
Progress In Electromagnetics Research C, Vol. 27, 99–114, 2012

SPARSITY-BASED MULTI-TARGET DIRECT POSITION-
ING ALGORITHM BASED ON JOINT-SPARSE RECOV-
ERY

W. Ke1, * and L. N. Wu2

1School of Physics Science and Technology, Nanjing Normal University,
Nanjing 210046, China
2School of Information Science and Engineering, Southeast University,
Nanjing 210096, China

Abstract—The direct position determination (DPD) method can
improve the location accuracy compared with the traditional two-
step location methods due to omitting the intermediate procedure of
estimating the measurement parameters. However, the DPD methods
presented so far are significantly more complex than the two-step
approach. To overcome the shortcomings of the published DPD
algorithms, a novel multi-target direct localization approach is firstly
proposed by exploiting the jointly sparse property in the discrete
spatial domain. The main idea of this paper is that the location
estimation can be obtained by finding the sparsest solution according
to the predefined overcomplete basis. Furthermore, the locations of
targets can be obtained from noisy signals, even if the number of targets
is not known a priori. Experimental results demonstrate that the
proposed algorithm has superior positioning accuracy to other DPD
methods and improves computational efficiency greatly.

1. INTRODUCTION

Location estimation technique has received considerable attention over
the past few years due to its great potential to enable different kinds of
localization applications. Although Global Positioning System (GPS)
has been in service for many years, it is only available in GPS-
enabled devices and may encounter problems in certain urban and
indoor environments due to the poor signal penetration capabilities.
Therefore, the location estimation technique based on existing wireless
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infrastructures has advanced rapidly in recent years, and many location
estimation algorithms [1–5] have been developed after the US Federal
Commission Committee (FCC) requested that the location accuracy of
the emergency calls should be within 50–300meters [6]. The traditional
approach to solve the localization problem consists of a two step
procedure as shown in Fig. 1. Firstly, the signal parameters such as
angle of arrival (AOA), time of arrival (TOA) and time difference of
arrival (TDOA) are estimated at several base stations (BSs). Secondly,
the coordinates of targets are calculated by a location center exploiting
the parameters estimated in the first step. On the contrary, the DPD
method shown in Fig. 2 need not estimate intermediate parameters as
AOAs or TOAs. Although most localization algorithms in the open
literature concentrate on the two-step method, the performance of two-
step method is suboptimal in general as explained in [7–9]. The DPD
algorithm was first suggested by Weiss. In his approach, each base
station transfers the intercepted signals to a central processing unit
where the set of positions, which best matches all the collected data
simultaneously, is determined [7]. The DPD method in [8] focused on
the performance of DPD in the presence of model errors for signals with
known waveforms. The new localization method called cyclic DPD
(CDPD) was proposed in [9], which combines the two concepts, namely,
cyclostationarity property and one-step localization processing.

Although the DPD approach was originally developed for a
single target, it has been extended to handle multiple emitters
afterwards [10, 11]. The DPD method in [10] takes advantage of
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the rather simple propagation assumptions to derive the maximum
likelihood (ML) estimate of the sources position. Although the
algorithm resorts to a method based on the ideas of Schmidt [12] to
reduce the computational complexity, a two or three dimensional grid
search is also needed with high complexity. A low-complexity iterative
algorithm is proposed in [11] to estimate the positions based on the
ML criterion. The position of each emitter is decoupled from the other
emitters, and is determined by a two dimensional grid search in each
iteration. Although this approach reduces the computation load, the
algorithm depends on the initial estimate of the emitters’ positions.
Moreover, the above algorithms cannot obtain the position estimates
when the number of targets is unknown. In all these DPD approaches,
the position estimates of interest are obtained directly by minimizing
a cost function using the grid-search method. Therefore, the DPD
methods presented so far have significantly higher complexity than
the two-step approach, which can make use of the explicit geometric
relationship.

