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Abstract—This paper describes a subcell modeling technique for
metallic resonators where the actual metal traces are replaced by a
thin wire having equivalent magnetic and electric radii, as well as an
impedance per unit length. The formulas for these quantities in the
case of rectangular traces are given. In addition, the gap of a split-ring
resonator is replaced by a lumped load. The response of the resonator
can then be modeled using thin-wire algorithms in an integral equation
code. It is demonstrated that the number of unknowns and runtime
can be reduced by factors of a thousand using the subcell models. This
is particularly important in cases where metamaterial designs with
tapered properties are encountered and periodic boundary conditions
are not applicable, because with this simplification larger numbers of
resonator cells can be handled.

1. INTRODUCTION

Metamaterials (MMs) are artificially-structured materials often made
up of resonant metallic structures in each of the cells [1]. Since
applications of these materials usually require gradients of properties
and ultimately introduce boundary effects, and because the behavior
of the resonant structures can be more sensitive to the properties of
neighboring cells and boundaries, periodic-modeling assumptions often
cannot be used. Thus, there is great interest in reducing the size of
the computation in each cell so that collections of cells can be directly
modeled. However it is often found that the metallic-loss properties,
which determine the effective absorption of the metamaterial, must be
accurately modeled and this can be a challenge due to the extra scales
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of length introduced by the conductive materials (particularly as the
frequency increases). Because these metallic structures often involve
narrow traces, there is an opportunity to reduce the complexity of
the problem, while simultaneously improving modeling accuracy. This
can be done by embedding known descriptions of the trace properties
into the simulation tools, thus forming subcell descriptions of the
metallic elements making up the resonator structures. (The use of
single facets across the width of a thin strip [2] is a very simple
and familiar example of such an unknown reduction approach and
can work if all the conductive scales of length are large compared to
the cross sectional dimensions). This approach allows the resonant
distributions of current to still respond to neighbor proximity effects,
but removes the burden of tracking these other electrical length scales
in the simulation.

This paper discusses these subcell descriptions of narrow metallic-
trace elements, which have recently been presented [3], and provides
simple formulas for estimating them (these apply to geometries where
the trace lengths are considerably larger than the cross sections).
These subcell descriptions include the per unit length capacitive,
inductive, and absorptive properties of metallic traces on substrates,
as well as lumped loads at gaps in the structures (which are used
to provide reactances to downshift the resonances in frequency).
Subcell models for both microwave and infrared-frequency regions are
addressed. Examples are given illustrating the approach with both
electric and magnetic resonator structures, which form the essential
components required for negative index metamaterials. Split-ring
resonators (SRRs), as shown in Figure 1(a), are frequently used for

(a) (b)

Figure 1. (a) Thin metallic traces of split ring resonators (SRRs)
which generate a magnetic dipole moment orthogonal to the loop (there
is also an in-plane electric moment). The gap can be designed to
downshift the resonance. (b) A loaded electric dipole resonator can
generate the required electric dipole moment.
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(c)(a) (b)

Figure 2. (a) A metallic trace carrying current density J with
internal electric and magnetic properties εc and µc, on a substrate
with permittivity ε. (b) The equivalent wire of radius a for the
external inductance and internal impedance per unit length. (c) The
equivalent wire of radius ae embedded in the substrate interface for
the capacitance per unit length.

the magnetic components, whereas various types of dipoles are often
encountered for the electric component. An example of a loaded
dipole is shown in Figure 1(b), where in the infrared, polaritonic
materials with intrinsic negative permittivities can be used as the load
to downshift the resonance. With subcell descriptions of these types of
resonators one thousand to one reductions in computational complexity
can be achieved, thereby enabling accurate simulations of complex
metamaterial applications including lenses, prisms, and cloaks.

2. RECTANGULAR TRACES AND THIN WIRES

The idea behind the metallic trace simplification is to replace the actual
metallic traces of width w and thickness t such as shown in Figure 2(a)
(which form the resonant structure) with thin wires having the same
electrical properties, such as shown in Figures 2(b) and 2(c), but
requiring only total current unknowns along the trace to be tracked.
The external inductance per unit length leads to an equivalent radius
a for the wire; this radius together with an internal impedance per unit
length Zfi associated with the finite conductivity of the wire replaces
the trace in a homogeneous medium. If the trace is placed near (resting
on or embedded in) a dielectric substrate, then the capacitance per unit
length in general leads to a different electric equivalent radius ae for a
wire embedded in the interface.

2.1. Magnetic Equivalent Radius

The (magnetic) equivalent radius of a rectangular conductor is [4, 5]

a = C1/
(
2κ2

)
(1)
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where κ is found from the transcendental equation

t

w
=

E(κ)− κ′2K(κ)
E (κ′)− κ2K (κ′)

(2)

κ′ =
√

1− κ2 (3)

and C1 is found from either of
w

2C1
κ2 = E

(
κ′

)− κ2K
(
κ′

)
(4)

or
t

2C1
κ2 = E(κ)− κ′2K(κ) (5)

where the complete elliptic integrals are [6]

E(κ) =
∫ π/2

0

√
1− κ2 sin2 θdθ (6)

K(κ) =
∫ π/2

0
dθ/

√
1− κ2 sin2 θdθ (7)

While the above formulas define the equivalent radius, a simple and
accurate fit to the magnetic equivalent radius is given by

a/(w/4) ≈ 1 +
t

πw

{
c1 ln(w/t)− π + Γ2(1/4)/

√
π
}

(8)

for t ≤ w where c1 = 3/4 and the gamma function Γ(1/4) =
3.6256099. Conveniently, t and w are interchanged for the case of
t > w. Figure 3 shows a comparison of the numerical solution of
the preceding equations versus the simple fit (8) for the equivalent
magnetic wire radius (the remaining three comparisons of other
conformal mapping parameters with simple fits in this figure will be
discussed in Section 2.3).

