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Abstract—In this article, we introduce an improved optimization
based technique for the synthesis of circular antenna array. The
main objective is to achieve minimum side lobe levels, maximum
directivity and null control for the non-uniform, planar circular
antenna array. The design procedure utilizes an improved variant of
a prominent and efficient metaheuristic algorithm of current interest,
namely the Differential Evolution (DE). An efficient classical local
search technique called Solis Wet’s algorithm is incorporated with
the competitive Differential Evolution. While the competitive DE is
used for the global exploration, Solis Wet’s algorithm is employed
for local search. Combining the capability of both techniques
the hybrid algorithm exhibits improved performance for circular
array design problem. Three examples of circular array design
problems are considered to illustrate the effectiveness of the hybrid
algorithm cDESW (Competiteve Differential Evolution with Solis
Wet’s technique). The design results obtained using cDESW has
comfortably outperformed the results obtained by other state-of-the-
art metaheuristics like CLPSO, JADE.
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1. INTRODUCTION

For the purpose of long distance communication antennas having very
directive radiation characteristics are required. A single antenna may
be unable to meet this requirement. The solution to this problem
is achieved using antenna array, which can be formed by combining
many individual antenna elements in certain electrical and geometrical
configurations. Antenna arrays have been widely used in diverse
applications including radar, sonar, radios, and third generation
wireless communication systems [1–3].

An inefficient array design may result in wastage of power proving
fatal for power limited wireless devices, whereas an efficient antenna
array is very much useful in high power transmission, reduced power
consumption and enhanced spectral efficiency. A very directive pattern
is obtained if fields from the array elements add constructively in some
desired directions and add destructively and cancel each other in the
remaining space.

While designing an antenna array the primary objective is
to determine the positions of array elements that jointly produce
a radiation pattern that resembles the desired pattern as nearly
as possible [4]. As the number of applications grow in wireless
communications, the demand for new antenna design increases.
Alongside, various features and performance metrics are desired
like miniaturization, null control, pattern control, multifunction
capabilities, etc.. In recent past the researchers working on
electromagnetic optimization problems paid great attention on the
design of uniformly and non-uniformly spaced linear arrays. Nowadays
metaheuristic algorithms are used to solve antenna design problems.
The reason for the use of these metaheuristic algorithms based on
simulations of some natural phenomena lies in the computational
drawbacks of existing numerical methods. Also the classical derivative-
based optimization techniques are prone to getting trapped in local
optima and are strongly sensitive to initialization, for complex
optimization problems the gradient based methods fail to obtain
significant solution. Due to these inherent shortcomings of the classical
methods, many modern metaheuristics were tried to achieve optimized
Side Lobe Level (SLL) and null control from the designed arrays [5–
10]. The researches are now going on the design of antenna arrays with
other geometrical shapes that help to obtain desired radiation pattern.

Some features of circular antenna array have made it advantageous
over other configurations of antenna arrays. It has all azimuth scan
capability and the array pattern is flexible as observed in [11–14]. For
the advantages provided by the circular antenna array it has found
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wide application in sonar, radar, mobile, and commercial satellite
communication systems [11, 13, 15, 16] and design of circular antenna
array is becoming important gradually. The work of Panduro et
al. [17] is the first metaheuristic approach towards the design of
circular arrays. They applied the real-coded Genetic Algorithm (GA)
for designing circular arrays with maximal side lobe level reduction
coupled with the constraint of a fixed beam width. Later Particle
swarm optimization was applied by Shihab et al. in [18] for the design of
circular array. Panduro et al. [19] compared three powerful population-
based optimization algorithms — PSO, GA, and Differential Evolution
(DE) on the design problem of scanned circular arrays. Gurel and
Ergul applied GA in [20] to design a circular array where each element
was log-periodic antenna. Some other applications of metaheuristics
for the design of circular antenna array is found in [21–23] that involve
the use of PSO, invasive weed optimization (IWO) and Biogeography
based optimization (BBO). In [19] a design problem is considered with
number of antenna elements equal to 12 and for a uniform separation
of d = 0.5λ, optimizing excitation current amplitudes and phase
perturbations, with an objective of studying the behavior of array
factor for the scanning range of 0◦ to 360◦ in angular steps of 30◦.
Huang et al. introduced a time-modulated circular array using uniform
amplitude excitation for obtaining ultra low side lobe level in [24].

