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Abstract—We propose a 3D-approach of the soil surface height
variations, either for the roughness characterization by the mean of
the bidimensional correlation function, or as input of a backscattering
model. We consider plots of 50 cm by 50 cm and two states of roughness
of seedbed surfaces: an initial state just after tillage and a second
state corresponding to the soil roughness evolution under a rainfall
event. We show from stereovision data that the studied surfaces can
be modelled as isotropic Gaussian processes. We study the change
of roughness parameters between the two states. To discuss the
relevance of their differences, we find from Monte-Carlo simulations
the bias and variance of estimator for each roughness parameters.
We study the roughness and moisture combined influences upon the
direct backscattering coefficients by means of an exact method based
on Maxwell’s equations written in a nonorthogonal coordinate system
and by averaging the scattering amplitudes over several realizations.
We discuss results taking into account the numerical errors and the
precision of radar. We show that the ability of the radar to discriminate
the different states of seedbed surfaces is clearly linked to its precision.

1. INTRODUCTION

The interpretation of radar measurements in terms of soil roughness
is a difficult task in view of the geometrical complexity of real soils
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416 Dusséaux et al.

and the influence of soil moisture. Electromagnetic simulations of
radar signal are an essential step to understand the influence of such
parameters on the backscattered signal. In this paper, we study
the roughness and permittivity influence upon the backscattering
coefficient by means of Monte-Carlo predictions. The backscattering
coefficient is estimated by averaging the scattering amplitudes over
several realizations. For each realization, the scattering amplitudes are
obtained by the curvilinear coordinate method, commonly called the C-
method [1–7]. This method is based on Maxwell’s equations under their
tensorial form written in a nonorthogonal coordinate system where the
boundary surfaces coincide with coordinate surfaces. As a result, the
boundary value problem is simplified. Complexity is transferred to
analytical expression of propagation equations. The C-method leads
to eigenvalue systems. The scattered fields are expanded as linear
combinations of eigensolutions satisfying the outgoing wave condition.
The boundary value problem allows the scattering amplitudes to
be determined. The C-method is an efficient theoretical tool for
analyzing grating diffraction [1–3] and rough surfaces [4–7]. The
method was investigated in near and far field zones by means of
convergence tests on the scattering amplitudes and the power balance
criterion. The theory was verified by comparisons with published
numerical and experimental data [5–7]. We showed that the Monte-
Carlo simulations based on the C-method have been successful in
predicting backscattering enhancement and in analyzing very rough
surfaces. The dominant computational cost for the C-method is the
eigenvalue problem solution which is of the order of O(N3) where N
is the total number of unknowns. Owing to computational costs, the
C-method does not allow analysing surfaces of very large sizes and
surfaces with large correlation length. This is a weak point of the C-
method. However, the strength of the C-method is that it leads to the
eigensolutions of the scattering problem. It is an accurate method and
it can be used as a reference for the analytical models. Nevertheless,
as any numerical method, because the surface area and number of
realizations have finite values and as the spatial resolution does not
tend to zero, the average backscattering coefficient show numerical
errors that must be quantified [8]. The C-method is described in
Section 2.

In [9], a stereovision database of bare soil geometrical descriptions
was presented. In the present paper, we consider plots of 50 cm by
50 cm associated with two roughness states of seedbed surfaces: an
initial state just after tillage (state 1) and a second state corresponding
to the soil roughness evolution after a rainfall event (state 2). In
Section 3, we show that the studied soils with moderate roughness
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and unmarked tillage patterns can be modelled as isotropic Gaussian
processes. The autocorrelation function is defined by three roughness
parameters: the root-mean-square height s, the length correlation l
and the roughness exponent r [10, 11]. The Gaussian distribution
is checked by the Kurtosis of the height data and the isotropy by
the ratio of two directional correlation lengths computed in two
perpendicular directions. The roughness parameters are estimated
from the experimental autocorrelation obtained from stereovision data
with a high millemetric spatial resolution. In Section 3, we also study
the change of these parameters from state 1 to state 2 and we discuss
the relevance of these changes.

In Section 4, for the different states of seedbed soils, we estimate
the backscattering coefficients by the C-method. We study the
roughness and moisture influences upon the backscattered signal. We
discuss results taking into account the scattering model numerical
errors and we study how the ability to differentiate these two seedbed
surfaces of distinct roughness with different soil moisture evolution is
related to the radar precision.

