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WIDTH FOR POWER LINE MAGNETIC FIELD IMPACT
ASSESSMENT
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Gradenigo 6/A, Padova I-35131, Italy

Abstract—In this work, approximate formulas are presented for
computing the magnetic field intensity near electric power transmission
lines. Original expressions are given for single circuit lines of any
type of arrangement and double circuit lines in both super-bundle and
low-reactance conductor phasing. These expressions can be used for
assessing directly the Right-of-Way width of power lines related to
maximum magnetic field exposure levels which may be efficiently used
in environmental impact assessment. The accuracy of approximate
formulas is demonstrated by comparison with exact formulas for
computing the rms field distribution.

1. INTRODUCTION

The growing public concern of possible harmful effects caused by
magnetic fields and difficulties in assessing the related risks have led
several governments to set new regulations limiting maximum exposure
levels. Because of these limitations it is necessary to quantify field
intensity near electric power installations like overhead lines having
the widest impact [1].

As regards the maximum allowable exposure level for the magnetic
field there is not yet a worldwide recognized value and different
exposure levels have been set by national regulations [2]. According
to a prudent avoidance policy the Italian Law No. 36/2001 has set
new restrictive standards for electromagnetic compatibility (EMC) at
very low frequency in order to reduce possible long term harmful
effects [3]. The following levels were introduced: (i) the exposure
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limit of 100 µT which is the maximum acceptable field intensity on
the short term period, (ii) the attention value of 10 µT which is a
precautional level for the long term exposure, and (iii) the target quality
value of 3 µT which is a reference level for future installations [4]. The
former limit corresponds to the level recommended by the International
Commission on Non-Ionizing Radiation Protection (ICNIRP) for the
short-term exposure [5], whereas the two latter levels have been
introduced as a precautionary protection measure for the long-term
exposure of the population and are meant as median values over the
24 hours.

The compliance to such maximum exposure limits leads to the
definition of different Right-of-Way (ROW) widths, which depend on
the electric and the geometric parameters of the overhead line. The
determination of accurate ROW widths is very important, e.g., in
environmental impact assessments or in territory planning, especially
when new buildings have to be built near power installations. The
guidelines CEI 106-11 issued by the Italian Electrotechnical Committee
define a safety volume surrounding phase conductors in which the
magnetic field intensity is higher than the maximum exposure limit
set by standards (Figure 1) [6].

The main aim of this paper is to obtain approximate yet precise
analytical formulas for evaluating the magnetic field intensity in
proximity of both single circuit and double circuit lines in a form which
can be used for a straightforward computation of the ROW width of
the power line.

Figure 1. Example of safety volume around a power line span.
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For single or double circuit lines, two dimensional numerical
analysis is sufficiently accurate in the majority of practical cases and
the magnetic induction is computed by using Biot-Savart’s law and
the superposition principle [7]. Three-dimensional models based on
the numerical integration of Biot-Savart’s law should be considered
when the line sag is not negligible compared to its span and when
one has to consider different spans of the same line or even different
spans of different lines [8, 9]. Although numerical approaches represent
a useful tool for computing power line environmental fields, these
are not well suited for assessing the functional dependence of the
field strength on electric and geometric parameters [10]. In order
to obtain a simple and compact representation of the magnetic field
intensity for a rapid estimate of the ROW width for transmission
lines a new kind of approach has been adopted. For balanced single
circuit lines exact analytical formulas can be obtained by representing
elliptically polarized fields by double complex numbers [11] or complex
vectors [12] whereas approximated formulas can be estimated by a
multipole expansion of Biot-Savart’s law [13].

It has been observed that the Complex Vector Method (CVM)
— already used for analyzing plane electromagnetic waves — can be
effectively used for representing time-harmonic magnetic fields. Due to
a more compact representation compared to other methods proposed in
the literature it has been possible to obtain a unique general expression
for evaluating magnetic flux density rms value as a function of line
phase-to-phase distance, distance from calculation point and current
load in the case of balanced power systems [12]. Thus formulas
for actual line configurations such as single circuit three-phase lines
with triangle or aligned phase conductors have been derived. The
CVM has then been applied to analyze magnetic field generated by
multiple circuit three-phase lines, even with electrically independent
circuits [14].

