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Abstract—In a large number of applications, including communica-
tions from satellites, an optimal exploitation of the available power is
of the outmost importance. As a consequence, isophoric array archi-
tectures, i.e., arrays using the same power in all the different entry
points and achieving the amplifiers’ maximum efficiency, are of great
interest. At the same time, the easy reconfigurability of the power
patterns results fundamental in order to get a full exploitation of the
payload. In this paper, an innovative and deterministic approach is
proposed for the optimal synthesis of linear phase-only reconfigurable
isophoric sparse arrays able to commute their pattern amongst an arbi-
trary number of radiation modalities. The introduced perspective leads
to an effective solution procedure for the fast design of antennas with
high performance, and does not recur to computationally expensive
global-optimization techniques. Numerical results concerning applica-
tions of actual interest and employing realistic element patterns are
provided in support of the given theory.

1. INTRODUCTION

Due to the extraordinary large number of its applications, the effective
design of single antennas able to radiate more than one pattern is a very
long standing subject in electromagnetics [1]. In particular, amongst
the different kinds of reconfigurable radiating systems, array antennas
have a relevant role, as they can be controlled by means of completely-
electronic techniques increasing the flexibility and the speed of the
reconfiguration [1–4].
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On the other hand, a new challenge has recently arisen in satellite
and radar communication area. In such applications, one needs to
exploit in an optimal fashion the available power, so that, when Direct
Radiating Arrays (DRA) are in order, one usually requires that all the
different ‘entry points’ of the antenna work under the same optimal
conditions. Therefore, in all cases of sparse, thinned, and clustered
DRA, the control points must have the same (unitary) entry power, i.e.,
the array must be ‘isophoric’ [5–8]. Moreover, in order to have DRA
competitive with more usual reflector-based solutions, the number of
control points must be as low as possible.

When considering in a joint fashion all the requirements above,
the problem arises to synthesize an aperiodic array such that, with a
common architecture or geometry, and by using just unitary entry
points, one can reconfigure in an easy fashion the power pattern
amongst at least two different modalities.

This contribution presents an innovative and effective approach
aimed to solve such problem in the case of one-dimensional isophoric
arrays. The proposed solution procedure takes advantage from the
strategy proposed in [7] for the synthesis of shaped beams by means
of isophoric sparse arrays, as well as from a recently introduced point
of view to the synthesis of phase-only reconfigurable arrays lying on a
regular lattice [9].

The paper is organized as follows. In Section 2, we briefly
recall available procedures for the synthesis of uniformly-excited sparse
arrays radiating single pencil or shaped beams. Then, in Section
3, we propose a new approach to the optimal design of phase-only
reconfigurable isophoric arrays. Sections 4 and 5 respectively present
a final optimization procedure aimed at maximizing the antennas’
performance and a set of numerical results achieved in realistic
conditions and concerning applications of actual interest. Conclusions
close the paper.

2. FAST DESIGN OF ISOPHORIC ARRAYS
RADIATING SINGLE PENCIL OR SHAPED BEAMS:
STATE OF THE ART

The problem of synthesizing pencil beams by means of linear isophoric
sparse arrays has been studied since the sixties of the last century,
with pioneering contributions from Doyle [10], Skolnik [11], and
many others, introducing interesting analytical procedures for an
effective antenna design. Later, synthesis techniques based on ‘global’
optimization procedures have been also proposed to tackle the same
problem [12–15]. Very recently, a new analytical approach with
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improved performances has been defined in [16].
Roughly speaking, the methods in [10, 11, 16] can be referred as

‘density taper’ procedures. In fact, the amplitude tapering which is
required on the aperture field in order to achieve a far field distribution
with low sidelobes is emulated through a proper tapering in the
spacings amongst the array elements. As a consequence, one will
have a denser packing of elements in the zone where the reference
aperture field is higher, and larger spacings where the reference source’s
amplitude is lower [16].

Later, in [17], a related approach has been introduced for the one-
dimensional shaped beam case, wherein, however, only real sources
are considered. At the same time, in [7], a synthesis procedure
dealing with complex reference sources has been devised. Such
techniques amount to achieve a fitting between the complex cumulative
distributions corresponding to an ‘ideal’ continuous reference source
and to the actual isophoric sparse array. By virtue of the Fourier
Transform’s properties, the enforcement of such fitting induces the
minimization of the 1/u2 weighted distance between the reference and
actual radiated fields (u being the spectral variable associated to the
aperture coordinate).