Amongst all Evolutionary Algorithms (EAs) described in various
articles, Differential Evolution (DE) [25–27] has emerged as one
of the most powerful tools for solving the real world optimization
problems. Differential Evolution has been successfully applied to solve
problems in electromagnetics as found in literature [28–30]. In this
context we present here a new powerful variant of DE denoted by
cDESW, for designing non-uniform circular arrays with optimized
performance with respect to SLL, directivity, and null control in a
scanning range [0◦, 360◦]. In the proposed algorithm, a competitive
variant of DE is used for global exploration and the classic Solis
Wet’s algorithm [31] is used as the local search process. For the
DE algorithm, we have developed a hybrid mutation strategy by
hybridizing a modified “DE/current-to-best/2” mutation strategy with
a modified “DE/rand/1”mutation strategy. We have discussed the
mutation strategy later in sufficient details.

The rest of the paper is organized in the following way. In
Section 2, we have given a brief overview of the classical DE algorithm.
Section 3 provides a comprehensive overview of the proposed cDESW
algorithm and also describes the modifications used over classical DE
to improve the efficiency. A formulation of the array pattern synthesis
as an optimization task has been discussed in Section 4. Simulation
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settings have been discussed and the results have been presented in
Section 5. Section 6 finally concludes the paper and unfolds a few
important future research issues.

2. CLASSICAL DE

An iteration of the classical DE algorithm consists of the four basic
steps — initialization of a population of search variable vectors,
mutation, crossover or recombination, and finally selection. The last
three steps are repeated generation after generation until a stopping
criterion is satisfied.

2.1. Initialization of the Population

If DE searches for the global optima within the continuous search
space of dimensionality D then it begins with an initial population
of target vectors ~Xi = {x1

i , x2
i , . . . , xD

i } where i = 1, 2, 3 . . .NP (NP
is the population size). The individuals of the initial population are
randomly generated from a uniform distribution within the search
space which has maximum & minimum bounds as follows: ~Xmax =
{x1

max, x2
max, . . . , xD

max} and ~Xmin = {x1
min, x2

min, . . . xD
min}. The jth

component of the ith individual is initialized as follows:

xj
i,0 = xj

min + randj
i (0, 1)(xj

max − xj
min); j ∈ [1, D] (1)

Here randj
i (0, 1) is a uniformly distributed random number in (0, 1)

and it is instantiated independently for the j-th component of the i-th
individual.

2.2. Mutation

After the initialization, DE evolves the population by three operations:
mutation, crossover & selection. In each generation DE creates a
mutant vector (also known as donor vector) corresponding to each
individual or target vector of the current population. Three very
common mutation strategies are described as follows:

a) DE/rand/1: ~Vi,G = ~Xr1,G + F ·
(

~Xr1,G − ~Xr3,G

)
(2)

b) DE/best/1: ~Vi,G = ~Xbest,G + F ·
(

~Xr1,G − ~Xr2,G

)
(3)

c) DE/current-to-best/1:
~Vi,G = ~Xi,G + Fbest ·

(
~Xbest,G − ~Xi,G

)
+ F ·

(
~Xr1,G − ~Xr2,G

)
(4)
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The indices r1, r2 and r3 are mutually exclusive random integers
in the range [1, NP ], they are also different from i. These indices
are generated once for each mutant vector. ~Xbest,G is the target
vector which has the best fitness value in the population at generation
G. The scaling factor F and Fbest control the amplification of the
corresponding differentiation vector.

2.3. Crossover

In this operation, the donor vector mixes its components with the
target vector ~Xi,G under this operation to form the trial vector
~Ui,G = {u1

i,G, u2
i,G, . . . , uD

i,G}. Here we shall briefly outline the binomial
crossover scheme that has been used in the proposed algorithm. Under
this scheme the trial vector is created as follows:

uj
i,G =





vj
i,G if rand(0, 1) ≤ CR or j = jrand

xj
i,G otherwise

(5)

where CR is a user-specified parameter (Crossover Rate) in the
range [0, 1) and jrand ∈ [1, 2, . . . , D] is a randomly chosen index which
ensures that the trial vector ~Ui,G will differ from its corresponding
target vector ~Xi,G by at least one component.