2.2. Electric Equivalent Radius on Substrate

A formula for the electric equivalent radius is concocted by a simple
parallel-series decomposition argument and the known limiting cases
for the result. We want the local (out to distance ρ0 À a, ae)
capacitance per unit length to have the form of a parallel combination
(above and below the interface)

Cρ0 ∼
π(ε0 + ε)
ln(ρ0/ae)

(9)

where the equivalent cylinder is half embedded in the interface (half
above and half below) and the fields from the cylinder to infinity are
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Figure 3. Comparing the numerical solutions of the conformal-
mapping expressions to the simple fit formula values. Comparisons
for the equivalent magnetic wire radius, the inverse loss radius, the
third term function, and the square of the inverse product κκ′ are
included.

purely radial and ε0 ≈ 8.854188 pF/m is the electric permittivity of
free space. We try the series decomposition (where the capacitance
outside of distance a1 is the same parallel combination, approximating
the fields outside this radius as radial fields only),

1/Cρ0 ≈
ln(ρ0/a1)
π(ε + ε0)

+ 1/Ca1 (10)

where the capacitance inside the radius a1 is taken as

Ca1 =
2πε0

ln(a1/a)
+

π(ε− ε0)
ln(a1/a0)

(11)

and the thin strip limit is denoted as

a0 = w/4 (12)

This construction of Ca1 is chosen because we want ae to go to the
magnetic equivalent radius a when the interface is not present ε = ε0

and to go to the strip result a0 when the substrate capacitance is
dominant ε À ε0. Equating this approximate form (10) with (9) gives

ln
(

ae

a0

)
/ ln

(
a

a0

)
≈ 2 ln(a1/a0)

(1 + ε/ε0) ln(a1/a) + 2 ln(a/a0)
(13)
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Figure 4. Comparison of the numerical solution for the electric
equivalent radius and results from simple parallel-series fit formula.
Several cross-section dimensions for the metallic trace are considered.

Note that both limits of ε/ε0 hold without yet choosing a1. A
reasonable choice for a1 is

a1 = 4a (14)

(in the case of a thin structure a1 represents the total width of the
strip, in the case of a square cross-section it represents 2.36 times the
width or 1.67 times the diagonal). The results from this simple fit
are shown in Figure 4 along with the numerical solution described in
Section 2.2.1. Excellent agreement is obtained over a wide range of
permittivities and aspect ratios.

2.2.1. Numerical Solution

The two-dimensional numerical solution shown in Figure 4 is now
given. The scalar potential with piecewise-constant surface charge
densities σn on the two-dimensional conductor and image charges in
the dielectric half space (here we specialize to a rectangle of width w
and thickness t) is

−2πε0φ =
N∑

n=1

σn

∫ xn+∆n/2

xn−∆n/2
ln

√
(x− x′)2 + (y − yn)2dx′

+
M+N∑

n=N+1

σn

∫ yn+∆n/2

yn−∆n/2
ln

√
(x− xn)2 + (y − y′)2dy′



Progress In Electromagnetics Research B, Vol. 38, 2012 141

+
ε0 − ε

ε0 + ε

N∑

n=1

σn

∫ xn+∆n/2

xn−∆n/2
ln

√
(x− x′)2 + (y + yn)2dx′

+
ε0−ε

ε0+ε

M+N∑

n=N+1

σn

∫ yn+∆n/2

yn−∆n/2
ln

√
(x−xn)2+(y+y′)2dy′ (15)

where∫
ln

√
(x′ − x)2 + c2dx′ =

(
x′ − x

) {
ln

√
(x′ − x)2 + c2 − 1

}

+c arctan
(

x′ − x

c

)
(16)

Now on the surface we set

φ(xm, ym) = V0, m = 1, . . . ,M + N (17)

At a large distance
√

x2 + y2 = ρ → ρ0 we see from this representation
that

φ(ρ0) ∼ −q
ln(ρ0)

π(ε + ε0)
(18)

where the total charge per unit length is

q =
N+M∑

n=1

σn∆n (19)

The difference potential is given by

V = φ(w/2)− φ(ρ0) = V0 + q
ln(ρ0)

π(ε + ε0)
= q/Cρ0 = q

ln(ρ0/ae)
π(ε + ε0)

(20)

where ae is the equivalent radius or

− ln ae = π(ε + ε0)V0/q (21)

We find that for a metallic design with w = 0.12 µm, t = 0.1µm
(corresponding to an aspect ratio t/w = 5/6), and half space ε/ε0 ≈
10.8924, the electric equivalent radius is ae = 0.036µm. This design
is one that will be repeatedly considered throughout the paper and is
referred to as ‘design B’.

2.3. Impedance Per Unit Length

The impedance per unit length of rectangular conductors is now
summarized. Expressions for various limits of the conductor
dimensions to the electrical length scales associated with the losses
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are given. These length scales are the penetration depth (or skin
depth, which is of the order of the inverse of the imaginary part of
the propagation constant in the metal) and the ratio of the surface
impedance Zs to ωµ0. By comparing these results to numerical
solutions, it is illustrated that the concatenation of these expressions
gives reasonable values for the impedance per unit length over the
entire range of these parameters.

The impedance per unit length of an isolated infinitely long
conductor is not defined. However, we can define the impedance
per unit length by including only the magnetic flux around the long
conductor out to a finite but large radius (ρ0 À a). Then we can write
this as [7] (time dependence e−iωt is suppressed throughout)

Zρ0 ∼ Zfi − iωLpe
ρ0

(22)

where the external (perfectly conducting) inductance per unit length
is

Lpe
ρ0
∼ µ0

2π
ln(ρ0/a) (23)

The remaining quantity Zfi is the internal impedance due to the finite
conductivity of the metal (it includes magnetic field perturbations on
the outside due to the finite conductivity); this is the quantity of
interest to distribute along thin-wire models to account for the internal
impedance of the actual conductors.