2. ANALYSIS WITH THE CURVILINEAR
COORDINATE METHOD

2.1. Formulation of Problem

We consider a surface given by equation z = a(x, y), where a(x, y) is
a local function defined over the surface area L× L. The structure is
illuminated by a monochromatic plane wave with the wavelength λ.
The time-dependence factor varies as exp(jωt), where ω is the angular
frequency. Any vector function is represented by its associated complex
vector function and the time factor is omitted. The surface separates
the vacuum from a material with a complex relative permittivity. The
incident wave vector ~k0 is defined from the zenith angle θ0 and the
azimuth angle ϕ0 [6, 7]. In horizontal polarization (a = h), the electric
field vector is parallel to the Oxy plane. In vertical polarization
(a = v), this is the case for the magnetic field vector. For an
incident wave in (a) polarization, in addition to incident, reflected and
transmitted plane waves, we consider a scattered field ~E

(a)
d±(x, y, z).

The problem consists in working out the H-polarized component ~E
(ha)
d±

and the V -polarized component ~E
(va)
d± of the scattered field. Subscripts

(+) and (−) denote quantities relative to the upper medium and the
lower medium, respectively.
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2.2. Coordinate System — Covariant Components of Field

The scattered field can be obtained by using the C-method [1–7] and
the translation coordinate system defined by:

{
x′ = x
y′ = y
z′ = z − a(x, y)

(1)

In this coordinate system, the height function z = a(x, y) coincides
with the coordinate surface z′ = 0. The change from Cartesian
components (vx ; vy ; vz) of a vector ~v to covariant components
(vx′ ; vy′ ; vz′) is given by [1]:





vx′(x′ ; y′ ; z′) = vx(x ; y ; z) + ∂a(x,y)
∂x vz(x ; y ; z)

vy′(x′ ; y′ ; z′) = vy(x ; y ; z) + ∂a(x,y)
∂y vz(x ; y ; z)

vz′(x′ ; y′ ; z′) = vz(x ; y ; z)

(2)

The covariant components vx′ and vy′ are parallel to the coordinate
surface z′ = z0. Consequently, the covariant components Ex′ , Ey′ , Hx′
and Hy′ are parallel to the rough surface and satisfy the boundary value
problem. Because the boundary surface coincides with a coordinate
surface, the boundary value problem is simplified. Complexity is
transferred to analytical expression of propagation equation.

2.3. Equation of Propagation in the Translation System

In a source-free medium, from Maxwell’s equations and constitutive
equations written in the translation system, we show that Ex′,±, Ey′,±,
Hx′,± and Hy′,± can be expressed in terms of Ez′,± and Hz′,± only [3]:

∂2Ex′,±
∂z′2

+ k2
±Ex′,±

=
∂2Ez′,±
∂x′∂z′

− k2
±gx′z′Ez′,± − jk±

(
gy′z′ ∂Z±Hz′,±

∂z′
+

∂Z±Hz′,±
∂y′

)
(3)

∂2Ey′,±
∂z′2

+ k2
±Ey′,±

=
∂2Ez′,±
∂y′∂z′

− k2
±gy′z′Ez′,± + jk±

(
gx′z′ ∂Z±Hz′,±

∂z′
+

∂Z±Hz′,±
∂x′

)
(4)

∂2Hx′,±
∂z′2

+ k2
±Hx′,±

=
∂2Hz′,±
∂x′∂z′

− k2
±gx′z′Hz′,± + j

k±
Z±

(
gy′z′ ∂Ez′,±

∂z′
+

∂Ez′,±
∂y′

)
(5)



Progress In Electromagnetics Research, Vol. 125, 2012 419

∂2Hy′,±
∂z′2

+ k2
±Hy′,±

=
∂2Hz′,±
∂y′∂z′

− k2
±gy′z′Hz′,± − j

k±
Z±

(
gx′z′ ∂Ez′,±

∂z′
+

∂Ez′,±
∂x′

)
(6)

Z± designate the impedances and k±, the wave numbers, respectively.
We also show that Ez′,± and Hz′,± obey to the same propagation
Equation (7):