2.4. Selection

To keep the population size constant over subsequent generations, the
next step of the algorithm calls for selection to determine whether
the target or the trial vector survives to the next generation i.e., at
G = G + 1. For maximization problem, if the objective function
value of the trial vector is not less than that of the corresponding
target vector, then the trial vector is selected for the next generation;
and if it is not so, then the trial vector is selected for the next
generation. Obviously, for minimization problem the condition for
selection is just the opposite. The selection operation works as follows
(for maximization problem):

~Xi,G+1 =

{
~Ui,G if f(~Ui,G) ≥ f( ~Xi,G)

~Xi,G otherwise
(6)

where f(·) is the objective function to be optimized.
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3. PROPOSED ALGORITHM

In this section we have discussed the proposed cDESW algorithm in
sufficient details. In this multi-population based algorithm, we have
developed a competitive variant of DE which is accompanied by a
local search method. Furthermore, this algorithm employs a hybrid
mutation strategy for DE to enhance the searching ability and to
circumvent stagnation of the population at any local optima. The
combination of global exploration (modified DE) and local exploitation
(Solis and Wet’s technique) makes the algorithm better than the
classical DE.

3.1. The Modified DE Algorithm

3.1.1. Competitive Variant of DE

For a heuristic search process, it is useful to exploit the neighborhood
because it is similar to information exchange between the neighbors
which leads to better solutions. So, here we have incorporated a
competition between the neighbors. Also the success rate is measured
at each generation which helps in determining the new individual
generation process for the next generation. Actually, depending on
the success rate, either the current individual or its nearest neighbor
is used for mutant vector formation. If the corresponding trial vector
is chosen for next generation then the corresponding success rate is
increased by 1 and if it is not chosen then the corresponding success rate
is decreased by 1. If both the success rates for current individual and
its nearest neighbor are equal then the current individual is used. At
the time of initialization, all the success rates were set to 0. Using this
method, we can get far better solutions with less function evaluations.
Also the population does not converge to any local minima too quickly
because we set the competition with nearest neighbor. Here, the
nearest neighbor is selected on the basis of Euclidean distance between
the current individual and the other individuals in the corresponding
subpopulation.

3.1.2. Hybrid Mutation Strategy

As mentioned earlier, depending on the success rate, either the
current individual or the nearest neighbor of the current individual
is used for the mutant vector generation process. Let the chosen
individual be ~Xc,G. In DE, greedy strategies like DE/current-to-
best/n and DE/best/n benefit from their fast convergence property
by guiding the search process with the best solution so far discovered,
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thereby converging faster to that point. But, as a result of such
fast convergence tendency, in many cases, the population may lose
its diversity and global exploration abilities within a relatively small
number of generations, thereafter getting trapped to some locally
optimal point in the search space. Taking into consideration these facts
and to overcome the limitations of fast but less reliable convergence,
we have developed a hybrid mutation strategy.

For constructing the final mutant vector, two mutant vectors
generated by two different mutation strategies are combined with a
weight factor ω. This way we developed a hybrid mutation strategy
to prevent the algorithm from converging too quickly and at the same
time exploring the whole search space to produce high quality results.

For the first mutation strategy, we have used a modified
“DE/current-to-best/2” mutation strategy. For this modified mutation
strategy, best individual of each subpopulation is stored in a memory
archive; this memory archive is updated at each generation to store the
new best individuals and delete the previous best individuals. During
the mutation process, the nearest memory individual is used instead
of the global best individual. The mutation process can be expressed
as follows:

~Vmut,1 = ~Xc,G + Fbest · ( ~Xm,G − ~Xc,G) + F · ( ~Xr1,G − ~Xr2,G) (7)

where ~Xm,G is the nearest best individual as mentioned above.
~Xr1,G and ~Xr2,G are two distinct vectors randomly chosen from the
subpopulation. For the second mutation strategy, we have used
“DE/current/1” mutation strategy. The mutation process can be
expressed as follows:

~Vmut,2 = ~Xc,G + F · ( ~Xr1,G − ~Xr2,G) (8)

where ~Xr1,G and ~Xr2,G are two distinct vectors randomly chosen from
the subpopulation independently of first mutation process. Now, the
final mutant vector is a weighted sum of two above mentioned mutant
vectors. If the weight factor for ~Vmut,1 is ω then the final mutant vector
is

~Vmut = ω · ~Vmut,1 + (1− ω) · ~Vmut,2 (9)