By deferring the interested reader to [7, 17] for more details,
two comments are worth to be done herein. First, note that, in
the synthesis of one-dimensional shaped beams, different continuous
sources can give rise to the same power pattern [18, 19]. Therefore, by
changing the reference source, one can potentially generate different
isophoric sparse arrays radiating an equivalent power pattern. Second,
note that the discretization of the reference source into the isophoric
array may induce some degradation of the pattern. The latter will
be dependent on the source’s spatial variability: the smoother the
aperture field distribution, the better the fidelity to the desired pattern
of the resulting array. Such circumstances play a key role in the new
synthesis procedure outlined in the following Section.

3. A NEW PERSPECTIVE IN THE SYNTHESIS OF
RECONFIGURABLE ISOPHORIC ARRAYS

Basically, the perspective consists in exploiting at best theoretical
results and optimal solutions available in the separate synthesis of the
different patterns amongst which one wants to reconfigure the array,
in order to maximize the efficiency of the solution space exploration.
The employed notions can be summarized as follows.

First, note that, for any fixed-geometry array, the optimal
synthesis of a pencil beam subject to arbitrary sidelobe level (SLL)
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constraints can be formulated as a Convex Programming (CP)
problem [20]. As a consequence of convexity, the globally optimal
solution of the problem is unique and can be identified without making
resort to global optimization techniques. Also, by using suitable
finite-dimensional expansions of the source or proper regularization
techniques, these results and approaches can be extended to the
synthesis of continuous aperture sources [21–23]. Finally, the density
taper techniques [10, 16] can be applied to each achieved aperture field
distribution in order to generate a set of array locations corresponding
to the desired radiation pattern and identifiable as a point in a
multidimensional space whose coordinates are the locations themselves
(see Fig. 1).

Moreover, it is worth noting that the power pattern synthesis of
shaped beams through linear equispaced arrays can be performed in a
globally optimal fashion by recurring essentially to linear programming
(LP) optimization procedures. In fact, according to [18], the square
amplitude array factor of an array constituted by N antennas can be

Figure 1. Representation in
the space of array locations of
the unique solution corresponding
to a desired pencil beam (black
point) and of three equivalent so-
lutions radiating a desired shaped
beam (red points).

Figure 2. Pictorial representa-
tion of the effect, on the loca-
tion sets depicted in Fig. 1, of a
slight relaxation of the radiation
requirements.
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written as:

F
(
u′

)
=

N−1∑

n=−N+1

Dnejnu′ with Dn = D∗
−n (1)

wherein u′ = βd cos θ (being β the wavenumber, and d, θ the
uniform spacing amongst neighboring elements and the angle with
respect to the array axis, respectively). Therefore, by respectively
denoting with UB and LB the upper and lower bounds for the power
pattern, a necessary and sufficient condition for the feasibility of an
electromagnetic field lying in the given mask is the existence of a set
of coefficients Dn such that the properly discretized system of linear
inequalities 




N−1∑
n=−N+1

Dnejnu′ ≤ UB (u′)

N−1∑
n=−N+1

Dnejnu′ ≥ LB (u′)
(2)

is satisfied.
In practice, by solving the system (2), one is able to ascertain a

priori, i.e., without solving the overall synthesis problem, whether the
given design problem admits a solution or not. Moreover, if the set
of the solutions of system (2) is not empty, then a straightforward
way exists to find the corresponding array excitations [18]. In
particular, since the function in (1) is a real and positive semi-definite
trigonometric polynomial of order 2N − 2 in the auxiliary variable
w = eju′ , a factorization of the kind

F
(
u′

)
= f

(
u′

)
f∗

(
u′

)
(3)

will always be available, where ∗ denotes complex conjugation and

f
(
u′

)
=

N−1∑

n=0

anejnu′ (4)

is the needed array factor and may be generated by 2T different sets
of array excitations, T being the number of zeroes of the Schelkunoff
polynomial underlying (4) and not lying on the unit circle [18]. Such
excitations, denoted in (4) with an, can be provided by the ‘zero-
flipping’ procedure presented in [18].