∂2ψ±
∂x′2

+
∂2ψ±
∂y′2

+
∂2ψ±
∂z′2

+ k2
±ψ±

+
∂

∂z′

[
gx′z′ ∂ψ±

∂x′
+

∂gx′z′ψ±
∂x′

+ gy′z′ ∂ψ±
∂y′

+
∂gy′z′ψ±

∂y′

]
= 0 (7)

where ψ± = Ez′,± in vertical polarization and ψ± = Z±Hz′,± in
horizontal polarization. Terms gx′z′ , gy′z′ and gz′z′ are elements of
metric tensor which depend on the derivatives of function a(x′, y′) with
respect to x′ and y′ [3]

gx′z′ = − ∂a

∂x′

gy′z′ = − ∂a

∂y′

gz′z′ = 1 +
(

∂a

∂x′

)2

+
(

∂a

∂y′

)2

(8)

2.4. Numerical Implementation

In previous works [6, 7], we proposed a procedure for solving the
propagation Equation (7) in the spectral domain. We showed that the
method requires the solutions of 2Ms-dimensional eigenvalue system
where Ms = (2M + 1)2 and M is the truncation order. The Oz-
components can be expanded as a linear combination of eigensolutions
satisfying the outgoing wave condition.

ψ̂d±(α, β, z′) =
Ms∑

n=1

An,± ψ̂n,±(α, β, z′) (9)

ψ̂d±(α, β, z′) represents the Fourier transform of ψd±(x′, y′, z′).
According to the sampling theorem, we showed that the eigensolution
ψ̂n,±(α, β, z′) can be constructed from the samples φn,±(αp, βq)
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(eigenvector components) and eigenvalue rn,± by the following
interpolations:

ψ̂n,±(α, β, z′) = exp(−jk+rn,±|z′|)

×
+M∑

p=−M

+M∑

q=−M

φn,±(αp, βq)sinc
( π

∆α
(α− αp)

)
sinc

( π

∆α
(β − βq)

)
(10)

where

αp = k+ sin θ0 cosϕ0 + p∆α, βq = k+ sin θ0 sinϕ0 + q∆α (11)

The elementary wave function ψ̂n,±(α, β, z′) represents an outgoing
wave travelling without attenuation if Re(rn,±) > 0 and Im(rn,±) = 0.
For an evanescent wave, Im(rn,±) < 0. We deduce from (3) to (6)
the H-polarized components of electric and magnetic fields ~E

(ha)
d,± and

~H
(ha)
d,± by taking Ez′,± = 0 and the V -polarized components ~E

(va)
d,± and

~H
(va)
d,± by taking Hz′,± = 0. For an incident wave in (a) polarization and

a scattered wave in (b) polarization, the amplitudes A
(ba)
n,± are found

by solving the boundary value problem and a 2Ms-dimensional matrix
system.

Above the highest point of the surface, the scattered field can be
represented by a superposition of a continuous spectrum of outgoing
plane waves, the so-called Rayleigh integral [12]. In H-polarization, the
Cartesian components of the electric field can be expressed as follows:

E
(ha)
+,x (x, y, z) =

− 1
4π2

+∞∫

−∞

+∞∫

−∞

β√
α2+β2

R̂
(ha)

+ (α, β) exp(−jαx−jβy−jγ+z) dα dβ

~E
(ha)
+,y (x, y, z) =

1
4π2

+∞∫

−∞

+∞∫

−∞

α√
α2+β2

R̂
(ha)

+ (α, β) exp (−jαx−jβy−jγ+z) dα dβ

(12)

where α2 + β2 + γ2
+ = k2

+ and Im(γ+) ≤ 0. Substituting ~E
(ha)
+ by

Z+
~H

(va)
+ into (12), we obtain the V -polarized components of magnetic

vector. Functions R̂
(ba)

+ represent the scattering amplitudes. We can
write continuity relations between the transverse components of the
Rayleigh expansion and the covariant components (3)–(6). For an
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incident wave in (a) polarization, we deduce from continuity relations
the scattering amplitudes R̂

(ha)
+ (α, β) and R̂

(va)
+ (α, β) [5–7].

For an incident wave in (a) polarization and a scattered wave in
(b) polarization, the average bistatic scattering coefficient σ

(ba)
+ (θ, ϕ) in

the upper medium is derived from the scattering amplitude R̂
(ba)
+ (α, β)

as follows:

σ
(ba)
+ =

cos2 θ

λ2L2 cos θ0
<

∣∣∣R̂(ba)
+ (k+ sin θ cosϕ ; k+ sin θ sinϕ)

∣∣∣
2

> (13)

where α = k+ sin θ cosϕ and β = k+ sin θ cosϕ. Angle θ designates
the zenith angle and ϕ, the azimuth angle, respectively. The angular
brackets 〈〉 stand for an ensemble average. The average bistatic
scattering coefficient is estimated by results over NR realizations.
In this paper, we only study the roughness and permittivity
influence upon the backscattering coefficient corresponding to σ

(ba)
0 =

σ
(ba)
+ (−θ0, ϕ0).