2.3.1. Metal Resonator Properties

Some loss parameters of the metals are now summarized first in the
microwave frequency regime and then in the infrared. In particular, the
surface impedances calculated here are later used for determining the
per unit-length impedances for the wire models in the two frequency
regimes.

Microwave A microwave example is aluminum with a conductivity
of σ ≈ 3.7 × 107 S/m [8]. In the microwave region the internal
propagation constant is

γ = (1 + i)/δ (24)

where the skin depth is

δ =
√

2/(ωµσ) (25)

and the magnetic permeability for aluminum (and gold for the infrared
example considered next) is that of free space µ = µ0 = 4π×10−7 H/m.
The surface impedance of a conductive half space is

Zs =
ωµ

γ
= (1− i)Rs (26)
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where
Rs = 1/(σδ) (27)

Note that the impedance scale of length is of order

2Rs/(ωµ0) = νδ (28)

where the ratio of the internal to external magnetic permeabilities is
denoted by

ν = µ/µ0 (29)

Infrared The electric permittivity for gold in the infrared at a ten-
micron wavelength from the Sandia National Laboratories microfab
data is

ε/ε0 = −4100 + i1400 (30)

yielding a propagation constant of

γ = k
√

εr = k
√

4332.436e−i0.329+iπ = 41.357µm−1ie−i0.1645

= (6.77 + i40.8)µm−1 (31)

Here the free-space wavenumber is

k = ω
√

µ0ε0 (32)

The surface impedance of a half space is

Zs =
ωµ

γ
=

√
µ0/ε=

k
√

µ0/ε0

(6.77 + i40.8)µm−1
=(0.94− i5.65)Ohms (33)

Note that the impedance scale of length is of order Zs/(ωµ0), which
is the same as the inverse propagation constant in the metal times the
ratio of the internal to external magnetic permeabilities ν (which is
typically near unity in this frequency range).

2.3.2. High-frequency Rectangle

In this case we assume the rectangular cross-section dimensions are
much larger than the penetration depth. For a rectangular conductor
with dimensions w = 2b and t = 2c we find [7]

Zfi ∼ Zs

2πaloss
+ 4(A0/I)2CE +

(
Zs

2πa

)[ (
1
2a

)(
Zs

−iωµ0

)
F (κ)

+O

((
1
γa

)4/3

,

(
Zs

−iωµ0a

)4/3
)]

(34)

where the first term results from integration of the square of
the perfectly conducting magnetic field (determined from conformal
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mapping) around the perimeter of the rectangle [9], where it is
convenient to defines aloss by means of

K(κ) + K
(
κ′

)
= πa/aloss (35)

The third term in (34) uses [7]
(
πκκ′

)2
F (κ) = E(κ)

{
E(κ)−E

(
κ′

)
+ K

(
κ′

)}

+κ′2
{
E

(
κ′

)
K(κ)− 2E(κ)K(κ)

+K(κ)K(κ)− E(κ)K
(
κ′

)}

+E
(
κ′

) {
E

(
κ′

)− E(κ) + K(κ)
}

+κ2
{
E(κ)K

(
κ′

)− 2E
(
κ′

)
K

(
κ′

)

+K
(
κ′

)
K

(
κ′

)− E
(
κ′

)
K(κ)

}
(36)

and the second term results from losses at the four corners of the
rectangle, with local field Hρ ∼ A0/ρ1/3, ρ → 0

A0/I =
κ

2π
(
3κ′C2

1

)1/3
=

1

2π (12κ′κa2)1/3
(37)

with

CE = −iωµ

(
i

γ

)4/3 25/3

√
3

Dc(ν) = Zs

(
i

γ

)1/3 25/3

√
3

Dc(ν) (38)

In addition, the parameters Dc(ν), Ac, D0, D∞, and D1 are given by

Dc(ν) ≈ AcD0 + D∞ν15/12

Ac + ν11/12
(39)

Ac =
D1 −D∞
D0 −D1

(40)

D0 = Dc(0) =
Γ(1/3)
21/3

[
1− 3 {Γ(2/3)/Γ(1/3)}3

]
≈ 1.30247(41)

D∞ = lim
ν→∞

[
Dc(ν)/ν1/3

]
= − 3π221/3

4Γ2(1/3)
≈ −1.29951 (42)

and
D1 = Dc(1) ≈ −0.360 (43)

The limit of a square cross-section (w = t) with κ = κ′ = 1/
√

2,
a = wΓ2(1/4)/(4π3/2) ≈ 1.180341b, (A0/I)3 = 1/[3w2Γ4(1/4)] gives

Zfi ∼
(

Zs

πw

)[
1 +

(
i2
γa

)1/3 ( w

2πa

) 25/3

37/6
Dc(ν) +

(
1
w

) (
Zs

−iωµ0

)

+O

((
1

γw

)4/3

,

(
Zs

−iωµ0w

)4/3
)]

(44)
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and for ν = µ/µ0 = 1 (recall that w = 2b)

Zfi ∼ Zs

2πb

[
1 + (−0.102)

(
i

γb

)1/3

+
(

1
2b

)(
Zs

−iωµ0

)

+O

((
1
γb

)4/3

,

(
Zs

−iωµ0b

)4/3
)]

(45)

Conformal Mapping Parameter Fits In this section, approximate
expressions for the calculation of Zfi are introduced as potential
alternatives for simplifying the wire-model analysis. The first term of
the impedance per unit length (34) can be found using the approximate
expression

(w/2)/aloss ≈ 1 +
1
π

(1− t/w) ln(4πw/t)

− t

π2w
[ln(4πw/t) + π/2] ln(w/t) (46)

while the third term in (34) can be found using the approximate
expression

(t/w)F (κ) ∼ 1
4π

+
t

4π2w

{
ln(16w/t) ln(w/t)− π +

Γ4(1/4)
π

}
(47)

Furthermore, the second term of the impedance per unit length involves
the product κκ′, the inverse square of which is fit by

(t/w)/
(
κκ′

)2≈ π

4

[
1+

t

πw

{
ln(w/t)−π+

16
1+4/π

}](
1+

4t

πw

)
(48)

A comparison between the numerical solutions and these simple fits for
the inverse loss radius, the third term function, and the square of the
inverse product κκ′ (needed in the second term for field strength) are
included in Figure 3. Excellent agreement is observed for t/w values
ranging from a thin strip to a square-cross section trace.