As in the case of pencil beams, the synthesis procedure can be
extended to the case of continuous sources. In this case, a line-source
distribution will be identified through the FFT interpolation of the
excitations of a sufficiently dense equispaced array [7].
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Let us suppose now that the above synthesis procedures, unified
with the density taper techniques recalled in the previous Section, are
separately applied to each of the desired reconfigurable patterns. At
the end of the process, one will have at his/her disposal:
• a multiplicity of equivalent isophoric sparse arrays for each of the

desired shaped patterns;
• a unique isophoric sparse array for each of the desired pencil

beams.
In the multidimensional space we have previously introduced, the sets
of element locations corresponding to each array will be represented by
disjoint points (see Fig. 1). Since these points are generally different
from the single point representing the solution for the pencil beam
mode, one is not able, for the time being, to find a set of locations
which is contemporarily optimal for the two (or more) patterns at
hand.

In order to finally introduce the proposed procedure, it is
interesting to discuss what happens when slightly relaxing the radiation
requirements on the pencil beams or on the shaped beams. As small
variations on constraints will induce small variations in the overall steps
of the synthesis procedures, it can be argued that each of the single
points of Fig. 1 will degenerate in some connected set, wherein a point
of each set represents a possible solution for the corresponding pattern.
As pictorially represented in Fig. 2, an interesting result comes out:
the locations sets corresponding to the different kind of patterns can
have an intersection if the right determination is chosen amongst the
2T solutions of the shaped beam cases. Notably, such an intersection
represents a solution (or even a set of solutions) for the reconfigurable
isophoric sparse array.

Such a circumstance suggests then a simple and effective strategy
to deal with the optimal synthesis of phase-only reconfigurable
isophoric sparse linear arrays. In fact, once the optimal solutions
to the separate synthesis problems have been found, the subsequent
step is to identify, amongst all the equivalent location sets generating
each shaped beam, the closest one to the points corresponding to all
the other desired patterns. Saying it in other words, and temporarily
focusing on the case where the designer wants to reconfigure the array
radiation pattern just from a pencil to a shaped beam and vice versa, if
xS,k = (xS,k

0 , . . . ,xS,k
N−1) and xP = (xP

0 , . . . ,xP
N−1) respectively denote

the k-th equivalent locations set for the shaped beam and the unique
pencil beam’s locations set, then one has to minimize over the 2T

different possible values of k the distance

Φ (k) =
∥∥∥xS,k − xP

∥∥∥ (5)
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In fact, the set of locations minimizing (5) is the one which more easily
lends itself to be reconfigured between the desired shaped and pencil
beams. An exemplification of the adoption of such technique is given
in Fig. 3.

Figure 3. Representation, in the space of array locations, of: (green
point) the unique solution of a pencil beam synthesis problem; (blue
and red points) three equivalent solutions for two different shaped
beams. The yellow set, achieved by minimizing (5), identifies the
solutions most suitable for a ‘common-locations’ reconfiguration.

As long as T is not too large, such a step can be done
in an enumerative fashion, i.e., by checking all possible solutions.
Alternatively, as one has to choose a configuration amongst all the
suitable zero-flipping outcomes, it can be dealt with as a binary
optimization problem (on T variables) by effective solution procedures
of the kind shown in [24]. Through the guidelines in [9], the procedure
can be easily extended to the case of more than two shaped, pencil and
difference beams.

Once the most convenient set of locations for the shaped beam
has been determined, a local optimization technique can be used
to perform the actual choice of the locations common to both the
radiation modalities. A possible way to perform it is presented in the
following Section wherein, as their absence is not guaranteed by the
minimization of (5), we provide also a strategy to keep under control
possible mutual coupling effects.
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4. A FINAL OPTIMIZATION MAXIMIZING THE
RADIATION PERFORMANCES

In order to introduce the final-optimization step of the synthesis
procedure, let us suppose one wants to phase-only reconfigure the
pattern of a N -elements isophoric array amongst M different radiation
modalities, and let us denote with

Em (u) =
N∑

n=1

ejφm,nejxm,nβu (6)

the m-th desired far field distribution (wherein u = cos θ and β is the
wavenumber, θ being the angle with respect to the array axis) radiated
by an isophoric sparse array determined by the selection procedure
outlined in the previous Section and having locations x1, x2, . . . , xN

and excitation phases φ1, φ2, . . . , φN .
Also, let us denote with

Êm (u) =
N∑

n=1

ejφ̂m,nejx̂m,nβu (7)

the m-th far field distribution radiated by the isophoric phase-only
reconfigurable array. Note that, as the different patterns must
correspond to arrays differing only in their excitation phases, the
variables x and φ in (7) hold the same significance as in (6) with the
additional condition

x̂m,n = x̂m+1,n ∀n with m = 1, . . . , M − 1 (8)

