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Abstract—The design of a 2n×2n Butler matrix is usually based on an
iterative process. In this paper, recurrence relations behind this process
are found, and the close-form solutions, i.e., non-recursive functions of
n, are reported. These solutions allow the direct derivation of the
scattering matrix coefficients of symmetric and large Butler matrices.

1. INTRODUCTION

When used in beam-forming applications, the 2n × 2n Butler matrix
is a multi-input/multi-output device with 2n inputs (beam ports) and
2n outputs (antenna array ports) that allows synthesizing 2n radiating
beams. Introduced in 1961 by Butler and Lowe [1], this passive multi-
port device is composed of 3 dB-couplers, phase shifters and cross-overs
(see Figure 1). Several articles discuss procedures for designing Butler
matrices. In 1964, Moody [2] reported the design of a symmetric Butler
matrix based on an iterative process. Shelton and Kelleher [3] proposed
in 1961 a reduced scattering matrix which has analogous properties to
those of the Butler scattering matrix (with respect to some conditions)
while Allen [4] analyzed the orthogonality of the Butler matrix. In
1967, Jaeckle [5] reported an alternative design with different values
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Figure 1. Architecture of a 23 × 23 symmetric Butler matrix.

of phase shifts. More recently, in 1987 Macnamara [6] published a
detailed and systematic procedure for designing asymmetric Butler
matrices with 3 dB/180◦ couplers. Besides the theory of Butler matrix,
research works have been reported for reducing size [7] or solving
problems due to cross-overs [8]. In order to remove the cross-overs,
new technologies have been recently applied such as the Substrate
Integrated Waveguide (SIW) technology on one layer [9] or on two
layers [10]. However, all these works, including the precursor analysis
of Butler and Lowe [1], are based on an iterative construction of the
Butler matrix. For large matrix dimensions, such derivation may be
fastidious and time-consuming. To the authors’ knowledge the close-
form solution of the recurrence relations behind the iterative process
in case of symmetric and lossless Butler matrix has not been reported
yet.

In this paper, the recurrence relations used for synthesizing 2n×2n

Butler matrices are derived, and their close-form solutions, i.e., non-
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recursive functions of n, are reported for the first time. These solutions
allow the direct calculation of the scattering parameters of Butler
matrices.

2. RECURRENCE RELATIONS FOR CALCULATING
THE SCATTERING PARAMETERS OF LOSSLESS AND
SYMMETRIC BUTLER MATRICES

The scattering matrix (S-matrix) of reciprocal devices having M
uncoupled inputs and N uncoupled outputs with all ports matched
is given by Eq. (1) [3, 4]:

[S] =




0 . . . . . . 0 S1(M+1) . . . . . . S1(M+N)
...

. . .
...

...
...

0 . . . . . . 0 Sm(M+1) . . . . . . Sm(M+N)
...

. . .
...

...
...

0 . . . . . . 0 SM(M+1) . . . . . . SM(M+N)

S(M+1)1 . . . . . . S(M+1)M 0 . . . . . . 0
...

...
...

. . .
...

S(M+n)1 . . . . . . S(M+n)M 0 . . . . . . 0
...

...
...

. . .
...

S(M+N)1 . . . . . . S(M+N)M 0 . . . . . . 0




(1)

Let [Sr] designates the N×M non-zero S-matrix appearing at the
bottom left quarter of the S-matrix of Eq. (1):

[Sr] =




S(M+1)1 . . . S(M+1)M
...

. . .
...

S(M+N)1 . . . S(M+N)M


 (2)

If [Sr] is unitary, that is, if [Sr] [Sr]
∗T = [I] where [Sr]

∗T is the
conjugate transpose matrix of [Sr] and [I] is the unit matrix with
dimension N ×N , then the S-matrix given by Eq. (1) is also unitary
and can be rewritten as follows [4]:

[S] =

[
[0] [Sr]

T

[Sr] [0]

]
(3)

Moreover, when M = N = 2n, the matrix given in Eq. (1) may
represent the S-matrix of a 2n × 2n Butler matrix. As an example,
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following [1] and [2], the S-matrix [Sr] associated with the Butler
matrix shown in Figure 1 is given by:

[Sr] = 1
2
√

2
×



e−j5π
8 e−j9π

8 e−j6π
8 e−j10π

8 e−j5π
8 e−j9π

8 e−j8π
8 e−j12π

8

e−j6π
8 e−j2π

8 e−j11π
8 e−j7π

8 e−j8π
8 e−j4π

8 e−j15π
8 e−j11π

8

e−j7π
8 e−j11π

8 e−j0π
8 e−j4π

8 e−j11π
8 e−j15π

8 e−j6π
8 e−j10π

8

e−j8π
8 e−j4π

8 e−j5π
8 e−j π

8 e−j14π
8 e−j10π

8 e−j13π
8 e−j9π

8

e−j9π
8 e−j13π

8 e−j10π
8 e−j14π

8 e−j π
8 e−j5π

8 e−j4π
8 e−j8π

8

e−j10π
8 e−j6π

8 e−j15π
8 e−j11π

8 e−j4π
8 e−j0π

8 e−j11π
8 e−j7π

8

e−j11π
8 e−j15π

8 e−j4π
8 e−j8π

8 e−j7π
8 e−j11π

8 e−j2π
8 e−j6π

8

e−j12π
8 e−j8π

8 e−j9π
8 e−j5π

8 e−j10π
8 e−j6π

8 e−j9π
8 e−j5π

8




(4)
Butler and Lowe [1], Moody [2] and Macnamara [6] have used an
iterative process for deriving the S-parameters of Butler matrices. The
recurrence relations associated with this process are now established
and in Section 3. These relations are solved, and the close-form
expressions for the S-parameters of [Sr] in case of a 2n × 2n Butler
matrix are reported.

By analyzing the systematic design of a Butler matrix established
by Moody [2], it can be noted that the term S(M+1)1 = S(2n+1)1 of a
lossless 2n × 2n Butler matrix can be written as:

S(2n+1)1 =
(

1√
2

)n

· exp
(
jΨ(n)

0

)
(5)

with Ψ(n)
0 = −

n−2∑

i=0

(π

2
− 2i |∆φ1|

)
where ∆φ1 = − π

2n
(6)

Moreover, it can be observed that the term S(2n+1)m for
m = 2, 3, . . . , 2n depends on the term S(2n+1)(m−1) as follows:

• If m is even, then:

S(2n+1)(m) = S(2n+1)(m−1) · exp (−jπ/2) (7)

• If m is odd, then:

S(2n+1)(m) = S(2n+1)(m−1) · exp

[
j

(
χm · π

2nm
+

n∑

i=nm+1

π

2i

)]

= S(2n+1)(m−1) · exp
{

j
[ π

2nm
(χm + 1)− π

2n

]}
(8)

The value of nm in Eq. (8) is reported in Table 1 for any (odd) index
m.
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Table 1. Value of nm versus the odd index m of the term S(2n+1)m.

m 3 5 7 9 11 13 15 . . . 2Nm−1 + 1 . . . 2Nm − 1
nm 2 3 4 . . . Nm

Table 2. Values of χm versus the odd index m of the term S(2n+1)m
when Nm = 5.

Nm 5
m 17 19 21 23 25 27 29 31

x
(m)
2 1 1 1 1 0 0 0 0

x
(m)
3 1 1 0 0 1 1 0 0

x
(m)
4 1 0 1 0 1 0 1 0
χm 29 13 21 5 25 9 17 1

On the other hand, χm in Eq. (8) is given by Eq. (9):

χm = 1 +
Nm−1∑

i=2

x
(m)
i 2i (9)

where the Nm−2 values of x
(m)
i are determined for all ranks m having

the same Nm. For a given Nm, x
(m)
i is deduced from the sequence of

2Nm−1−i “1”, followed by a sequence of 2Nm−1−i “0”. This sequence of
“1” and “0” is then repeated 2i−2 times. For deriving χm from Eq. (9)
the following steps can be followed:
• Step 1: Find the value of Nm associated with m by using Table 1;

• Step 2: Derive the values of the x
(m)
i (i = 2, 3, . . . , Nm−1) for

rank Nm and identify the corresponding values x
(m)
i ;

• Step 3: Calculate χm using Eq. (9).
Table 2 summarizes the results of these steps when Nm = 5. It can be
deduced, for example, that χ17 = 1× 22 + 1× 23 + 1× 24 + 1 = 29 and
χ21 = 1× 22 + 0× 23 + 1× 24 + 1 = 21.