2.3.3. Low-frequency Rectangle

Next we suppose that the penetration depth is large compared to the
cross-sectional dimensions of the rectangle. Assuming a rectangular
cross section of area A = wt = (2b)(2c) then in the microwave case

Zfi ∼ Rfi − iωLfi (49)

where
Rfi = 1/(Aσ) (50)
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and the general rectangular conductor with internal magnetic
permeability equal to the external magnetic permeability µ = µ0

has the total (including internal and external contributions) local
(including magnetic flux out to a large distance ρ0) inductance per
unit length Lρ0 [7] of

Lρ0 −
µ0

2π
ln(ρ0)

∼ −µ0

2π




ln(
√

bc)+ln(2)− 25
12

+
2
3

{
b

c
arctan

(c

b

)
+

c

b
arctan

(
b

c

)}

+
1
4

{(
1− b2

3c2

)
ln

(
1+

c2

b2

)
+

(
1− c2

3b2

)
ln

(
1+

b2

c2

)}




(51)
The internal inductance per unit length can be defined as

Lfi = Lρ0 − Lpe
ρ0

(52)

where in the square limit (c = b) this internal inductance becomes

Lfi =
µ0

2π

[
ln(a/b) +

25
12
− 4

3
ln(2)− π

3

]

=
µ0

2π

[
ln

{
Γ2

(
1
4

)
/

(
2π3/2

)}
+

25
12
− 4

3
ln(2)− π

3

]
(53)

≈ µ0

2π
ln(1.3201463233) (54)

Figure 5. A comparison of the infrared impedance per unit length of
a square conductor from the limiting formulas and an exact numerical
calculation.
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For infrared frequencies we can replace σ in (50) by −iωε and write

Zfi ∼ 1
−iωεA

− iωLfi (55)

A comparison of the preceding high-frequency single term and three-
term expansions (45) versus this low-frequency expansion, along with
numerical values from an integral-equation solution [7], are shown in
Figure 5 for a square conductor using the material properties of gold
at a ten-micron wavelength (presented in Section 2.3.1). One can see
that the concatenation of the two expansions together give a reasonable
uniform description of the internal impedance per unit length.

2.3.4. High-frequency Strip

Another important case is the thin strip, where one dimension is small
compared to the penetration depth. We assume now that we have a
thin strip with width w = 2b with a thin-sheet surface impedance of

Zs = 1/(σ∆/2) (56)

where the conductivity is σ, the sheet thickness is ∆, and the boundary
condition on the surface of the strip is

Ez(x, 0) =
1
2
Zs [Hx(x,−0)−Hx(x,+0)] (57)

We assume here that the skin depth satisfies δ À ∆. In this limit the
current density is uniform in the strip thickness but not necessarily
uniform along the strip width (a thin-sheet impedance electrical length
scale of 1/`0 = Zs/(ωµ0) replaces the skin depth in this limit). In this
case the equivalent radius is

a = w/4 = b/2 (58)

The iterative solution for the internal-impedance per unit length in a
thin strip conductor is [10]

Zfi/R0 =
2
π2

[
ln(8`0b) + 1 + γ′ − i

π

2

]

+
2
π2

(
1

2`0b

)[ (
1− 1

4e1+γ′

){
ln(8`0b) + γ′

}

+
i

π

{
γ′ + ln(8`0b)

}{
ln(8`0b) + 1/2 + γ′

}]
− iπ/4 (59)

for b`0 →∞ where Euler’s constant is γ′ = 0.5772156649. Here

`0 = ωµ0/Zs (60)
R0 = 1/(σ∆w) (61)
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Again for the infrared we can replace σ by −iωε, and in this case with
γ∆/2 ¿ 1 but γ2(∆/2)w/2 À 1, where

γ2 = ω2µ0ε (62)
we find

(−iωε∆w)Zfi

=
2
π2

[
ln

(−i2γ2∆w
)

+ 1 + γ′ − i
π

2

]

+
2
π2

(
1

−iγ2∆w/2

)[(
1− 1

4e1+γ′

){
ln

(−i2γ2∆w
)

+ γ′
}

+
i

π

{
γ′ + ln

(−i2γ2∆w
)} {

ln
(−i2γ2∆w

)
+1/2+γ′

}−i
π

4

]
(63)

2.3.5. Low-frequency Strip

The low-frequency approximation can be found from the preceding
rectangular result (49) as

Zfi ∼ R0 − i
ωµ0

2π

[
3
2
− 2 ln(2)

]
(64)

for (ωµ0σ∆/2)w/2 = b`0 = ωµ0/(4R0) → 0 where `0 and R0 have
been defined in the preceding section.

Figure 6. A comparison of the microwave impedance per unit length
of an electrically thin strip from the limiting case formulas versus a
numerical calculation.
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Figure 6 shows a comparison of the thin-strip high frequency
formulas with one and two terms (59), the low-frequency formulas (64),
and a numerical integral equation solution [10] for the thin strip in the
microwave range (the results are normalized so they apply to any high-
conductivity metallic strip that is electrically thin).