3.2. Local Search
3.2.1. Local Search Method

As mentioned earlier, we have used Solis and Wet’s algorithm as the LS
method. The algorithm is a randomized hill climber. It starts from a
initial point i. Then a deviation d is chosen from a normal distribution
whose mean is 0 and variance is a parameter σ which is adaptive in
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nature. If i + d is better or i− d is better than the current individual
in terms of fitness value then the current individual is replaced by the
better one and a success is recorded. Otherwise a failure is recorded.
After some consecutive success (we set this value to 1) σ is increased
(we set this increment as 1.5 times) to progress quicker. Similarly, after
some consecutive failure (we set this value to 1) σ is decreased (we set
this decrement as 1/3 times) to focus the search. Also a bias term is
included to guide the search in the direction which gives success. As σ
is adaptive, the step size of the search method is also adaptive which
makes the algorithm very effective in exploiting the nearby region of
the solution.

In our algorithm, the solutions got after executing the local search
are also recorded. If the success exceeds the failure by at least S (we
set it to 20) then the solution is recorded as a good solution and the
corresponding σ value is also recoded. If the success does not exceed
the failure by at least S then the solution is recorded as bad solution.
When the local search algorithm runs again, the chosen individuals
are compared with the previous good and bad solutions. If the current
individual is a previous good solution then the search process starts
with the previous value of σ. If the current individual is a previous
bad solution then local search is not applied to the individual. We
have incorporated this memory system to avoid unnecessary function
evaluations which in turn increases the efficiency of the algorithm. In
our algorithm, during the local search, the whole local search method
is applied over the best individuals of all subpopulations.

4. FORMULATION OF THE DESIGN PROBLEM

We consider N antenna elements that are spaced on a circle of radius
r in the x-y plane. The antenna elements constitute a circular antenna

I2
∠ β

2

y

x
I8

∠ β
8

Figure 1. Geometry of circular antenna array.
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array, which is shown in Fig. 1. The formulation of the array factor
requires the following

• In is the normalized amplitude excitation.
• βn is the phase excitation of the nth element.
• φ is the angle of incidence of the plane wave.

When the wavefront of incident plane wave is perpendicular to x-y
plane (i.e., θ = 90◦), the array factor of the circular array can be
written by

AF(φ)=
N∑

n=1

In exp
[
j
{
kr

(
cos

(
φ−φn

ang

)−cos
(
φ0−φn

ang

))
+βn

}]
(10)

where, φn
ang = 2π(n− 1)/N is the angular position of the nth element

on the x-y plane, kr = Nd where k is the wave number, d is the angular
spacing between elements and r is the radius of the circle defined by
the circular array. φ0 is the direction of maximum radiation.

The main objective is to suppress side-lobe level, maximize
directivity and achieve null control. To fulfill the objective the
amplitude and phase excitations of the antenna elements are varied.
The range of variation of normalized amplitude excitation is [0, 1]. The
range of phase excitation is [−180◦, 180◦].

A symmetrical excitation of the circular antenna array is
considered. The following relations hold for the array elements.

In/2+1∠βn/2+1 = conj(I1∠β1),
In/2+2∠βn/2+2 = conj(I1∠β1), . . .

In∠βn = conj(In/2∠βn/2)

The objective function is given by,

F =
∣∣∣AF

(
φsll, ~I, ~β, φ0

)∣∣∣ /
∣∣∣AF

(
φmax, ~I, ~β, φ0

)∣∣∣ + 1/DIR
(
φ0, ~I, ~β

)

+ |φ0 − φdes|+
nl∑

k=1

AF(φk,~I, ~β, φ0) (11)

The goal can be achieved by minimizing the objective function F.
The four components of the objective function perform different tasks.
The first component attempts to minimize the side lobe level. φsll

denotes the angle at which maximum side lobe level is obtained. As
the objective function is minimized the side lobe level is minimized also.
The job of the second component is to maximize the directivity of the
array pattern. Directivity is a useful figure of merit when different
array patterns are compared. DIR (φ0, ~I, ~β) denotes the directivity in
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the direction indicated by φ0. As directivity increases the objective
function is minimized. The desired maxima is denoted by φdes. The
third component strives to drive the maxima of the array pattern close
to φdes. The fourth component deals with the nulls. If proper null
control is not achieved then the objective function is penalized due to
the fourth component. nl is the number of null control directions and
φk is the kth null control direction.