In order to overcome the shortcomings of the published DPD
algorithms, a novel DPD method based on the sparse representation
(SR) theory [13] is considered in this paper. In fact, since the number
of unknown targets is small in the discrete spatial domain at a certain
time, it can be modeled as an ideal sparse vector in the localization
problem. Based on this idea, a sparsity-based DPD method (SDPD)
is proposed, which not only takes much less time than that of the grid-
search-based DPD (GDPD) method in [10, 11], but also achieves better
location performance. Furthermore, the number of targets need not be
known a priori.

2. SIGNAL MODEL AND PROBLEM FORMULATION

Consider L transmitters and N BSs intercepting the transmitted
signals. Each BS is equipped with an antenna array consisting of
M elements. The bandwidth of the signal is small compared to the
inverse of the propagation time over the array aperture. Denote the
lth unknown target position by the vector of coordinates pl and the
nth BS position by the known coordinates qn = (xB

n , yB
n ).

Although the response of possible targets could be more complex,
we use the same point-target model as in[7–9], which is commonly used
for source localization [14, 15] due to its simplicity. It is important to
note that the point target model is not crucial to the method developed
in this paper, and a more sophisticated target model could be used.
Based on this model, the received signal observed by the nth BS is
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given by

rn(t) =
L∑

l=1

θn(pl)s(t− τn(pl)) + vn(t), 0 ≤ t ≤ T (1)

where rn (t) is a time-dependent M × 1 vector. To simplify the
exposition, we only discuss the farfield scenario and confine the array
to a plane, although neither of these assumptions is required for our
approach. θn (pl) is the nth array response to a signal transmitted
from position pl. For simplicity, assume that s (t) is the known
signal waveform to the receivers after demodulation, e.g., training
signals or synchronization signals. The propagation delay from the
lth transmitter to the nth BS is given by τn(pl). Here, the emitters
are assumed stationary or slowly moving so that the Doppler effect
can be neglected. The vector vn (t) represents noise and interference
including model errors, which is wide-sense stationary, zero mean,
complex Gaussian process, uncorrelated with the noise at the other BSs
and uncorrelated with the signals. Modeling errors include calibration
errors, synchronizations errors, propagation errors, etc. The length of
the observation interval T is long compared with the correlation time
of the signals and the correlation time of the noise processes.

Therefore, the problem discussed here can be briefly stated as
follows: Given the observation signals {rn(t)}N

n=1 in (1), the goal is
to efficiently find the unknown locations of the transmitters as well as
their number L without estimating intermediate parameters like AOAs
or TOAs.

3. SPARSITY-BASED DIRECT POSITIONING
ALGORITHM

SR theory provides a successful framework for recovering signals that
are sparse or compressible under a certain basis, with far fewer noisy
measurements than the traditional methods. Exploiting the inherent
sparsity in the discrete spatial domain, we develop an equivalent sparse
model for multi-target direct localization.

3.1. Sparse Signal Representation

In the noisy condition, the mth element of the received vector at the
kth sampling point for the nth BS is given by

r(m)
n (k)=

L∑

l=1

θ(m)
n (pl)s(tk−τn(pl))+v(m)

n (k) ∆= φ(m)
n (k)+v(m)

n (k) (2)
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Stacking the measurements of all N BSs and M array responses into
a long column vector of length NM, we can obtain the equivalent
measurement model at the kth sampling point as

r(k)= Φ(p) + v(k) (3)

where r(k) = [r1(k)T , . . . , rN (k)T ]T with rn(k) = [r(0)
n (k), . . . , r

(M−1)
n

(k)]T ; Φ(p) = [ϕ1(k)T . . .ϕN (k)T ]T is an NM × 1 matrix containing
the signal waveform information and ϕn(k) = [φ(0)

n (k), . . . , φ(M−1)
n (k)].

v (k) is also an NM × 1 noise vector.
To cast the localization problem as a SR problem, we divide the

whole plane of interest into NΩ = Nx×Ny grids as potential locations,
and let the set of all grid location be Ω = {pG