Again for the infrared we can replace σ by −iωε to obtain

Zfi ∼ 1
−iωε∆w

− i
ωµ0

2π

[
3
2
− 2 ln(2)

]
(65)

where γ2(∆/2)w/2 → 0 with (62).

2.4. Modeling of Wires

The preceding results give the equivalent radii (required to match the
external inductance and capacitance per unit length) and the internal
impedance per unit length. To model the response of a metallic
trace we use these quantities in the thin-wire algorithm of the integral
equation code EIGER [11, 12] with the electric equivalent radius ae.
The code solves the equation (which is the dual of the slot equation [13]
and other wire antenna models [14])

Es(ae, s) + ∆ZC
d2I

ds2
−∆ZLI = −Einc

s (s) (66)

To correct the inductance per unit length and add in the internal
impedance per unit length we set

∆ZL = Zfi − iω
µ0

2π
ln(ae/a) (67)

∆ZC = 0 (68)

In this manner the current I is obtained as a function of the position
along the trace s.

3. GAPS AND LUMPED LOADS

Another feature often found in metallic resonators are gaps or loads,
which are usually used to downshift the resonant frequency of the unit
cell. Figure 7(a) shows a gap in a trace positioned on a substrate.
It is advantageous to capture the gap or load with the minimum
computational resources being expended in this local region.

The idea is to define a load (G0 might be present if lossy material
exists in the gap) as shown in Figure 7(b) where

Y0 = G0 − iωC0 (69)
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(a) (b)

Figure 7. (a) A gap in a trace such as found in a split ring resonator.
(b) Load Y0 used in the thin-wire model must capture actual gap
properties (including fringing) and remove extraneous additions due
to the segments or facets.

and takes into account the properties of the gap (versus the thin wire,
discussed in the next section) minus any extra effects caused by the
segmentation or faceting of the thin-wire model used to simulate the
resulting wire structure (or other differences between the classical thin
wire and how it is represented in the simulation). The approach is
similar to that used for the feed region in antenna theory [15].

3.1. Local Nature of Gap Capacitance

This section discusses the nature of the gap capacitance and develops
the framework on how to construct a fit function to it. There are three
things to consider: 1) how the thin wire should be defined, 2) how the
thin-wire approximation differs from the actual gap geometry, and 3)
how the discretized wire in the simulation differs from the continuous
thin wire. Although these items could be lumped together to evaluate
how the discretized thin wire structure differs from the actual trace,
there is more insight provided by considering them separately; in
addition, 2) ties in with older literature on approximations to wire
antennas derived by means of Hallén iteration (where series expansions
of capacitance in the inverse fatness parameter of the wire are
generated), while 3) could be modified for different interpolation and
quadrature schemes for other numerical methods.

If we have an infinite cylinder with a delta-gap voltage source V
at its center, the charge per unit length on its exterior surface is

qC(z) = 2aε0V

∫ ∞

0

K1(ζa)
K0(ζa)

sin(ζz)dζ (70)

If we take the limit of small a in the modified Bessel functions we arrive
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at the thin-wire result [16–18] with

qH(z) = −2ε0V

∫

C

sin(ζz)
ln(ζ/ζp)

dζ

ζ

= −2ε0V

[
P

∫ ∞

0

sin(ζz)
ln(ζ/ζp)

dζ

ζ
− π cos(ζpz)sgn(z)

]
(71)

where P stands for principal-value integral and a pole has been
introduced by the approximation at

ζp = 2/
(
aeγ′

)
(72)

For z > 0 the contour C is chosen to be indented slightly above the
pole for the eiζz component and slightly below for the e−iζz component,
giving the final principal value result on the right; with this definition
the charge per unit length vanishes at z →∞. If we use the averaging
method to evaluate the integral [19] and use

〈ln(ζ/ζp)〉
∫ ∞

0
sin(ζz)

dζ

ζ
=

∫ ∞

0
ln(ζ/ζp) sin(ζz)

dζ

ζ

= −π

2
[
ln (ζp |z|) + γ′

]
sgn(z) (73)

we find the approximation to (71) as

qH(z) ≈ −2ε0V

∫ ∞

0

sin(ζz)
〈ln(ζ/ζp)〉

dζ

ζ
=

πε0V

ln (2 |z| /a)
sgn(z) (74)

where the identity [20]∫ ∞

0
ζβ−1 sin(ζz)dζ =

π sec(βπ/2)

2 |z|β Γ(1− β)
sgn(z) (75)

has been used. This is quite accurate for z/a > 4 as shown in Figure 8.
By subtracting this charge density from that of the actual

geometry q we can define a difference charge and capacitance that
is localized near the gap. That is,

∆C = ∆Q/V =
1
V

∫ ∞

0
(q − qH)dz (76)

where consequently this allows the actual gap geometry to be treated
on a structure with simple straight arms rather than the more
complicated loop resonator.

A simple illustration is provided by a hollow tubular cylinder
having a narrow gap g ¿ a. In this case we begin with the charge
per unit length given by

qT (z) = 2aε0V

∫ ∞

0

[
K1(ζa)
K0(ζa)

+
I1(ζa)
I0(ζa)

]
sin(ζz)dζ (77)
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Figure 8. Exact evaluation of Hallen thin-wire charge distribution
versus a simple averaging evaluation.

for a tube with a delta gap. This tube charge per unit length on the
cylinder with the delta gap approximates the actual charge density
q(z) down to some distance z = g0, where a À g0 À g/2, and the
difference charge is then calculated as

∆QT =
∫ ∞

g0

(qT − qH)dz

= 2ε0V

∫ ∞

0

[
1

K0(ζa)I0(ζa)
+

1
ln(ζ/ζp)