5. SIMULATIONS RESULT

In this paper we have considered three design problems. The
optimal array pattern is found using cDESW, an improved version
of Differential Evolution. The results obtained are compared to
the result obtained by other powerful Evolutionary Algorithms like
JADE [26] and CLPSO [32]. The comparison clearly reveals that
our algorithm produces better results than JADE or CLPSO. For our
algorithm, NP was kept fixed at 60 throughout the search process. We
divided the whole population into 6 subpopulations, each containing
10 individuals. Weight factor ω for the first mutation scheme in hybrid
mutation strategy was set to 0.7. The scaling factor F of DE algorithm
was generated in each iteration for each individual, randomly between
0.3 and 0.7. The crossover probability CR was set to 0.9.

5.1. Case 1. 12 Element Array with No Null Control

In this instance we consider a 12 element array. We need to find the
optimal pattern with desired maximum at 180◦. No null control is
required. We obtain the current excitation and phase of the antenna
elements that produce the desired pattern.

Table 1 shows the SLL and directivity (in dB) for JADE, CLPSO,
and cDESW for the median of 25 independent runs of each algorithm
on the problem of case 1. Table 2 presents mean objective function
values and corresponding standard deviations over 25 independent
trials of the algorithms on the design problem considered in case 1.

The obtained array pattern is shown in Fig. 2. We can see

Table 1. Results for median of 25 trials (case 1).

Algorithm SLL (dB) Directivity (dB)
CLPSO −17.6751 10.0341
JADE −19.5412 10.9585

cDESW −22.2907 11.3350
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Table 2. Mean objective function values and standard deviations over
25 independent trials for case 1.

Algorithm Mean Obj. function Std. Deviation

CLPSO 0.2241 0.0432

JADE 0.2076 0.0311

cDESW 0.1672 0.0203

Table 3. Current amplitude excitation and phase excitation of
elements (case 1).

I1 I2 I3 I4 I5 I6

0.9622 0.4127 0.4036 0.1541 0.3970 0.5509

β1 β2 β3 β4 β5 β6

−30.50 26.41 −90.30 −39.02 86.52 −18.27
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Figure 2. Array pattern plot for 12 element array without null.

from the results that cDESW finds an array pattern with the best
minimized side-lobes and greatest directivity. The figure also confirms
that cDESW has outperformed the competitor algorithms.

The convergence graphs of the three algorithms for 12 element
array with no null control case study are represented in Fig. 3. “FEs”
means the number function evaluations. The amplitude excitation and
phase excitation of the first six elements are listed in Table 3. As the
circular array is symmetric we can find the amplitude excitation and
phase excitation of the other elements from these by calculating the
complex conjugate values.
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Figure 3. Convergence graph for case 1.
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Figure 4. Array pattern plot for 12 element array with null at 120◦.

5.2. Case 2. 12 Element Array with Null at 120◦

In this instance we consider a 12 element array. We need to find the
optimal pattern with desired maximum at 180◦. Null is present at 120◦.
We obtain the current excitation and phase of the antenna elements
that produce the desired pattern.

Tables 4 and 5 are similar in spirit to Tables 1 and 2 except for the
fact that now the values are reported for the design problem of case 2.

The obtained array pattern is shown in Fig. 4. We can see
from the results that cDESW finds an array pattern with the best
minimized side-lobes and greatest directivity. The figure also confirms
that cDESW has outperformed the competitor algorithms. cDESW
suppresses the null at 120◦ to −79.64 dB which is better than the
suppressions obtained in competitor algorithms.
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Table 4. Results for median of 25 trials (case 2).

Algorithm SLL (dB) Directivity (dB) AF at 120◦ (dB)
CLPSO −17.9262 9.9843 −70.0000
JADE −19.5453 10.7466 −74.3922

cDESW −22.2563 11.0971 −79.6419

Table 5. Mean objective function values and standard deviations over
25 independent trials for case 2.

Algorithm Mean Obj. function Std. Deviation
PSO 0.2247 0.0489
DE 0.2083 0.0322

cDESW 0.1674 0.0211

Table 6. Current amplitude excitation and phase excitation of
elements (case 2).

I1 I2 I3 I4 I5 I6

0.9744 0.5572 0.4017 0.1517 0.4097 0.4204

β1 β2 β3 β4 β5 β6

−30.56 18.44 −86.38 38.45 89.85 −26.28
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Figure 5. Convergence graph for case 2.