1 , . . . ,pG
NΩ
}, where

pG
i = (xG

i , yG
i ) is the known coordinates of the ith grid. Recognizing

that the targets can occupy some such grid point, for a single time
sample we are able to form a sparse location model as

r(k)= Φ̃α + v(k) (4)

where Φ̃ = [Φ(pG
1 ), . . . , Φ(pG

NΩ
)] is an NM ×NΩ matrix representing

the sparse matrix where each column is of dimensions NM×1. α is an
NΩ× 1 sparse vector that having in total L nonzero entries, where the
indices of nonzero entries in α which represents the actual locations.
Therefore, finding the actual coordinates of targets is equal to picking
up the corresponding columns from the overcomplete basis. Since the
location of each grid is known a priori, the AOA and TOA between
the nth BS and the ith grid can be directly calculated according to
the geometric relationship. Exploiting the known coordinates of each
grid point and BS, the AOA (relative to the array baseline) of a signal
emitted from pG

i to the nth BS located at qn can be calculated as
θn,i = tan−1[(yB

n − yG
i )/(xB

n − xG
i )]. Under a far field assumption,

θn (pG
i ) is a function of the signal angle of arrival only. When a general

uniform linear array (ULA) is considered, which will be adopted for
the rest of this paper, the steering vector of nth BS takes the form

θn(pG
i ) = [1ejζd cos θn,i . . . ejζ(M−1)d cos θn,i ]T (5)

where ζ = 2π/λ is the signal wave number, λ the wave length,
and d the elements spacing. Similarly, the propagation delay
between the nth BS and ith grid can be calculated as τn(pG

i ) =√
(xB

n − xG
i )2 + (yB

n − yG
i )2/c, where c is the propagation speed. It

should be emphasized that the above AOA and TOA are calculated
directly, which differs from the conventional estimating method in
two-step localization approach. As a result, Φ (pG

i ) for any i ∈



104 Ke and Wu

{1, 2, . . . , NΩ} can be predefined before the positioning procedure and
does not depend on the actual target locations.

With the constraint of sparsity on α (only a small subset is
nonzero), the problem can be efficiently solved by SR as

α̂ = arg min ‖α‖1 , s.t.
∥∥∥r(k)− Φ̃α

∥∥∥
2
≤ ε (6)

where ‖ · ‖p stands for the lp norm, and ε is the error allowance in
SR. During the optimization procedure, the l2 norm constrained by
ε guarantees the residual ‖r(k)− Φ̃α‖2 to be small, whereas the l1
norm enforces the sparsity of the estimated α. If there is a reliable
algorithm to recover the sparse vector α from r (k) using (6), then
all but a few components of the final solution α will have very small
magnitudes, while a few dominant “spikes” in α represent the actual
target locations. Finally, the number of these dominant spikes gives
L. Note that the equality pG

i = pl may not hold exactly for any
i ∈ {1, 2, . . . , NΩ} in practice. Nevertheless, by making Ω dense
enough, one can ensure pG

i ≈ pl closely, and the remaining model
errors are absorbed in the vector v (k).

3.2. Sparsity-Based Direct Localization Based on
Joint-sparse Recovery

In the multiple target localization, the choice of L is quite important
because either adding spurious peaks or missing actual sources may
cause large estimation deviation. Although several methods, such as
the Akaike information criterion (AIC) or minimum description length
(MDL), can estimate the L value [16, 17], the accurate number of
targets is difficult to obtain in the actual location scenario. Therefore,
the GDPD methods which need know the number of targets a priori
are confined in many applications. However, even if L value is
unknown, the recent research in SR has revealed that a L-sparse
vector can be uniquely recovered from measurement samples when
L ≤ NM/2 [18]. Although many single-measurement algorithms have
been formulated that have found utility in many different applications,
most of single snapshot processing methods achieve good recovery rates
only for small values of L. Apart from the limit on L, the single
snapshot setting in (4) has another problem. Until now, no good
algorithm can ensure sparse signal recovery in the presence of noise.
Since noise is ubiquitous in practical problems, we turn to the so-
called joint-sparse recovery [19, 20]. A set of vectors is called jointly
sparse when its elements share a common sparsity pattern. When some
snapshots are available, we can combine these snapshots to improve the
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estimation performance. Therefore, the data model is extended as:

Y = Φ̃S + V (7)

where Y = [r(1), . . . , r(K)] are multiple time samples, S =
[α(1), . . . , α(K)], and V = [v(1), . . . , v(K)] are the corresponding
sparse and noise matrixes, respectively. Here, K is the number of
samples. There is an important difference between (7) and (4): Matrix
S is parameterized temporally and spatially, but sparsity only has
to be enforced in space since the signal is not generally sparse in
time. One natural approach using multiple snapshots is to exploit
the joint-sparse representation characteristic, which assumes that the
positions of targets keep identical among different snapshots and that
the difference is only reflected on their amplitude variations.

The joint-sparse problem is often solved by calculating [20]

min
S∈Z

‖S‖a,b , Z :=
{
S ∈ RNΩ×K : Y = Φ̃S

}
(8)

for various combinations of a and b, where the mixed norm ‖S‖a,b is
defined as

‖S‖a,b =




NΩ∑

j=1

K∑

i=1

(|S[j, i]|a)b/a




1/b

(9)

Cotter uses a = 2, b ≤ 1 to combine multiple measurement vectors
and matching pursuit (MP) to solve the joint-sparse recovery [21],
while Tropp analyzes for a = 1, b = ∞ [22] and Eldar et al. use
a = 2, b = 1 [23]. In [23], the sufficient conditions for joint-
sparse recovery by using a = 2 and b = 1 are presented. So far,
the most successful recovery algorithm for the joint-sparse problem
is joint l0 approximation (JLZA) algorithm [20], which is robust to
the measurement noise and can achieve a very high recovery rate. In
addition, the JLZA algorithm is fast, and the complexity of JLZA
remains almost constant when sparsity increases.

Generally, we can easily have several snapshots r (k), k =
1, . . . , K in practice, so we choose the JLZA algorithm in the location
estimation stage, and the pseudocode of which is given in Table 1. In
the algorithm, S(i) denotes the value of S updated at the ith iteration.
Since the choice a = 2, b = 0 leads to a NP-hard problem, here we
follow the JLZA algorithm which approximates the mixed norm ‖S‖2,0

via a sequence of Gausssian functions [20]. σ is the covariance of the
Gausssian function Fσ, and we start with σ = maxi ‖S(0)[i, :]‖1. The
parameter β controls the tradeoff between the sparsity of the signal and
the residual energy. The parameters ρ, η, γ are the controlling factors
for convergence speed, and their values can be decided by numerical
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Table 1. JLZA algorithm.

Initialization

1. set S(0) = Φ̃H(Φ̃Φ̃
H

)−1Y.
2. set σ = 1 and ρ, η, γ ∈ {0, 1}.
repeat
3. set β = 1.
4. while Fσ(βς(S(i)) + (1− β)S(i)) < Fσ(S(i)).
β = γβ

end
5. S(i+1) = βς(S(i)) + (1− β)S(i).
6. If τ (i) =

∥∥S(i+1) − S(i)
∥∥

2
< ησ then σ = ρσ.

Until σ ≤ σ0

experiments. Whenever that difference is smaller than a predefined
threshold value denoted by σ0, we stop the algorithm.