In this section, we have succinctly presented numerical implemen-
tation of the C-method. We refer the reader to references [4, 5] for
more information on analysing one-dimensional rough surfaces and to
references [6, 7] for analyzing two-dimensional surfaces.

2.5. Spectral Resolution and Spatial Resolution

The truncation order M and the spectral resolution ∆α are the two
numerical parameters of the C-method. In the spectral domain, the
Mth-order truncation removes the highest spatial frequencies of field
components. The propagation coefficients α and β vary within the
interval [−αmax; +αmax] where αmax = αM ≈ M∆α. The proportion
of evanescent waves becomes larger when αmax increases, leading to a
better description of the coupling phenomena. For a given wavelength,
the value αmax increases with surface amplitude.

In [6, 7], we proposed comparisons with published numerical
data derived from the boundary integral method. For this purpose,
an equivalent spatial resolution was defined for the C-method [7].
For the Fourier transform of the scattered field, the integration
variables α and β vary within the interval [−αmax; +αmax] and for
the Fourier transforms of the metric tensor elements, within the
interval [−2αmax; +2αmax], respectively. According to the sampling
theorem, the harmonic function exp (−jαmaxx) is well represented
on the equivalent period 2π/αmax by two samples. As a result, the
equivalent spatial resolution ∆xf on the field component is π/M∆α
and the equivalent spatial resolution ∆xg on the metric tensor elements
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Table 1. Simulations parameters — spectral and spatial resolutions.

∆α ∆xf ∆xg ∆x

L = 7λ; M = 21; Nr = 150 k+/7 λ/6 λ/12 λ/18
L = 24λ; M = 120; Nr = 1000 k+/24 λ/10 λ/20 λ/50

is equal to ∆xf/2, respectively. ∆xg and ∆xf are the equivalent spatial
resolutions associated with the maximum value αmax of propagation
coefficients α and β. In practice, we use a spatial resolution ∆x < ∆xg

in order to check the sampling theorem and to calculate the Fourier
transforms of the scattered fields and the Fourier transforms of the
metric tensor elements with a good precision. Table 1 gives the
spectral and spatial resolutions used for electromagnetic simulations
(Section 4).

3. SOIL SURFACES INVOLVED IN THE STUDY

3.1. Surface Recording

The seedbed soils under consideration have been made by tillage
operations in an agricultural field. Within the field, two plots separated
by several meters were studied. In addition, artificial rainfalls were
used to get a stage of a controlled evolution. In order to get topography
of each soil pattern rather than mere profiles, a stereovision method
was used and a three-dimensional digital elevation model (DEM) with
a fine resolution of 1 mm in both horizontal directions was calculated.
Each selected area was carefully located in order to focus exactly on the
same spot before and after watering in order to survey a possible change
of the soil due to artificial rainfalls. Stereo-photogrammetry is sensitive
to shadow effects. It results in a few spurious data points, estimated to
amount to 2% of the data. They were corrected by interpolation during
matching process of the couple of images used to compute the DEM.
However, all DEM surfaces contain some measurement artefacts. For
more information on DEM database, we refer the reader to [9].

The soil was a loamy typic hapludalf developed on the loess deposit
of the Paris basin. Measurement was done in autumn so that initial soil
moisture was below the field capacity. It corresponds to state 1 of each
plot. Then, each plot was submitted to a 40 mm hr−1 simulated rainfall
during 30 minutes, in order to get an evolution of surface roughness
and moisture [9, 13]. Tap water was applied using a portable field
simulator. The DEM at state 2 was recorded one day after state 1
measurement. Soil surfaces measuring 50 cm by 50 cm, with 1 mm x,
y and z sampling were used in the present study.
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3.2. Surface Modelling

The 3D-measurement of the seedbed height variations obtained here by
stereovision photogrammetry turns out to be appropriate to describe
agricultural soils characterized very often by anisotropy due to row
structure. The anisotropy is observed in the bidimensional correlation
function with the angular dependence of the correlation length [14] and
is investigated by computation of s and l in the directions parallel and
perpendicular to the tillage direction [9, 15].