Finally, if the locations and excitation phases of the reconfigurable
array are expressed as

x̂m,n = xm,n + ∆xm,n φ̂m,n = φm,n + ∆φm,n ∀m,n (9)

which is reasonable by virtue of all the reasonings of the previous
Section, then the final local optimization step can be formulated in
terms of the unknowns ∆xm,n,∆φm,n as:

minimize

Ω (∆xm,n, ∆φm,n) =
M∑

m=1

αm

∥∥∥Em (u)− Êm (u)
∥∥∥

2
∀u ∈ [

uA
m, uB

m

]

(10)
subject to

∣∣∣Êm (u)
∣∣∣
2
≤ fm (u) ∀u /∈ [

uA
m, uB

m

]
(11)
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and

xm,n +∆xm,n = xm+1,n +∆xm+1,n ∀n withm = 1, . . . , M −1 (12)

In such a formulation, the cost functional (10) aims to enforce
a similarity (in the zones defined by uA

m and uB
m) between the

reference (6) and actual (7) patterns, while constraints (11) are devoted
to fulfill upper bounds on the sidelobes (being fm an arbitrary real and
positive function). Such a formulation is more flexible and effective
than simply requiring a fitting in the overall visible space. Finally, the
linear constraints (12) are nothing but the consistency relationships
amongst the different ∆x variables.

Because of the way the unknowns enter in the cost functional (10),
the latter is a multimodal one, i.e., it may have a number of different
local optima. Therefore, if a gradient-like optimization procedure will
be used to solve the problem, then the actual solution will depend
on the adopted starting point. The latter, by virtue of all the above
analysis and of (10)–(12), can be profitably identified in the locations’
space as the center of the M -dimensional hypersphere minimizing (5)
(see Fig. 3).

Interestingly, by virtue of all the above, one may assume that the
location sets corresponding to the minimum value of (5) are quite near
each to the other, i.e.,

β |xm,n − xp,n| < 1 ∀n ∀ (m, p) pair (13)

Then, if (13) is actually satisfied, which is one of the goals of the
synthesis procedure (and can be checked before running the final-
optimization step), it seems reasonable to assume that also the final
solution will be close to the ‘most convenient’ separated solutions (and
hence to the adopted starting point), so that

|∆φm,n| < 1 |β∆xm,n| < 1 ∀n,m (14)

Provided (14) holds true, the difference between the fields in (10) can
be linearized as

Em (u)− Êm (u) = −j
N∑

n=1

ejφm,nejxm,nβu (∆φm,n + ∆xm,nβu) (15)

so that (10) becomes a positive semi-definite quadratic objective
function. As constraints (11) become convex after linearization, and
constraints (12), (14) are convex too, the overall optimization problem
(10)–(12), (14) is equivalent to a CP problem, for which effective
solution procedures leading to the global optimum do exist.

By so doing, as long as conditions (13) are satisfied, which is the
goal of introduced selection procedure and may be a-priori ascertained,
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one can be confident, without recurring to global optimization schemes,
of finding the global minimum of a functional equivalent to (10).
Obviously, the procedure still makes sense when conditions (13) are
not satisfied, but only local optimality is ensured in such a case.

5. AN ASSESSMENT OF PERFORMANCES IN
REALISTIC CONDITIONS

This Section provides an assessment of the capabilities of the proposed
approach through a number of numerical examples achieved by
exploiting only convex-optimization techniques and emulating (in the
one-dimensional case) communications from a Geostationary Earth
Orbit (GEO) satellite. For each test case, after having synthesized the
elements’ locations and excitation phases, the radiation performance
has been evaluated by considering:

• an ‘ideal’ sin θ element pattern, θ being the angle with respect to
the array axis;

• an array of truncated metallic waveguides.

The real far field pattern radiated by the array of truncated
waveguides, taking into account also possible mutual coupling effects,
has been computed by means of a full wave numerical simulation
with the CST Microwave Studio software, at a working frequency of
1GHz and adopting waveguides with section 0.6λ× 0.2λ, being λ the
wavelength in free space (see Fig. 4).