3.3. Grid Refinement

Obviously, a dense grid can achieve fine resolution, but making the grid
too dense results in large computation time. In practice, even if the
positions do not fall on the grid, the DPD algorithm can approximately
locate the targets. Therefore, the grid search in [10, 11] was performed
in two steps: a coarse search with low resolution over the full area of
interest and a fine search with high resolution near the peaks found
in the coarse search. This motivates us to explore the idea that can
adaptively refine the grid in order to achieve better precision. We
start with a fairly coarse grid and obtain approximate spatial locations.
Subsequently, we make the grid finer around the approximate source
locations and refine the estimates. The algorithm is as follows.

1) Set j = 0 and create a rough grid of potential target locations
Ω(j) = {pG

1 , . . . ,pG
Nj
} over the full area of interest. The grid

should not be too rough in order to avoid large original bias.
2) Form Φ̃(j) = [Φ(pG

1 ), . . . ,Φ(pG
Nj

)], where pG
i ∈ Ω(j), i =

1, . . . , Nj .
3) Use our method in Section 3.2 to obtain the estimates of the

target locations p(j)
l , l = 1, . . . , L, and set j = j + 1.

4) Get a refined grid Ω(j) = {pG
1 , . . . ,pG

Nj
} around the approximate

target locations obtained in the last step. Here, we choose simple
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equispaced grid refinement, although many different ways can
refine the grid.

5) Return to step 2 until the grid is fine enough to meet the accuracy
demand for applications.

The above idea is a very natural one, but it should be noted
that if we make the grid too dense in the actual location scenario,
the location errors actually increase, supported by the observations
made by Donoho in [24], and Chen et al. in [25]. These articles report
cases where sparsity allows one to resolve beyond the nominal Rayleigh
spacing limit, but eventually the sensitivity to errors grows, depending
on the number of targets within one Rayleigh spacing. Because it is not
possible to make the grid infinitely fine, the SDPD method based on
the JLZA algorithm cannot obtain the exact positions even if the data
are noise-free. Therefore, we generally choose a suitable grid density
according to the demand of applications and typically make the grid
refinement only 1–2 times.

4. SIMULATION RESULTS

In order to examine the performance of the proposed SDPD method
and compare it with the decoupled GDPD approach in [11] and non-
decoupled GDPD approach in [10], we performed extensive Monte
Carlo simulations. The location system consists of four BSs placed
at coordinates (500, 500), (500, −500), (−500, 500) and (−500, 500),
as shown in Fig. 3. All units are meters. The carrier frequency of
the simulated signal is assumed to be 900MHz, and its baud rate is
set to be 100 kHz. Each BS is equipped with a ULA of ten antenna
elements and the spacing between adjacent elements is d = λ/2. The
target locations are selected at random, uniformly, within the square
formed by the BSs. The signals, and the noise, are assumed as random
complex Gaussian vectors with zero mean and covariance matrices ω2

sI,
and ω2

vI, respectively [8–11, 26]. Our definition of signal to noise ratio
(SNR) is SNR[dB] ∆= 10 log10(ω2

s/ω2
v). For a given SNR, we make

100 simulations to obtain the statistical properties of the performance.
Instead of having a universally fine grid, the plane in a 1000m×1000 m
square was discretized in two steps: create a rough grid with 20 m
resolution over the full area of interest and a fine search with 1 m
resolution near the peaks found in the coarse location Since the GDPD
methods in [10, 11] need know the number of targets, the L value is
estimated by the AIC or MDL method in advance. Details can be
found in [16, 17], and the reference therein. In JLZA algorithm, the
value of β depends on the noise level, and experimental results suggest
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that β = 1 is a good choice in the beginning [20]. A wide range of
numerical experiments in [20] suggests that the best setting of η is
0.5 and γ fixed to 0.5. The final value of σ0 depends on the noise
level. Numerical simulations in noisy cases suggest that ρ = 0.1 and
σ0 = 0.001 are good choices [20]. The experiments have been run on a
Pentium IV-2.4 GH processor with 1 GB memory.