− 2a2ζ2

ζa + 1

]
cos(ζg0)

dζ

ζ2

+a {cos(g0/a)Ci(g0/a) + sin(g0/a)si(g0/a)} (78)

Here the Wronskian has been used and the final term in the integrand
has been subtracted and added (in terms of the sine and cosine
integrals) to improve the convergence at ζ →∞,

si(x) = −
∫ ∞

x

sinu

u
du (79)

Ci(x) = −
∫ ∞

x

cosu

u
du (80)

[6]. Because we are interested in the result for g0 ¿ a, and with the
improved convergence we can set the cosine to unity and expand the
sine and cosine integrals to obtain

∆QT /(2aε0V ) =
1

2ε0aV

∫ ∞

g0

(qT − qH)dz
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=
∫ ∞

0

[
1

K0(u)I0(u)
+

1
ln(u/2) + γ′

− 2u2

u + 1

]
du

u2

−2
{
ln(g0/a) + γ′

}
(81)

Evaluation of the integral yields
∆CT /(2aε0) = ∆QT /(2aε0V ) ≈ 2 ln(a/g0)− 2γ′ − 0.2225 (82)

Now near the gap we can use the two-dimensional conformal mapping
result for the charge density about a slot of gap g to write the normal
field as

Er(a± 0, z) = ± V/π√
z2 − (g/2)2

(83)

where a À z > g/2. Integration of the charge gives

Cg0/(2aε0) = Qg0/(2aε0V ) = (2π/V )
∫ g0

g/2
Er(a + 0, z)dz

= 2arccosh(2g0/g) ∼ 2 ln(4g0/g) (84)
Thus adding this to the tube gives the lumped correction to the thin
wire for the capacitance of a thin-walled tube (including both interior
and exterior regions)

∆Ctube/(2aε0) = ∆CT /(2aε0) + Cg0/(2aε0)
≈ 2

{
ln(4a/g)− γ′ − 1/9

}
(85)

This form will be referred to in the segment or facet correction below.
A second illustration is the cylinder with flat end caps. In this

case we use the preceding exterior representation to find

∆QC/(2aε0V ) =
1

2ε0aV

∫ ∞

g0

(qC − qH)dz

=
∫ ∞

0

[
u

K1(u)
K0(u)

+
1

ln(u/2) + γ′
− u2

u + 1

]
du

u2

−{
ln(g0/a) + γ′

}
(86)

Numerical evaluation gives
∆CC/(2aε0) = ∆QC/(2aε0V ) ≈ ln(a/g0)− γ′ − 0.133150 (87)

In this case to add in the right-angle edge and the flat end caps in the
gap, we replace g/4 in Cg0 by g/(πe/2) ≈ g/4.269867 [21] and add in
the parallel-plate capacitance to obtain the correction to the thin wire
for a cylinder with flat end caps (in this case only the exterior region
is present except in the gap). This gives

∆Ccyl/(2aε0)= (∆CC + Cg0 + Cpp) /(2aε0)

≈ ln
(

πa

2g

)
+ 1− γ′ − 2/15 +

πa

2g
(88)
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This result forms the basis for the capacitive correction for metallic
traces by use of the equivalent radius of the trace. If there is a substrate
then 2ε0 → (ε + ε0) and a → ae. By representing the actual trace
geometry near the gap in a three-dimensional static solution (we used
a static version of EIGER (EIGER S) for this purpose [11]) we can
find the actual local charge per unit length q and then determine the
smaller correction fcyl to further improve the accuracy of this load.
With this correction, we have

∆C =
1
V

∫ ∞

0
(q − qH)dz = ∆Ccyl + (2aε0)fcyl(g/a) (89)

3.2. Cylinder Gap Capacitance

The case where the cross section is a circular tube of radius a half
embedded in a substrate (a is the equivalent radius since it is half
embedded, as opposed to resting on a substrate as in (13)) has the gap
capacitance (here we assume the substrate fills the bottom half of the
gap) of

∆C = (ε + ε0)a
[
ln(πa/(2g)) + 1− γ′ − 2/15

]

+(ε + ε0)afcyl(g/a) + Cpp (90)
where [3]

fcyl(x) = 0.02− 0.12x (91)

A comparison of this simple fit (91) with numerical values from the
three-dimensional static simulation is shown in Figure 9. The parallel
plate term for the gap interior in this case is

Cpp = (ε + ε0)πa2/(2g) (92)

3.3. Strip Gap Capacitance

By analogy with the tube, in the case of a thin strip t/w → 0 by noting
that a0 = w/4 and

Cg0 ≈ w
ε + ε0

V

∫ g0

g/2
Er(a + 0, z)dz =

w

π
(ε + ε0)arccosh(2g0/g)

∼ w

π
(ε + ε0) ln(4g0/g) =

P

2π
(ε + ε0) ln(4g/g0) (93)

we take

∆C ≈ (ε + ε0)
P

2π

[
ln(4a0/g)− γ′ − 2/15

]

+(ε + ε0)a0fstrip(g/a0) (94)
fstrip(1/4) ≈ +0.144 (95)



Progress In Electromagnetics Research B, Vol. 38, 2012 155

Figure 9. Comparison of the simple fit (91) as a function of g/a
and the numerical values obtained from a three-dimensional static
simulation using EIGER S. Also shown is a result for the thin strip.

where P = 2w is the strip cross section perimeter. (Note that
there is actually no rigorous extrapolation for the first term since
P/(2π) = w/π 6= a0 = w/4 and we expect the correction fstrip to
make up for the error). Here we have used the exterior only result
because the interior of the strip does not exist (we do not use the right
angle equivalent radius but the thin limit).