From these relationships approximate formulas for computing the
magnetic field intensity in proximity of single and double circuit power
lines are obtained. It is shown that the ROW width can be easily
computed for each line configuration once the maximum exposure level
is known. The level of accuracy of these relationships is given for
different current loads.

2. APPROXIMATE FORMULAS FOR THE MAGNETIC
FIELD INTENSITY OF THREE-PHASE LINES

It is well known from the literature that time-harmonic magnetic fields
generated by electric power systems are elliptically polarized as they
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are generated by three phase currents varying all at the same frequency.
Thus the magnetic field can be described as a rotating vector tracing
an ellipse on the polarization plane. In the particular case of plane
symmetry assumption, the polarization plane is orthogonal to line
conductors so that Biot-Savart’s law can be used to compute the
magnetic field. A closed form solution for three phase lines with
polygonal phase conductor arrangement has been derived in [11] by
using double complex numbers with two imaginary units.

It has been shown in [12] that more general results can be obtained
instead by using complex vectors to represent elliptically polarized
fields. By assuming a 2-D line geometry and by using complex vector
algebra, it has been possible to obtain the following expression of
the magnetic flux density for multiphase power lines in any type of
conductor arrangement and current load (balanced or unbalanced):
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where µ is the air magnetic permeability, n is the number of phases,
p and q indicate phase conductors with rms currents Ip and Iq and
distances from the field point rp and rq, dpq is the phase-to-phase
distance, and θpq is the phase shift. From this general expression, which
provides exact field intensity values, approximate formulas suitable for
estimating the ROW width of classical line arrangements are derived
in the following. Equation (1) can be reduced to a more compact
relationship in practical cases, when the sum of phase currents is zero,
since the first term in (1) identically vanishes:
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2.1. Three-phase Single Circuit Power Lines

The case of single circuit three-phase lines with generic phase-to-
phase distance d12, d23, and d31 and balanced three-phase currents
is considered. By letting n = 3, θpq = 2π/3 and Ip = Iq = I in the
general expression (2) the rms magnetic flux density distribution can
be written as:
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where only a few basic parameters such as the current intensity,
the phase-to-phase distance, and the field-point-conductor distances
are involved. This compact expression still provides an exact
representation of the magnetic field intensity around a three-phase
line and, in turn, makes it possible to assess the dependence of the
field intensity on electrical and geometrical line parameters which is of
primary importance for determining an estimate of the ROW width.
It is worth noting that (3) can be used for optimizing conductor
placement when designing compact line arrangements to mitigate the
field intensity in proximity of overhead lines as described in [15, 16].

The most widespread used single circuit configurations are
represented by lines with triangle (delta) and aligned conductors, as
reported below.

2.1.1. Three-phase Lines in Delta Arrangement

Figure 2 shows a triangle phase arrangement of single circuit line (delta
line) with constant phase-to-phase distance d equal to

√
3s, where s

is the distance from the triangle centroid. The field calculation point
is located on (r, ϕ) where r is the distance from the origin and ϕ the
field point direction with respect to the horizontal axis.