The iterative approach described by Moody in [2] for designing a
lossless 2n× 2n Butler matrix allows deriving the term S(2n+l)(m) with
l = 2, 3, . . . , 2n as follows:

S(2n+l)(m) = S(2n+l−1)(m) · exp [j∆φm] (10)
where the determination of the phase gradient ∆φm is illustrated with
Figure 2 [2, 6].



172 Leclerc et al.

Figure 2. Illustration of the determination of the phase gradient
∆φm [2, 6].

Equations (7)–(8) and (10) are the recurrence relationships that
govern the computation of the scattering parameter S(2n+l)(m).

The value of the phase gradient ∆φ1 is such that |∆φ1| = 1 · π
M

while the other gradients ∆φm are determined by recursive expressions
combining the Eq. (11) reported in [6] with Eqs. (12)–(14), that is:

|∆φ2p−1|+ |∆φ2p| = 2n × π

M
= π∀p ∈ [1;M ] , m ∈ N (11)

∣∣∆φM−(p−1)

∣∣ = |∆φp| ∀p ∈ [1;M ] , p ∈ N (12)∣∣∣∆φM
2i

∣∣∣+
∣∣∣∆φM

2i +1

∣∣∣ = 3×2i π

M
∀i ∈ [1, n− 1] , i ∈ N (13)

∣∣∣∆φM
2i −1−m

∣∣∣+
∣∣∣∆φM

2i −m

∣∣∣ =
∣∣∣∆φM

2i +1+m

∣∣∣ +
∣∣∣∆φM

2i +2+m

∣∣∣ (14)

∀i ∈ [1;n− 1] , i ∈ N, ∀m ∈
[
0;

M

2i
− 2

]
, m ∈ N

Note that the phase gradient ∆φm takes alternatively negative and
positive values.

3. CLOSE-FORM EXPRESSIONS OF THE
S-PARAMETERS FOR LOSSLESS AND SYMMETRIC
BUTLER MATRICES

If we combine Eqs. (7) and (8) and use Eq. (5), the S-parameter
S(2n+1)(m) can be derived as follows:

• If m is even, then:

S(2n+1)(m) =
(

1√
2

)n

· exp

{
j

[
Ψ(n)

0 −m
π

4

−π
(m

2
− 1

)(
1
2

)n

+
m−1∑

i=3,5,...

π

2ni
(1 + χi)

]}
(15)
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• If m is odd, then:

S(2n+1)(m) =
(

1√
2

)n

· exp

{
j

[
Ψ(n)

0 − (m− 1)
π

4

−π
m− 1

2

(
1
2

)n

+
m∑

i=3,5,...

π

2ni
(1 + χi)

]}
(16)

Eqs. (15)–(16) are the close-form expressions of the S(2n+1)(m) of any
2n × 2n Butler matrix. They are derived from the analysis previously
described in Section 2 of the iterative process proposed in [2]. They can
be established by mathematical induction as shown in Appendix A.

From the knowledge of the phase gradient ∆φm, the S-parameter
S(2n+l)(m) given in Eq. (10) can then be deduced:

S(2n+l)(m) = S(2n+1)(m) · exp [j (l − 1)∆φm] (17)

When m is even, S(2n+l)(m) can be determined by combining Eq. (15)
and Eq. (17); when m is odd, Eq. (16) and Eq. (17) are combined. The
resulting S-parameter S(2n+l)(m) is then given by:
• when m is even, then:

S(2n+l)(m) =
(

1√
2

)n

· exp

{
j

[
Ψ(n)

0 + (l − 1)∆φm −m
π

4

−π
(m

2
− 1

)(
1
2

)n

+
m−1∑

i=3,5,...

π

2ni
(1 + χi)

]}
(18)

• when m is odd, then:

S(2n+l)(m) =
(

1√
2

)n

· exp

{
j

[
Ψ(n)

0 + (l − 1)∆φm − (m− 1)
π

4

−π
m− 1

2

(
1
2

)n

+
m∑

i=3,5,...

π

2ni
(1 + χi)

]}
(19)

Eqs. (18) and (19) are the close-form expressions of S(2n+l)(m) (with
l > 1) of any 2n × 2n Butler matrix. These expressions can be
established by mathematical induction as shown in Appendix A.

4. CONCLUSION

For the first time to our knowledge, general close-form expressions
have been derived to determine the scattering matrix of a lossless and



174 Leclerc et al.

large symmetrical 2n × 2n Butler matrix. These close-form expressions
have been established by mathematical inductions. They allow a direct
computation of the Butler scattering matrix from any value of n.
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APPENDIX A. THE CLOSE-FORM EXPRESSIONS OF
BUTLER SCATTERING MATRIX DERIVED FROM
MATHEMATICAL INDUCTION

The close-form expressions reported in this paper are established by
mathematical induction in this appendix.