3.4. Rectangle Gap Capacitance

By analogy with the cylinder we take the rectangle cross section to
have the gap capacitance correction

∆C ≈ (ε + ε0)
P

2π

[
ln(πae/(2g)) + 1− γ′ − 2/15

]

+(ε + ε0)aefrect(t/w, g/w, ε/ε0) + Cpp (96)
Cpp = ε0wt/g (97)

where P = 2(w + t) is the rectangular cross section perimeter. (Again,
there is actually no rigorous extrapolation for the first term since
P/(2π) 6= ae and we expect the correction frect to make up for the
error.) The value of the correction term frect for design B (described
in Section 2.2), a near square with equal gap to thickness, has been
determined from three-dimensional static simulations (EIGER S) of a
long trace with a gap on a substrate to be

frect(design B) = frect(5/6, 5/6, 10.8924) ≈ −0.375 (98)
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In the case when the substrate is not present this correction was
numerically found to be

frect(5/6, 5/6, 1) ≈ −0.387 (99)

3.5. Segment or Facet Corrections

The algorithm used in EIGER to treat the thin wire uses an elliptic
kernel to treat the wire and thus includes both the interior and exterior
regions of the tube. Hence, because of the finite quadrature scheme
used for the moments, there is a finite capacitance due to the local
region near the gap of a wire structure (where a lumped load is placed
to account for the proper capacitance). This capacitance depends on
the segment or facet length and was empirically determined to be

∆Cs =
∫ ∞

0
(qE − qH)dz ≈ 2ae(ε + ε0)

[
ln(4ae/gs)− γ′ − 1/9

]
(100)

where
gs ≈ s0/3.4 (101)

[3] and s0 is the segment or facet length at the gap.

3.6. Load Capacitance

Since we have focused on lossless gaps G0 = 0 and

C0 = ∆C −∆Cs (102)

4. COMPARISONS AND EXAMPLES

The subcell-wire algorithms will be illustrated on two examples: 1)
the split-ring magnetic resonator shown in Figures 10(a) and 10(c)
with the equivalent wire model shown in Figure 10(b); and 2) the
Z electric dipole particle shown in Figure 11(b). This particular Z
particle does not have a gap, whereas the SRR does; although loads
could be incorporated at the ends of the Z particle arms for extra
accuracy, we will not consider them here.

4.1. SRR & Z Dipole Metafilm

For an SRR design that we call “design B”, the dimensions labeled in
Figure 11(a) are ` ≈ 0.54 µm, w ≈ 0.12 µm, t ≈ 0.1µm, g ≈ 0.1µm,
and the metafilm lattice period is equal to d ≈ 1.34µm. For design B,
the SRR is made of Gold (Au) and is placed on a Gallium Arsenide
(GaAs) substrate with dielectric constant ε/ε0 ≈ 10.8924.
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(c)(a) (b)

Figure 10. (a) SRR with explicit surface mesh. (b) Thin wire SRR
subcell model with lumped load accounting for SRR gap. (c) Array of
SRRs cells forming a metamaterial.

(a) (b)

Figure 11. An (a) SRR and (b) Z dipole on a dielectric substrate,
shown with the metallic-trace dimensions. The length dimension is the
same in the orthogonal directions.

Based on the analysis presented in the previous sections, the
resulting trace parameters for this near-square trace case are

a≈ 1.18(w + t)/4 ≈ 0.065µm (103)
ae≈ 0.036µm (104)

and substituting 2b → (w + t)/2 in (45)

Zfi ≈ 3.62− i18.55 Ohms/µm (105)

For the calculation of the impedance per unit length, the Au
permittivity at 10 microns has been used (30). From Section 3, the
load parameters are ∆C ≈ −2.405 aF and ∆Cs ≈ 9.875 aF and thus

C0 ≈ −12.28 aF (106)

Figure 12(a) shows a comparison of the full-mesh simulation with the
subcell simulation for the design B SRR (on a GaAs substrate) when
excited by a normally-incident plane wave (the incident electric field



158 Warne et al.

(a) (b)

Figure 12. Comparison of the transmission coefficient from the
subcell and full mesh simulations for (a) a planar layer of SRRs on
a GaAs substrate and (b) a planar screen of periodic SRRs in air.
Both arrays are excited by the electric field of a normally incident
plane wave.

drives the SRR in this configuration). For both of these simulations
gold dispersion properties were used over the 8–12µm bandwidth.
The subcell model consisted of 32 segments (which was sufficient for
convergence) and unknown currents around the loop and the full mesh
in EIGER had approximately 30,000 unknowns (the full-mesh with
this resolution demonstrated convergence influenced by the metallic
penetration of the fields). Both simulations implemented a periodic
metafilm through the moment method Green’s function, so the meshes
specified here were for a single particle. The run times per frequency
point for the full mesh were about 3.5 hours on 64 processors versus
8 seconds on 1 processor for the subcell (this several order of magnitude
improvement in run times is typical of the other comparisons given in
this paper). The agreement is quite good and is in fact better than
we found with many commercial software packages using the available
unknowns (memory) on a workstation.

The design B SRR was considered without the substrate (with the
same dimensions as described above) and a comparison of the explicit
mesh to subcell results (in air) are shown in Figure 12(b). Again the
agreement is reasonably good. It is interesting that if we consider the
fact that the current centroids of two neighboring oppositely directed
currents (at least for cylinders of radius a and infinite length) are
displaced from center-to-center spacing ` to spacing

√
`2 − 4a2, then

the resonant position in the subcell model is changed from 4.83µm
to 4.71µm, versus the full mesh position of 4.73µm. This slight
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(a) (b)

Figure 13. Comparison of the transmission coefficient from the
subcell and full mesh simulations for (a) a planar layer of Z-dipoles
on a GaAs substrate and (b) a planar screen of periodic Z-dipoles in
air. Both arrays are excited by the electric field of a normally incident
plane wave.

overcompensation of resonant position is thought to be caused by the
fact the side containing the gap has a smaller current than the opposing
side, and thus the preceding shift in position is too great for these two
sides (in fact if the shift in position is left out for these two sides
we find a resonant wavelength in the resulting rectangular subcell of
4.76µm). These approximate comparisons, which bracket the full mesh
resonant position, indicate that shifts in current centroid positions are
likely responsible for the shifts observed in the subcell versus full mesh
comparisons. A general method for improving the wire subcell model
approximation is to introduce line multipoles (rather than the filament
alone) into the subcell model.