The first GEO satellite test case concerns the synthesis of a phase-
only reconfigurable isophoric array able to generate a pencil beam and a
flat-top beam emulating an angularly uniform coverage of the Europe.
To synthesize the reference continuous sources, we have considered
an uniformly-excited linear array having an extension of 14λ and

Figure 4. Array of truncated metallic waveguides adopted to evaluate
the radiation performance in realistic conditions. The computed
aperture field amplitude distribution is also depicted.
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composed by 29 elements. The constraints on the pencil beam consist
in a maximum SLL ≤ −20 dB for θ ≤ 84.5◦ and θ ≥ 95.5◦. Also, in
order to satisfy the coverage requirements, we have enforced on the
flat-top power pattern a maximum ripple not larger than ±0.5 dB for
85.5◦ ≤ θ ≤ 94.5◦ and a maximum SLL ≤ −20 dB for θ ≤ 80◦ and
θ ≥ 100◦.

The reference pencil beam to exploit in the final optimization
step has been synthesized by applying the method in [16] to a proper
line-source distribution. The corresponding array locations and phase
excitations are depicted in red colour in Figs. 5 and 6(a), respectively.

Figure 5. Isophoric array’s locations set corresponding to: (red lines)
reference pencil beam; (black lines) reference flat-top beam; (cyan blue
lines) phase-only reconfigurable patterns.

(a) (b)

Figure 6. Isophoric array’s excitation phases corresponding to: [(a),
red lines] reference pencil beam; [(b), black lines] reference flat-top
beam; [(a), (b), cyan blue lines] phase-only reconfigurable patterns.
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The reference shaped beam has been determined by exploiting the
procedures of Section 3. By so doing, different sets of locations able to
fulfil the given constraints have been identified. Then, we have selected
the solution which more easily lends itself to be reconfigured from
the desired flat-top pattern to the pencil beam. The corresponding
locations and phase excitations are depicted in black colour in Figs. 5
and 6(b), respectively. As it can be seen from Fig. 5, the locations
sets corresponding to the different patterns and processed through
the approach of Section 3, selected as the starting point of the final-
optimization step, are very close each to the other.

Finally, the concluding optimization step has been carried out in
the CP option by enforcing, in addition to (11), (12), (14), a couple of
convex constraints on the spacing between neighbouring elements. The
latter, in order to both keep down possible mutual coupling effects and
avoid large unexploited aperture sections, has been bounded between
0.3λ and 1λ. The two achieved phase-only reconfigurable patterns,
both generated by the 29-element isophoric array having the locations
and excitations sets depicted in Figs. 5 and 6 (cyan blue lines), are
shown in Figs. 7 and 8. In particular, such figures show the power
masks of the initial synthesis problems and a comparison between the
performance achieved by means of the ideal and real element patterns.
As it can be seen, notwithstanding the ‘losses’ which are expected
with respect to the reference patterns because of the reconfigurability
(and unitary excitation-amplitude) requirements, by adopting a simple
sin θ element pattern all the constraints imposed on the power patterns
have been fulfilled. Moreover, the field radiated by the realistic array

Figure 7. Pencil beam radiated by the isophoric phase-only
reconfigurable arrays composed by ideal and realistic radiating
elements.
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Figure 8. Flat-top pattern radiated by the isophoric phase-only
reconfigurable arrays composed by ideal and real radiating elements.

of truncated waveguides results practically equal to the one of the
‘ideal’ architecture up to 40◦ from the boresight direction, while slight
violations of the upper bound constraint are visible at large values of
the u variable (only for the shaped beam case). Such a circumstance,
rather than to residual mutual coupling, can be attributed to the
fact that the element pattern is scarcely directive in the plane at
hand, so that better results are expected with different elements
patterns (e.g., with elements emulating a Huygens Source). Also, in
telecommunications from satellites (which are the main applications
for isophoric arrays), one usually does not worry about the field level
outside of the Earth cone as seen from the satellite itself.

The second test case concerns the synthesis of a phase-only
reconfigurable isophoric array to be mounted on a GEO satellite and
such that the same amount of power density is realized on each (visible)
portion of the Earth. This kind of pattern is known as ‘isoflux’ pattern.
In such a design problem, when stating the power mask to adopt in
the synthesis procedure, the Earth curvature as seen from the satellite
has to be taken into account. In particular, a depression of −1.5 dB is
required at the center of the coverage zone to compensate the power
attenuation on the planet border. The latter is due to a 6900 km longer
path, since the distance between Earth and satellite is approximately
equal to 42650 km and 35790 km when considering the edge and the
center of the planet, respectively.