With reference to Figure 2 it may be shown that the analytical
expression of the magnetic flux density rms value is given by:

b(r, I) =
3µI

2
√

2π

√
s4 + s2r2

r6 − 2s3r3 cos(3ϕ) + s6
, (4)

which shows that the field intensity distribution has periodical
symmetry and the highest values are attained when ϕ = 0, 2π/3, and

Figure 2. Triangle single-circuit line arrangement.
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4π/3.
In order to obtain the ROW width for a given maximum allowed

field intensity level a conservative estimate of b in proximity of the
overhead line is required. It can be noted that each contour line of
the rms field distribution can be approximated as a circle at sufficient
distance from the line axis — i.e., circle approximation. By letting
d =

√
3s in (4) and by assuming r À s, the following expression

can thus be used as a conservative approximate estimate of the field
intensity as a function of the distance r:

b(r, I) =
3µI

2
√

2π

d

r2
, (5)

which is applicable also for non-regular triangle arrangements assuming
d equal to the geometric mean dm = 3

√
d12d23d31 of the phase-to-phase

distances. Note that the same expressions are derived in [11] and [13]
by using a multipole expansion of Biot-Savart’s law.

The accuracy of the approximate relationship can be easily
assessed by comparing the circular contour lines computed with (5)
and exact contour plots computed with (4). Exposure limits here
considered are in the range of those reported in Italian standards,
namely 3µT and 10µT [4].
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Figure 3. Contour plots of the rms magnetic flux density [µT] for a
three-phase delta power line: exact profiles are in continuous line, the
approximated ones in dash line.
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Figure 3 shows the rms field distributions computed for a triangle
power line with distance s = 4m and balanced currents I = 800A rms.
It can be noted that contour plots are in good agreement also in the
close vicinity of the line conductors.

2.1.2. Three-phase Lines with Aligned Conductors

Figure 4 shows a three phase single circuit line in aligned conductor
arrangement (flat line) where s is the distance between phase
conductors 1–2 and 1–3, ϕ is the field point direction with respect
to the line axis, and r the field point distance from the central phase
conductor 1.

Figure 4. Aligned single-circuit line arrangement.

By letting d12 = d31 = s and d23 = 2s in (3) and expressing
distances from phase conductors as a function of (r, ϕ) the following
expression for computing the rms magnetic flux density of a flat line
is obtained:

b(r, I) =
µI

2πr

√
s4 + 3s2r2

r4 − 2s2r2 cos(2ϕ) + s4
, (6)

where this time the field (with periodic symmetry) attains its
maximum intensity for ϕ = 0, π, i.e., in the direction of the line axis.

An approximate estimate of (6) can be obtained by letting
s2 + 3r2 ≈ 3r2 and by assuming r À s in the far field region:

b(r, I) =
µI

2π

√
3s√

r4 − 2s2r2 cos(2ϕ) + s4
, (7)

which still takes into account the direction of the line axis. In order to
obtain a conservative estimate of the field intensity, (7) can be further



350 Moro and Turri

y
 [
m

]

0

10

20

30

40

50

60

x [m]

Flat line, I  = 800 A, s = 4.00 m, H = 17.00 m

-40 -30 -20 -10 0 10 20 30 40

exact

approx.

a

3 µT

5 µT

10 µT

Figure 5. Contour plots of the rms magnetic flux density [µT] for a
three-phase flat power line: exact profiles are in continuous line, the
approximated ones in dash line.

simplified using the circle approximation as above. By letting ϕ = 0
(maximum field intensity) the rms value distribution becomes:

b(r, I) =
3µI

2π

√
3s

r2 − s2
, (8)

which holds far enough from line phase conductors, when the field
intensity distribution becomes almost independent on the direction.

The accuracy of (8) is assessed as above by comparing the
contour lines computed as circles with contour plots computed with
the corresponding exact relationship (6). Figure 5 shows the rms field
distributions for a line in flat configuration (s = 4 m, I = 800 A rms
phase currents). It can be noted that also in this case contour plots of
the magnetic flux density are in good agreement also in proximity of
the line conductors. The maximum discrepancy is attained along the
vertical axis — passing through phase conductor 1 — but the estimate
is still conservative since contour lines computed with (8) surround
those computed with (6).

