−1)∆z (19)

where N must be large enough to ensure good approximation.
In the design process, the characteristic impedance at each end

of the taper line was first determined by taking the previous design
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Figure 4. Schematic diagram of the Klopfenstein tapered transformer
showing the inner dimensions.

for the pillbox window and helical structure, and recalculating the
dimensions for Ka-band operation. Then, with an initial guess of θt

and θ(Z0) = 0, β(Z0) can be calculated from (18) and θ(Z1) can be
determined from (19). By repeating the same process, all the values
of θ(Zi) and β(Zi) with i = 1 to N can be computed. The iterative
process continues until the solution set of β converges and the shape
of the optimal taper is determined. Typically, a different physical
taper is required for each different frequency due to the frequency
dependence of the propagation constant, making it exhaustive to
implement. Therefore, the center frequency at the band of interest
was chosen as the operating frequency for the tapered design.

In the proposed Klopfenstein transformer, the impedance curve
was segmented into 21 sections, which were then placed in transmission
line rendering 21 line widths. The 21 sections were employed since
these provided good convergences in the solution set of β. These line
widths were then placed at equal intervals to the end of the pillbox
WR-28 rectangular waveguide creating a piecewise metal taper. There
is not a length requirement associated with this taper design, as any
physical length to wavelength relationship is not relevant. Therefore,
the shortest possible length was chosen that fits manufacturing
guidelines. The discontinuities of the segmented sections are handled
by smoothing the rigid edges to create a continuous taper and
help further mitigate reflections seen by the boundary. The inner
dimensions and configurations of the Klopfenstein taper design is
shown in Figure 4.

2.3. Simulation

The proposed Klopfenstein transformer with the pillbox window and
helix-TWT was simulated in order to obtain accurate prediction of
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S-parameters. A 3-D finite element analysis tool Ansoft HFSS (High
Frequency Structure Simulator) [3] was used for in frequency range of
30 to 34GHz. The Klopfenstein transformer was located between the
helix-TWT structure and pillbox window. The final configuration was
optimized for minimum reflections and loss. A complete schematic
of the simulated configuration is shown in Figure 5. The results
from the simulation show that S11 is below −25 dB, and S21 is
better than −0.08 dB from 30 to 34 GHz. The lowest reflection for
S11 was −54 dB at 34 GHz, and the best transmission for S21 was
−0.033 dB at 30.5 GHz. Simulation of pillbox window and Klopfenstein
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Figure 5. Schematic of the pillbox window, Klopfenstein transformer,
and helical TWT design used in simulation.

(a) (b)

Figure 6. Fabricated Klopfenstein transformer with pillbox coupler,
(a) side view, (b) top view.



262 Resley and Song

transformer excluding the helix-TWT circuit was also performed. The
simulation results showed same results as when the helix-TWT circuit
was included.

3. MEASURED RESULTS AND DISCUSSION

The proposed Klopfenstein transformer and pillbox window assembly
were fabricated, and the measurements were performed by connecting
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Figure 7. Simulated and measured S11 of the Klopfenstein
transformer with pillbox window.

Figure 8. Simulated and measured S21 of the Klopfenstein
transformer with pillbox window.
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two identical structures in back-to-back configuration. To simplify
fabrication process, helix-TWT was not included in fabricated
transformer assembly. The fabricated transformer is shown in Figure 6.
Measurements were performed using the two-port Agilent E8364A
vector network analyzer. Comparisons of the measured and simulated
results are shown in Figures 7 and 8. The measured results are in good
agreement with the simulated ones.

4. SUMMARY AND CONCLUSION

In this paper, the S-parameters S11 and S21 of a Klopfenstein
transformer waveguide for matching the impedances of a Ka-band
pillbox window and helix-TWT were investigated, and the results have
been presented. The tapered waveguide was designed and optimized
using 21 piecewise sections to create the tapered line. Simulation
results showed S11 to be less than−25 dB and S21 better than−0.08 dB
across 30 to 34 GHz. The measured results agreed closely with
simulation. The Klopfenstein transformer developed in this work can
be used for helix-TWT amplifiers for high power radar applications.
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