4.1. RMSE Versus Number of Measurement Samples

In the first test case, the localization errors versus the number of
measurement samples needed in three different algorithms are studied
when SNR is set to 10 dB. The number of targets is fixed at 3, and
the number of measurement samples varies between 2 and 300. The
localization error is defined as the average root mean square error
(RMSE) between the true positions and the estimated positions of
three targets, that is

RMSE =
1
L

L∑

l=1

√√√√ 1
J

J∑

j=1

[
(x̂j,l − xl)

2 + (ŷj,l − yl)
2
]

(10)

where J is the number of Monte Carlo simulations, and (xl, yl) denotes
the true location of the lth target.

As the experimental results shown in Fig. 4, the localization error
of the SDPD algorithm decreases sharply and becomes small as the
number of measurement samples increases. About 32 samples are
enough for the SDPD algorithm to achieve a high estimation accuracy,
while the decoupled GDPD method need about 50 samples to get the
similar precision. As for the non-decoupled GDPD algorithm, the
sufficient number of measurement samples is at least 200. Moreover,
with the number of measurement samples increasing, the RMSE of
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all three algorithms will not apparently decrease after convergence.
This result shows that the SDPD algorithm based on joint-sparse
representation can obtain the location estimates by using only a small
number of noisy measurement samples.

4.2. RMSE Versus Number of Targets

The second simulation investigates the performance of three different
DPD algorithms as a function of the number of targets. The number
of targets changes from 1 to 7, and the SNR is also equal to 10 dB.
According to the results from Section 4.1, the number of measurement
samples is set as 32, 50 and 200 for SDPD, decoupled and non-
decoupled GDPD, respectively. Fig. 5 illustrates the location error
with respect to the number of targets. With the increase in the number
of targets, the RMSE of two GDPD algorithms increases quickly due
to the high sensitivity to the estimated number of targets. On the
contrary, the variation of RMSE in the SDPD algorithm is very small.
The importance of the low sensitivity of our algorithm to the number
of targets is twofold. First, the number of sources is usually unknown,
and low sensitivity provides robustness against mistakes in estimating
the number of targets. In addition, even if the number of sources
is known, low sensitivity may allow one to reduce the computational
complexity.

4.3. Complexity Analysis and Comparison

To compare the computational complexity associated with the three
algorithms, the simulation is conducted under the same number of
measurement samples, which is set as 200 for three methods. The
SNR is 10 dB as before.
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Table 2. Computer running time of the three algorithms.

hhhhhhhhhhhhhhNumber of targets

Algorithm Non-decoupled

GDPD

Decoupled

GDPD
SDPD

2 1.019 s 0.776 s 0.266 s

3 1.553 s 1.372 s 0.267 s

4 2.263 s 1.849 s 0.271 s

5 2.751 s 2.360 s 0.273 s

6 3.669 s 3.032 s 0.276 s

7 4.441 s 3.981 s 0.279 s

Table 2 shows the complexity comparison results of the three
algorithms in terms of the actual average computation time for a
single run. Table 2 shows that the computer running time of the
proposed method is one order less than that of two GDPD algorithms.
Furthermore, with increasing the number of targets, the variation of
the computer running time of the SDPD method is very small, while
the computing time of two GDPD methods is monotonically increasing,
because the complexity of the JLZA algorithm remains almost constant
when sparsity increases.

4.4. RMSE Versus SNR

In the fourth simulation, the localization errors with respect to
SNR are studied. The number of targets is fixed at 3, and the
number of measurement samples is set as 32, 50 and 200 for SDPD,
decoupled and non-decoupled GDPD, respectively. Here, the SNR
changes from −15 dB to 15 dB. As shown in Fig. 6, we can see
that the advantage of the SDPD algorithm is obvious at low SNR.
Compared with the decoupled and non-decoupled GDPD algorithms,
the RMSE is improved approximately 100 m to 200m when the
SNR varies from −15 dB to −5 dB. At high SNR, the performance
improvement of RMSE is not very visible and all methods give the
similar results. These results reveal that the SDPD method is very
robust to bad propagation environments and can effectively enhance
location accuracy.