2.2. Double Circuit Power Lines

Magnetic field analysis increases in complexity when double circuit
lines are examined, in particular if line circuits are unevenly loaded.
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Analytical expressions giving the magnetic field strength of double
circuit lines have already been proposed in the case of balanced three-
phase systems [17]. The method of moments has been applied in [13]
for devising analytical relationships which are accurate far from line
conductors. By using the same approach exact expressions have been
obtained in [11] for double circuit lines with polygonal conductor
arrangement.

A general formula for computing the magnetic flux density
strength at any distance from power line and for any conductor
arrangement has been presented in [12]. By assuming balanced
currents for circuits a and b, and a phase angle displacement δ between
phases 1a − 1b, the general relationship (2) can be rewritten in the
following form:

b =
µ

2π

√√√√b2
a − IaIb

3∑

p=1
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q=p

cos(θpq + δ)
(

dpq

rprq

)2

+ b2
b , (9)

where the indexes p and q span conductors of circuits a and b,
respectively, Ia and Ib are the circuit current magnitudes, ba and bb are
the field intensities generated by each circuit independently, and θpq

can assume values 0, −2π/3, +2π/3, depending on the phase ordering
of line currents. It can be observed that the above relationship (9)
cannot be inverted in order to obtain the ROW width as a function
of the limiting exposure value, since it depends on mutual magnetic
couplings between circuits.

More simple relationships can be derived by adopting the following
strategy. By using the superposition principle and the triangle
inequality of the Euclidean norm a conservative estimate of the rms
magnetic flux density distribution of any type of double circuit power
line can be obtained:

b = |Ba + Bb| ≤ |Ba + Bb| , (10)

where Ba, Bb can be the field contributions from circuit a and b or,
more in general, from different sets of three-phase (balanced) currents
termed again a and b. The basic advantage in using (10) is that it
does not require any information about the instantaneous phase shift
between (balanced) three-phase currents of circuit a and b, which is
typically not know in practice.

In the following approximate expressions for double circuit lines
in both super-bundle (SB) and low-reactance (LR) phasing — which
can be used to estimate the ROW width — are proposed. These are
compared with the exact representation of the rms field distribution
given by (9).
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Figure 6. Super-bundle double circuit line.

2.2.1. Super-bundle Phasing

Figure 6 shows a transmission line in super-bundle phasing (SB line)
where homologous phases are symmetrically placed with respect to the
line axis (in dashed line). Subscripts a, b indicate different circuits, s
the phase to phase distance, w the conductor distance from the line
axis and ra, rb the distances between field point and circuits central
conductors 1a− 1b.

By using (10) the magnetic flux density rms value can be
conservatively estimated at any point in the space as:

b(Ia, Ib, ra, rb) =
√

3sµ

2π

(
Ia

r2
a − s2

+
Ib

r2
b − s2

)
, (11)

summing up contributions of vertical single circuit lines given by (8).
At a distance greater than a few phase-spacings it may be assumed
that ra ≈ rb ≈ r with r =

√
rarb so that (11) becomes:

b(r, I) =
√

3sµ

π

[
I
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]
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where I = Ia+Ib
2 is the average circuit current and

∆r =
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Ia − Ib

Ia + Ib

∣∣∣∣ w. (13)

This additional term takes into account the degree of unbalance
between circuits and is obtained by noting that the rms field contour
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Figure 7. Contour plots of the rms magnetic flux density [µT] for
evenly loaded double circuit SB line (Ia = 800A, Ib = 800A): exact
profiles are in continuous line, approximated ones in dash line.

lines are centered around the circuit carrying the highest currents. In
the limiting case Ia = 0 contour lines are centered around circuit b and
can be exactly represented with (8); on the other hand, in the balanced
case, ∆r = 0.

It may be verified that the previous expressions hold accurate
even with an high degree of load unbalance. As an example, the
case of a double circuit SB line with s = 4.7m and w = 3.23m is
considered. Figure 7 shows the rms field distribution for a balanced
load configuration with Ia = Ib = 800 A. Figure 8 shows the same
distribution for the unbalanced case with Ia = 200 A and Ib = 800A.
It can be noticed that approximate contour lines are in good agreement
with those computed with (11) and the circle assumption holds even
in the near vicinity of line conductors.