Therefore, denoting again with θ the angle with respect to the
array axis, the constraints on the power patterns have been chosen as:

• a −1.5 dB power depression for θ = 90◦ in the isoflux pattern;
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• a maximum SLL ≤ −20 dB for θ ≤ 85.5◦ and θ ≥ 94.5◦ in the
pencil beam case;

• a maximum SLL ≤ −20 dB for θ ≤ 77◦ and θ ≥ 103◦ in the shaped
beam case;

• a maximum ripple not larger than ±0.5 dB for 82◦ ≤ θ ≤ 98◦ in
the isoflux pattern.

The geometry of the adopted uniformly-excited linear array is equal
to the one considered in the previous test case. The reference pencil
beam exploited in the final optimization step corresponds to the array
locations and phase excitations depicted in red colour in Figs. 9 and
10(a), respectively. The reference shaped power pattern has been
determined by means of the procedure given in Section 3, and turned
out to correspond to 64 equivalent array locations sets, very different
one from each other. The locations which more easily lend themselves
to be reconfigured from the desired isoflux pattern to the above pencil
beam, quickly identified by means of the presented procedure, are
depicted in black colour in Fig. 9. The corresponding excitation phases
are shown in Fig. 10(b) (black curves). Such results have been used
as the starting point of the final local-optimization procedure, which
has provided the locations and excitation phases depicted in cyan blue
colour in Figs. 9 and 10. Through a couple of convex constraints,
the spacing between neighbouring array elements has been bounded
between 0.4λ and 0.85λ. The corresponding phase-only reconfigurable
patterns are shown in Figs. 11 and 12, where the mask adopted to
shape the reference far-field distributions are also reported.

Figure 9. Isophoric array’s location sets corresponding to: (red lines)
reference pencil beam; (black lines) reference isoflux beam; (cyan blue
lines) phase-only reconfigurable patterns.
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Notably, as in the previous test case, by adopting a sin θ element
pattern all radiation constraints have been fulfilled, and the locations
and phases of the phase-only reconfigurable array resulted very close
to those ones corresponding to the adopted starting point. Such
a circumstance points out the effectiveness of the overall synthesis
procedure, and, in particular, it is an excellent a-posteriori proof
of the high performance of the selection strategy presented in the
previous Section. Moreover, the power pattern radiated by the array
of truncated waveguides fulfils all the imposed constraints but for a

(a) (b)

Figure 10. Isophoric array’s excitation phases corresponding to: [(a),
red lines] reference pencil beam; [(b), black lines] reference isoflux
pattern; [(a), (b), cyan blue lines] phase-only reconfigurable patterns.

Figure 11. Pencil beam radiated by the isophoric phase-only
reconfigurable array: (black curve) sin θ element pattern embedded;
(red curve) realistic waveguide element pattern embedded.
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Figure 12. Isoflux pattern radiated by the isophoric phase-only
reconfigurable array: (red curve) realistic performance; (black curve)
sin θ element pattern embedded.

1 dB violation at 75◦ from the boresight direction (visible only on
the isoflux beam). Such result, considering the ‘uniform amplitude’
behaviour of the aperture field observed in both the test cases (see
Fig. 4), as well as the low directivity of the realistic truncated metallic
waveguides, proves again the capability of keeping under control the
mutual coupling between array elements.

As a final comment concerning the extremely low computational
burden of the overall synthesis procedure, it is worth noting that the
runtime for the determination of the reconfigurable array elements’
locations and excitation phases turned out to be less than 1 minute
per test case (on a PC equipped with a 2.53GHz Processor).

6. CONCLUSIONS

An innovative and effective approach to the synthesis of phase-only
reconfigurable, isophoric linear sparse arrays has been presented,
discussed, and corroborated by numerical examples of actual interest.
The approach takes extraordinary advantage from the hidden
combinatorial nature of the problem at hand, as well as from
analytical results available in the separate optimal synthesis of each
desired pattern. In particular, a general philosophy is introduced to
efficiently and effectively explore the solution space, looking within its
‘more convenient’ zones, and exploiting at best the a-priori available
knowledge in the synthesis scenario at hand (which is neglected in a
number of published approaches).
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Notably, the proposed synthesis procedure does not limit the
maximum number of generated patterns, deals with both shaped and
sum/difference beams, allows one to keep under control the mutual
coupling effects, and achieves effective solutions through optimization
techniques with a low computational burden.

Finally, it is interesting to note that, by exploiting the procedures
presented in [22, 23], the approach can be extended to the case of planar
arrays generating circularly symmetric patterns.
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