Figure 13(a) shows the comparison of the transmission coefficient
for a periodic array of Z particles on a GaAs substrate for both
the full mesh and subcell simulations (consisting of 21 segments).
The dimensions of the Z particle are ` ≈ 0.57 µm, w ≈ 0.12µm,
t ≈ 0.1µm and the metafilm lattice period is equal to d ≈ 1.34µm.
Figure 13(b) shows the comparison of the transmission coefficient for a
periodic array of Z particles in air with both the full mesh and subcell
simulations. Again the agreement in this figure is good.

4.1.1. Insulation Layer

Note that if there is a very thin insulation layer with permittivity ε1

and thickness h1 ¿ w below the rectangular trace as shown in the
inset of Figure 14(b) we can redefine the capacitance per unit length
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(a) (b)

Figure 14. (a) Electric equivalent radius for a metallic trace on thin
insulation layer of thickness 0.005 nm and relative permittivity 2.25.
(b) Subcell model results with and without the insulation layer for a
trace of t = 0.1µm and w = 0.12µm.

as

Ca1 =
2πε0

ln(a1/a)
− πε0

ln(a1/a0)
+ Ch1 (107)

1/Ch1 =
ln(a1/a0)

πε
+

h1

wε1
(108)

to capture this effect. For this case, the equivalent electric radius is
then changed to

ln(ae/a0)
ln(a1/a0)

=1− (ε/ε0+1)

2 ln(a1/a0)
ln(a1/a) −1+ln(a1/a0)/

[
ln(a1/a0)

(ε/ε0) + π(h1/w)
(ε1/ε0)

] (109)

As an example we can address a thin oxide layer under a metallic
trace with h1 ≈ 5 nm and ε1 ≈ 2.25ε0. This results in an effective
radius of ae ≈ 0.023µm (the numerical calculation gives 0.0233, (109)
gives 0.0227) which is less than a0 ≈ 0.03µm (12) (as a consequence
of the oxide). Figure 14(a) shows a comparison of numerical values
for this case versus the preceding modified fit (the numerical values
were generated by displacing the rectangular conductor upward by
distance h1/(ε1/ε0) with air present to obtain the same parallel plate
capacitance in the extremely thin layer).

The gap capacitance also changes in this case. The preceding
rectangular formula for ∆C is used in this case but frect is replaced by

frect (design B oxide) = frect(t/w, g/w, ε/ε0, h1/w, ε1/ε0)
= frect(5/6, 5/6, 10.8924, 1/24, 2.25)
≈+0.150 (110)
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and thus inserting the new ae into the segment correction ∆Cs we
finally arrive at

C0 = ∆C −∆Cs ≈ −8.06 aF (111)

Figure 14(b) shows the resonant wavelength shift resulting from the
extremely thin oxide layer. Experiments and simulations illustrating
this effect have been published previously [22].

4.2. SRR & Z Dipole Media

This same SRR was now scaled in dimension to ` ≈ 1.14µm, w ≈
0.25µm, t ≈ 0.21µm, g ≈ 0.21µm, d ≈ 2.82µm, to position the
resonance in air near the same ten-micron wavelength. The SRR was
also rotated to be excited by the incident magnetic field (incident
magnetic field through the loop, with the incident electric field along
the uncut arms) and a layer with five SRRs in the propagation direction
and infinite periodicity in the lateral directions was created to form a
magnetic media. A comparison of the transmission coefficient for this
layer with the full mesh and the subcell model is shown in Figure 15(a).
Except for a small frequency shift the agreement is reasonable.

In order to form an electric media, Z dipoles as shown in 11(b)
were used to form a periodic layer with five dipoles in the direction of
propagation. The dimensions (Figure 11(b)) used for the Z dipole were
` ≈ 1.34µm, w ≈ 0.25µm, t ≈ 0.21µm, and d ≈ 2.82µm. Straight-
loaded dipoles, as shown in Figure 1(b), could also be used where an
inductive load at microwave frequencies or a polaritonic-material load
(with intrinsic negative permittivity) in the infrared would generate a

(a) (b)

Figure 15. Comparison of subcell and full mesh simulations for a
5-layer thick periodic layer (in air) comprised of (a) SRRs excited by
the incident magnetic field and (b) Z-dipoles excited by the incident
electric field.



162 Warne et al.

downshift in the resonant frequency. A comparison of the simulated
transmission coefficients for a five-deep Z-dipole layer based on a full-
surface mesh and a subcell model is shown in Figure 15(b). With the
exception of a small frequency shift, the agreement is again reasonable.
In both simulations of Figure 15, the relatively sparse frequency
sampling of the full-mesh simulations is indicative of the significant
computational intensity and run times that are associated with high-
resolution surface meshes in the IR frequency regime.

5. CONCLUSIONS

This paper introduces a computational approach that simplifies the
simulations of metallic-metamaterial resonators in the microwave and
infrared frequency regimes. The approach is to use thin-wire models
for the metallic traces where we embed known characteristics of the
impedance per unit length for the narrow metallic traces. Resonators
resting on dielectric substrates are included by introduction of different
equivalent radii for the magnetic and electric problems. In addition
the local gap features are modeled by lumped loads that produce
the proper capacitance while removing extraneous segment or facet
contributions. The results show good agreement with full-mesh
simulations, but are able to achieve one thousand to one reductions
in computational complexity and run times.
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