2.2.2. Low-reactance Phasing

Low-reactance phasing (LR line) is a well-known example of low-
field double circuit line design. With this type of arrangement phase
conductors of circuit b are swapped with respect to the super-bundle
line configuration in order to enhance the field compensation effect
when circuits are evenly loaded (Figure 9). It is worth noting that such



354 Moro and Turri

mitigating effect might cancel out when line currents are unbalanced
and may lead even to higher field intensities than the SB arrangement.

In case of evenly loaded circuits (Ia = Ib = I) the magnetic field
intensity produced by this phasing arrangement decays as 1/r3 and
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Figure 8. Contour plots of the rms magnetic flux density [µT] for
unevenly loaded SB line (Ia = 200 A, Ib = 800A): exact profiles are in
continuous line, approximated ones in dash line.

Figure 9. Low-reactance double circuit line.
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may be computed with a good accuracy as [13]:

b(I, r) =
µsI

π

√
s2 + 12w2

r3
(14)

where r is the distance from the center of gravity of the conductors
and s, w are the phase-to-phase distance and the distance from the
line axis, as defined in Figure 9. The approximate relationship (14)
does not hold any more when Ia differs from Ib since it can be proved
that field intensity at far distances decays as 1/r2 instead of 1/r3.

In order to account for such uneven loading conditions the
superposition principle and the triangle inequality of the Euclidean
norm are used. The rms field distribution in proximity of a LR line
can be conservatively estimated by summing up the contribution of an
evenly loaded LR line carrying a net current I = Ia+Ib

2 and of a single
circuit in vertical arrangement carrying a net current ∆I = |Ia−Ib|

2 . The
following relationship as a function of r, I, and ∆I is thus obtained:
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where rb is the distance from the center of circuit b (Figure 9).
Equation (15) can be further simplified by assuming that r ≈ rb and
s À r, as

b(r, I,∆I) =
µI

π
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√

s2 + 12w2
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+

µ∆I

π

√
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. (16)

The case of a LR double circuit line with conductor distances
s = 4.7m and w = 3.23m, carrying both even (Ia = Ib = 800A)
and uneven (Ia = 200 A, Ib = 800 A) circuit currents is considered in
Figures 10 and 11, respectively. From Figure 10 it can be observed
that with evenly loaded circuits — as it usually occurs in the case
of LR double circuit lines — the contour plot circle approximation
with radii computed by (16) is in very good agreement with the
exact computation. Conversely in the less common case of unevenly
loaded circuits contour plots are not symmetrical and the circle
approximation holds only in the half-plane of the circuit carrying the
higher current, whereas it provides a conservative estimate of the actual
field distribution in the opposite half-plane (Figure 11). Note that,
however, in the ROW width estimate the worst case condition should
be considered — i.e., maximum distance from the line axis for a given
exposure level — since loading conditions can be time-varying and the
highest currents can be carried by either circuit a or b.
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Figure 10. Contour plots of the rms magnetic flux density [µT] for
evenly loaded LR line (Ia = 800 A, Ib = 800A): exact profiles are in
continuous line, approximated ones in dash line.
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Figure 11. Contour plots of the rms magnetic flux density [µT] for
unevenly loaded LR line (Ia = 200 A, Ib = 800 A): exact profiles are in
continuous line, approximated ones in dash line.
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3. ANALYTICAL EVALUATION OF THE
RIGHT-OF-WAY WIDTH

A typical assessment procedure of the Right-of-Way width for a given
limiting exposure level would be to numerically compute the rms value
magnetic field distribution and trace its contour plots on a vertical
plane normal to the line axis in order to verify the compatibility with
neighboring residential buildings. As an example, Figure 12 reports
the case of a building located 20m apart the axis of a double circuit
power line, where a maximum field intensity value of 3µT has been
considered. The ROW width is thus the vertical projection of the 3µT
— contour line.