The current amplitude excitation and phase excitation of the first
six elements are listed in Table 6. As the circular array is symmetric
we can find the current amplitude excitation and phase excitation of
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the other elements from these as mentioned earlier.
The convergence graphs of the three algorithms for 12 element

array with null at 120◦ case study are given in Fig. 5.

5.3. Case 3. 24 Element Array with No Null Control

In this instance we consider a 24 element array. We need to find the
optimal pattern with desired maximum at 180◦. No null control is
required. We obtain the current excitation and phase of the antenna
elements that produce the desired pattern.

Tables 7 and 8 correspond to Tables 1 and 2 and contain values
for the design problem of case 3.

The obtained array pattern is shown in Fig. 6. We can see

Table 7. Results for median of 25 trials (case 3).

Algorithm SLL (dB) Directivity (dB)
CLPSO −16.2118 12.9819
JADE −17.3565 13.2127

cDESW −19.8348 13.6155

Table 8. Mean objective function values and standard deviations over
25 independent trials for case 3.

Algorithm Mean Obj. function Std. Deviation
CLPSO 0.4012 0.0683
JADE 0.3785 0.0654

cDESW 0.2246 0.0453
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Figure 6. Array pattern plot for 24 element array without null.
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Table 9. Current amplitude excitation and phase excitation of
elements (case 3).

I1 I2 I3 I4 I5 I6

0.9996 0.6381 0.1080 0.3891 0.0002 0.3399
β1 β2 β3 β4 β5 β6

9.6527 15.40 71.84 −68.25 87.89 47.06

I7 I8 I9 I10 I11 I12

0.1095 0.2934 0.1014 0.4145 0.0000 0.5600
β7 β8 β9 β10 β11 β12

24.05 −53.48 −179.9 60.14 14.38 −12.50
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Figure 7. Convergence graph for Case 3.

from the results that cDESW finds an array pattern with the best
minimized side-lobes and greatest directivity. The figure also confirms
that cDESW has outperformed the competitor algorithms.

The convergence graphs of the three algorithms for 24 element
array with no null control case study are given in Fig. 7. The current
amplitude excitation and phase excitation of the first twelve elements
are listed in Table 9. As the circular array is symmetric we can find the
current amplitude excitation and phase excitation of the other elements
from these values as mentioned earlier.

To give an idea of runtime of the simulation process, we have
presented the comparison of average CPU time required per run in
cDESW, JADE and CLPSO based design methods in Table 10. We
performed the simulation in the following experimental environment:
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Table 10. Comparison of average CPU time required per run.

Problem
Average CPU Time

Required Per Run (in Seconds)
cDESW JADE CLPSO

Case 1 2.12 2.49 2.88
Case 2 2.29 2.71 3.02
Case 3 3.98 4.73 5.65

• CPU: 2.4GHz Intel R©CoreTM2.
• RAM: 2GB DDR2.
• Language: MATLAB 7.

6. CONCLUSION

Due to the large application in different areas of electromagnetics,
designing circular antenna arrays with minimum SLL, maximum
directivity is an important problem. This also offers several challenges
due to its complex formulation and dependence on various parameters
like the current excitation amplitude of antenna elements, phase,
number of elements, etc.. In this paper, for solving the complex
problem of circular antenna array design we introduce an improved
variant of a well known metaheuristic algorithm called Differential
Evolution (DE) which incorporates Solis Wet’s local search technique
along with the global exploration of competitive Differential Evolution,
and the superiority of the proposed technique over other existing
stochastic optimizers is illustrated through simulation in the context
of three-instances of the circular antenna array design problem. The
design problem was formulated as an optimization task on the basis
of a cost function that takes care of the average side lobe levels,
the null control, directivity. The experimental results indicate that
the proposed cDESW algorithm has outperformed CLPSO and JADE
over all the three instances of circular array design problems based
on metrics such as average final accuracy, best obtained design figures
of merit (like SLL, directivity, null control). Thus we can say that
the proposed cDESW algorithm can be used efficiently for designing
circular arrays.

Future research will focus on exploring the design of other
array geometries and concentric circular arrays with cDESW and
its improved variant if possible. Also treating the four different
components of the cost function given in (11) as a multi-objective
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optimization problem may prove to be a significant avenue of future
investigation, but some problem-specific expert’s knowledge may have
to be incorporated then for pointing out the best suitable solution
from the Pareto-optimal set produced by a multi-objective optimizer
to implement the configuration in practical applications.
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