A.1 Let us show by mathematical induction that the scattering
coefficient S(2n+1)(m) is given by:
• when m is even, then:

S(2n+1)(m) =
(

1√
2

)n

· exp

{
j

[
Ψ(n)

0 −m
π

4

−π
(m

2
− 1

)(
1
2

)n

+
m−1∑

i=3,5,...

π

2ni
(1 + χi)

]}
(A1)

• when m is odd, then:

S(2n+1)(m) =
(

1√
2

)n

· exp

{
j

[
Ψ(n)

0 − (m− 1)
π

4

−π
m− 1

2

(
1
2

)n

+
m∑

i=3,5,...

π

2ni
(1 + χi)

]}
(A2)

Step 1: It is straightforward to show that these expressions are true
for m = 1, 2 and 3. As a matter of fact:

• Applying m = 1 in Eq. (A2), the following expression is obtained:

S(2n+1)(1) =
(

1√
2

)n

· exp
(
jΨ(n)

0

)
(A3)

where Ψ(n)
0 is given by:

Ψ(n)
0 = −

n−2∑

i=0

(π

2
− 2i π

2n

)
= −π

2
(n− 2)− π

2n
(A4)
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The same expression is obtained from the Moody’s iterative
approach [2].

• Applying m = 2 in Eq. (A1) it remains the following expression:

S(2n+1)(2) =
(

1√
2

)n

exp
[
j
(
Ψ(n)

0 − π

2

)]
(A5)

Again, the same expression is obtained from the Moody’s iterative
approach [2].

• when m = 3, Eq. (A2) is used:

S(2n+1)(3) =
(

1√
2

)n

exp
[
j
(
Ψ(n)

0 − π

2
− π

2n
+

π

2n3
(1 + χ3)

)]

=
(

1√
2

)n

exp
[
j
(
Ψ(n)

0 − π

2n

)]
(A6)

On the other hand, analyzing Moody’s systematic design [2],
Eq. (A7) is obtained:

S(2n+1)(3) =
(

1√
2

)n

exp

[
−j

(
π

2
+

n−2∑

i=1

(π

2
− 2i π

2n

))]
(A7)

Then by dividing Eq. (A6) by Eq. (A7), the result is 1. Therefore,
these two expressions are equal.

Consequently for the first values of m, the Eqs. (A1)–(A2) are true.
Step 2: Assuming that Eqs. (A1) and (A2) are true at rank m, let us
show that they are true at rank m + 1:

• If m+1 is even, using the recurrence relation Eq. (7) and Eq. (A2)
(since m is odd), we find:

S(2n+1)(m+1) = S(2n+1)(m) exp (−jπ/2) (A8)

S(2n+1)(m+1) =
(

1√
2

)n

· exp

{
j

[
Ψ(n)

0 − (m + 1)
π

4

−π

(
m + 1

2
− 1

)(
1
2

)n

+
m∑

i=3,5,...

π

2ni
(1+χi)

]}
(A9)

Eq. (A9) is identical to Eq. (A1) in which m is replaced by m+1.
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• If m+1 is odd, using the recurrence relation Eq. (8) and Eq. (A1)
(since m is even), we obtain:

S(2n+1)(m+1) = S(2n+1)(m) · exp
{

j
[ π

2nm+1
(χm+1+1)− π

2n

]}
(A10)

S(2n+1)(m+1) =
(

1√
2

)n

· exp

{
j

[
Ψ(n)

0 −m
π

4

−π
m

2

(
1
2

)n

+
m+1∑

i=3,5,...

π

2ni
(χi + 1)

]}
(A11)

Eq. (A11) is identical to Eq. (A2) in which m is replaced by m+1.
Consequently, to deduce the step 2, if Eqs. (A1) and (A2) are

assumed to be true at rank m, it is shown that they are also true at
rank m + 1.

Step 3: From step 1 and step 2, we conclude that Eqs. (A1) and
(A2) are true for any rank m.

A.2 Let us show by mathematical induction that the scattering
coefficient S(2n+l)(m) is given by:
• when m is even, then:

S(2n+l)(m) =
(

1√
2

)n

· exp

{
j

[
Ψ(n)

0 + (l − 1)∆φm −m
π

4

−π
(m

2
− 1

)(
1
2

)n

+
m−1∑

i=3,5,...