A more simple analytical approach, still providing an accurate
estimate of the ROW width, is here proposed. The formulas for
the calculation of the magnetic flux density proposed in the previous
section can be used to assess the distance r∗ — from the center of
the phase conductor arrangement — at which a given limiting value
b∗ is attained. The solution of this inverse problem is typically non-
trivial since analytical expressions obtained for b∗ have a non-linear
dependency on r∗.

In the following all line arrangements discussed above are
considered. For each case sufficiently simple yet accurate relationships,
which can be applied on the field, are provided. Limiting exposure
levels here considered are 10µT (attention value) and 3µT (quality

Figure 12. Example of contour plot for assessing the ROW width
around a line span.
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value) as it is prescribed by Italian regulations [4]. Approximate
formulas to estimate the ROW width for a given field exposure limit
are validated with data obtained from a numerical procedure, which
resolves the inverse problem of finding the distance from the line axis
at which a specific field intensity value is attained. The discrepancy
between analytically r∗ and numerically r̃∗ computed ROW width
values is calculated as:

e[%] =
∣∣∣∣1−

r∗

r̃∗

∣∣∣∣ · 100. (17)

3.1. Three-phase Single Circuit Power Lines

It is assumed in the following that three-phase currents of a single
circuit line form a balanced set so that the magnetic field intensity b
is proportional to the current rms value I. The ROW width should be
assessed for a fixed reference current rms value, which is typically the
rated current of the power transmission line or the maximum current
value given by the grid manager.

3.1.1. Three-phase Lines in Delta Arrangement

It can be noted in practice that for single circuit three-phase lines — far
enough from the line center of gravity — contour lines of the magnetic
flux density are almost circular so that the field intensity does not
depend on direction. In that case it becomes easy to get the value of
the ROW width for a given rms value b = b∗. By inverting (5) one
obtains the following relationship, which can be used for any type of
single circuit line and applies in particular to compact phase conductor
arrangements exhibiting usually a non-symmetric structure:

r∗(b∗, I) =

√
3µI

2
√

2π

dm

b∗
, (18)

where dm = 3
√

d12d23d31 is the average distance between phase
conductors. For symmetric arrangements with conductors placed on
the vertexes of an equilateral triangle the same expression can be used
by letting d =

√
3s, where s is the distance from the line conductor

center of gravity (Figure 2).
It can be observed in Figure 13 that the discrepancy between

numerically and analytically computed ROW width values increases
as long as current load decreases. This is because the assumption
r À s does not hold any more and it is not possible to apply multipole
expansion on Biot-Savart’s law yielding (5). Moreover, the level of
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Figure 13. Discrepancy between numerical and analytical ROW
width of a delta power line for different loading conditions and field
exposure limits.

accuracy is very good close to the rated loading condition of 600A rms
as the contour line corresponding to the limiting exposure level (3µT
or 10 µT) is at bigger distance from the line.

3.1.2. Three-phase Lines with Aligned Conductors

With limited simplifying assumptions on the line geometry one can
obtain a general expression for estimating the ROW width of single
circuit lines in flat arrangement, with conductors aligned on the same
axis (non necessarily vertical). The approximate relationship (7) for
estimating the rms field value can be cast in the following equation to
be solved in terms of r:

r4 − (2s2 cos 2ϕ)r2 + (s4 − s2I2/k2) = 0, (19)

where k = (2π/
√

3µ)b∗ is constant for a given exposure limit. This can
be easily reduced to a 2-nd order equation, yielding a unique positive
solution:

r∗ =
√

s2 cos 2ϕ +
√

(s2 cos 2ϕ)2 − s4 + s2I2/k2. (20)

From this expression ROW widths for more common line geometries
with horizontal and vertical aligned conductors can be deduced by
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Figure 14. Discrepancy between numerical and analytical ROW
width of a flat power line for different loading conditions and field
exposure limits.

letting ϕ = 0 and ϕ = π/2, respectively. Even in that case the circle
assumption for contour lines is well verified for both horizontal and
vertical arrangement.