5. ON-SITE EXPERIMENTAL RESULTS

To validate the performance of our algorithm in the realistic
environment, a practical experiment is conducted in the campus
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of Southeast University (SEU) with an area of 0.37 km2 under the
900MHz communication system. The measurement system uses a
laptop computer, two smart phones which incorporate GPS receivers,
and four HuaWei Test Mobile BSs with a lower antenna height of 3.5 m.
Different from the ULA used in Section 4, here each BS is equipped
with a circular array of five antenna elements, and the radius of the
array is one wavelength. During the measurement phase, the mobile
BSs are stationary at fixed locations. The smart phones are linked
with the test BSs in dedicated test mode.

In this section, we only create a grid with 20 m resolution over the
full area without grid refinement. We randomly chose 20 reference
locations for each smart phone in this area and the testing data
were collected, 50 samples for every location. The distance between
two smart phones ranges from 50 m to 100 m. The true locations of
two smart-phones, which were collected by the GPS receivers, were
recorded in the smart phones to compare them with the detected
locations. All measurement data were periodically stored in log files in
the laptop computer. These collected experimental data were treated
offline.

The performance of our algorithms was evaluated by four error
measures including standard deviation of error, mean error, 67%
CEP (circular error probable) and 95% CEP. The CEP is defined as
the radius of the circle that has its center at the true location and
contains the location estimates with a probability. Table 3 reports
the error measures for different algorithms at the SEU campus. The
table shows that the SDPD method provides the best positioning
performance among the three algorithms. Although the decoupled
GDPD approach outperforms the non-decoupled GDPD approach,
the SDPD method can further improve the location accuracy. The
significant improvements at mean, 67% CEP, and 95% CEP reduction
are 15.1%, 21.9% and 23.2%, respectively, compared to the decoupled
GDPD approach. It should also be noted that the standard deviation
is obviously large in the realistic environment. The main reason
is that the predefined overcomplete basis in this paper is built on
the Gaussian noise assumption. In fact, our approach can achieve
superior positioning performance in open regions such as the football
field, where the line-of-sight (LOS) propagation probability is high and
the measurement error under LOS conditions is usually considered as
following the Gaussian distribution [2, 4]. However, in the multipath
environment, the non-line-of-sight (NLOS) error follows the different
statistical distributions in different regions, and thus the realistic
signal will not match our predefined model, thereby increasing the
localization errors substantially. To overcome this drawback, the
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Table 3. Four error measures (in meters) for three algorithm in a
realistic environment.

Algorithms
Mean± Standard

deviation
67% CEP 95% CEP

non-decoupled
GDPD

83.55± 79.15 81.12 139.87

decoupled GDPD 78.63± 80.69 75.66 131.15
SDPD 66.76± 82.19 59.09 100.69

adaptive sensing method, such as dictionary learning technique, can
be used to improve our method for recovering the sparse solution
adaptively in the different environment.

6. CONCLUSION

In this paper, we investigate a formulation of the multi-target direct
localization problem in the SR framework. We exploit the joint-sparse
property to present a novel sparsity-based DPD algorithm as opposed
to the grid-search method, thereby reducing the complexity of the DPD
algorithm. At the same time, the SDPD method can further reduce
the location errors compared with the GDPD algorithms. Simulation
results indicate that the RMSE reduction is over 100 m under the
same low SNR conditions. Moreover, this algorithm can perform well
with a limited number of samples and does not require any knowledge
about the number of targets. This study also applies the proposed
algorithm to locate multiple targets in a realistic environment. On-site
experimental results demonstrate that the SDPD method outperforms
the GDPD schemes, reducing the 67th and 95th percentile location
errors by 21.9%–27.2% and 23.2%–28.0%, respectively, compared with
the decoupled and non-decoupled GDPD algorithms. Further research
will emphasize the model error analysis and the theoretic bound on
the localization precision.
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