π

2ni
(1 + χi)

]}
(A12)

• when m is odd, then:

S(2n+l)(m) =
(

1√
2

)n

· exp

{
j

[
Ψ(n)

0 + (l − 1)∆φm − (m− 1)
π

4

−π
m− 1

2

(
1
2

)n

+
m∑

i=3,5,...

π

2ni
(1 + χi)

]}
(A13)

Step 1: Eqs. (A12)–(A13) are tested for 2n×2n Butler matrices when
n = 1, 2 and 3. The resulting matrix [Sr] is then compared with the
matrix [Sr] derived from the iterative process reported by Moody [2]:
• For n = 1, the Butler matrix is reduced to a 90◦ coupler. From

[2] the [Sr] matrix is then given as follows:

[Sr] =
(

1√
2

)1 [
1 e−jπ/2

e−jπ/2 1

]
(A14)
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The same scattering matrix is obtained from the close-forms
Eqs. (A12)–(A13) by taking n = 1 and m = 1 in Eq. (A12),
m = 2 in Eq. (A13) and l = 1 and 2 in both equations.

• For n = 2, analyzing a 4 × 4 Butler matrix, the following [Sr]
matrix is derived from [2]:

[Sr] =
(

1√
2

)2




e−jπ/4 e−j3π/4 e−j2π/4 e−j4π/4

e−j2π/4 e−j0π/4 e−j5π/4 e−j3π/4

e−j3π/4 e−j5π/4 e−j0π/4 e−j2π/4

e−j4π/4 e−j2π/4 e−j3π/4 e−jπ/4


 (A15)

By substituting n by 2 in Eqs. (A12)–(A13), the same matrix is
obtained.

• For n = 3, the [Sr] matrix is given in Eq. (4). The same matrix is
obtained from Eqs. (A12)–(A13).

Consequently for the first values of m, the Eqs. (A12)–(A13) are true.
Step 2: Assuming that Eqs. (A12)–(A13) are true at rank n, let

us show that they are true at rank n + 1:
Following [2], it can be observed that scattering parameters

corresponding to an odd rank in the first line of a 2n+1 × 2n+1 Butler
matrix allows deriving the overall [Sr] matrix. As a matter of fact:

(1) in the first line of the [Sr] matrix the scattering parameters
associated with an even rank can be deduced from odd rank parameters
by subtracting a phase of π/2 induced by the first coupler;

(2) the other lines of the [Sr] matrix can be derived from the first
one using Eq. (17).

Consequently, we consider only the scattering parameters having
an odd rank in the first line of the [Sr] matrix.

Moody graph [2] allows deriving the 2n+1 × 2n+1 Butler matrix
and the corresponding [Sr] matrix. Eq. (A13) gives the same matrices.
As a matter of fact, concerning the phase of the scattering parameters
(the comparisons of the magnitudes are straightforward):
arg

(
S(2n+1+1)(1)

)
:





from Moody [2]: −
n−1∑

i=0

(π

2
− 2i |∆φ1|

)

from Eq. (A13): Ψ(n+1)
0 =−π

2
(n−1)− π

2n+1

(A16)

⇒ π

2
(1− n)− π

2n+1
(A17)
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arg
(
S(2n+1+1)(3)

)
:





from Moody [2]: − π

2
−

n−1∑

i=1

(π

2
− 2i |∆φ1|

)

from eq. (A13): Ψ(n+1)
0 − π

2
− π

2n+1
+

π

2n3
(1 + χ3)

(A18)

⇒ π

2
(1− n)− π

2n
(A19)

arg
(
S(2n+1+1)(5)

)
:





from Moody [2]: −
(π

2
− |∆φ5|

)
− π

2
−

n−1∑

i=2

(π

2
− 2i |∆φ1|

)

from eq. (A13): Ψ(n+1)
0 − π − 2π

2n+1
+

5∑

i=3,5

π

2ni
(1 + χi)

(A20)

⇒ −π

2
n− 3π

2n+1
+

3π

4
(A21)

Consequently, to conclude the above-mentioned step 2, if Eqs. (A12)
and (A13) are assumed to be true at rank n, they are also true at rank
n + 1.

Step 3: From step 1 and step 2, we conclude that Eqs. (A12) and
(A13) are true for any rank n.
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