As an example, the case of a three-phase power line with horizontal
aligned conductors (phase-to-phase distance s = 4m) is considered.
Figure 14 shows that the discrepancy between ROW width values
computed with (20) and numerically computed data is always below
2% in any load condition.

3.2. Double Circuit Power Lines

3.2.1. Super-bundle Phasing

It has been shown above that the circle approximation holds also for
unevenly loaded double circuit lines in SB phasing. A conservative
estimate of the ROW width can be obtained from (12) by expressing
r∗ as a function of the maximum field intensity b∗ and the average
current I = Ia+Ib

2 , yielding:

r∗(b∗, I) =

√
µI

π

√
3s

b∗
+ s2 + ∆r, (21)
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Figure 15. Discrepancy between numerical and analytical ROW
width of a double circuit SB power line for different load unbalances
(Ia = (1− α)Ib, Ib = 800 A) and field exposure limits.

where the distance ∆r = | Ia−Ib
Ia+Ib

|w takes into account the load
unbalance.

The approximate formula is tested for different degrees of circuit
current unbalance. Parameter α defines the amount of current on
circuit a compared to circuit b, that is Ia = (1 − α)Ib where Ib is
set to 800A rms. Figure 15 shows that the discrepancy between
analytical and numerical ROW width values increases with the degree
of unbalance and is acceptable up to 20–30%.

3.2.2. Low-reactance Phasing

In the case of evenly loaded circuits the ROW width for a double circuit
line in LR phasing can be easily computed by inverting (14), yielding:

r∗ =
3

√
µsI

π

√
s3 + 12w2

b∗
. (22)

More complex is to obtain an analytical relationship for estimating
the ROW distance for a LR line with unbalanced circuits. It can be
shown that the approximate formula for computing the field rms value
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distribution (16) can be cast in the following 3-rd order equation to be
solved in terms of r:

r3 + pr + q = 0, (23)

where:

p = −µ∆I

3π

s

b∗
, q =

µI

2π

s
√

s2 + 12w2

b∗
, (24)

and I = Ia+Ib
2 , ∆I = |Ia−Ib|

2 . Even though a 3-rd order equation has in
general three-complex solutions, it can be demonstrated in that case
that a real solution exists since the discriminant q2 + p3 is positive.
Other solutions, which are complex and conjugate, are discarded.
Hence, the following approximate formula holds for assessing the ROW
width of LR lines in unbalanced loading conditions:

r∗ =
3

√
−q +

√
q2 + p3 +

3

√
−q −

√
q2 + p3. (25)

Figure 16 shows that this approximate formula is still accurate
even with severe levels of unbalance. The overall discrepancy is below
4% in any loading condition; the best agreement is attained for evenly
balanced circuits.
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Figure 16. Discrepancy between numerical and analytical ROW
width of a double circuit LR power line for different load unbalances
α (Ia = αIb, Ib = 800 A) and field exposure limits.
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4. CONCLUSION

It has been shown in this work that the magnetic field intensity
generated by overhead power lines in single and double circuit
configurations may be well approximated by analytical expressions
which are a function of the line geometric parameters and the field
point distance from the line center of gravity. In particular, original
formulas are proposed for double circuit evenly and unevenly loaded
lines in both super-bundle and low-reactance phasing.

It has been noted that contour lines of the rms magnetic flux
density at a distance from the line greater than a few phase-spacings
have an almost circular shape, whose radius can be determined by
inverting analytical expressions for computing the field strength. These
formulas have proved to be accurate in a variety of configurations and
load conditions.

This approach leads to a simple yet accurate estimate of the
ROW width for any overhead — and indeed also buried — power line
configuration. The proposed relationships can be easily implemented
on spreadsheets or Graphical Information Systems for environmental
impact assessment.
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