The seedbed surfaces retained in this paper are surfaces of
moderate roughness and unmarked tillage patterns. Therefore, we
show that they can represented by a single-scale isotropic process. We
recall that the scattering coefficient depends on the autocorrelation
function but also on the height distribution [16]. In this paper, we
assume that the seedbed surface under consideration can be modelled
as a random process with a normally distributed height function. These
assumptions can be checked by means of two indexes:
• the kurtosis K of the height data, which is equal to 3 in the case

of a Gaussian distribution,
• the isotropy index Ii defined as

Ii =
min(lx, ly)
max(lx, ly)

(14)

where lx designates the correlation length parallel to the row
direction (Ox axis) and ly, the correlation length perpendicular
to it (Oy axis). Table 2 shows the values of these indexes for the
four plots at our disposal.
One can notice that the kurtosis values for the two seedbeds are

close to 3 at ±3% for state 1 and state 2. This sustains the hypothesis
of a Gaussian distribution for a seedbed surface. The probability
density function (pdf) graph on Figures 1(a) and 1(b) confirms the
good agreement between the Gaussian function and the normalised
histogram of the heights for the state 1. Similar results are obtained
for the state 2.

Table 2. Statistical indexes of studied surfaces.

K Ii

Surface 1 State 1 2.99 0.97
State 2 2.91 0.91

Surface 2 State 1 3.07 0.96
State 2 2.94 0.85



424 Dusséaux et al.

 

 

 

 

 

-60 -40 -20 0 20 40 60
0

0.005

0.01

0.015

0.02

0.025

0.03

heights (mm)

p
ro

b
a

b
il
it
y
 d

e
n

s
it
y
 f

u
n

c
ti
o

n

heights (mm)

-60 -40 -20 0 20 40 60

p
ro

b
a

b
il
it
y
 d

e
n

s
it
y
 f

u
n

c
ti
o

n

0

0.005

0.01

0.015

0.02

0.025

0.03

(a) (b)

Figure 1. Distribution of heights at state 1 for Gaussian plots. (a)
seedbed 1; (b) seedbed 2.

(a) (b)

Figure 2. Datum line at correlation length for isotropic
autocorrelation functions. (a) seedbed 1 (state 1); (b) seedbed 2 (state
1). The circle is the datum line at average correlation length.

The isotropy index is greater than 95% for the two surfaces at
state 1 and autocorrelation contour is very close to circle of average
correlation length (see Figure 2). The still high value at state 2
allows keeping the isotropy hypothesis for surface 1. It becomes more
questionable for surface 2. However, if our isotropy index is computed
with Blaes and Defourny correlation length values for their isotropic
surfaces of 60 cm by 60 cm [14], we find at least 83%, which is consistent
with our indices.

The theoretical model assumed for the statistical autocorrelation
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function is:

R (x, y) = s exp


−

(√
x2 + y2

l

)2r

 (15)

where s is the rms height, l the correlation length and r, the roughness
exponent. The roughness parameters are estimated from experimental
autocorrelation C (x, y) by the least squares method. The mean
relative error between R (x, y) and C (x, y), which has to be minimized,
is:

ε =

√√√√∑

i

∑

j

(
R(xi, yj) − C(xi, yj)

R(0, 0)Lp

)2

(16)

with Lp designing the main lobe length of C (x, y) and the sums being
performed for −Lp/2 ≤ x; y ≤ Lp/2. Table 3 shows the values
estimated along the main lobe of C (x, y), for the two states of the
two seedbed surfaces. We can notice that the estimation error given
by (16) is weak and smaller than 7%, which illustrates the reliability of
estimation. The rms height s and the correlation length l have similar
values for surface 1 and surface 2 at state 1. However, the roughness
exponent r presents more variability. Comparing state 1 with state
2, s decreases of more than 10% for both surfaces, l shows reverse
small variations of ±3% and r presents variations of about 13% also in
reverse direction. The decrease of s can be explained by the smoothing
of surface during the rainfall event.

In the next section, we study if the changes of these three
roughness parameters from state 1 to state 2 are meaningful.
Investigations on roughness parameter variability are mainly focused
on roughness data obtained by surface-height profiles and have studied

Table 3. Parameters of theoretical autocorrelation function R(x, y).
ε denotes the relative error between R(x, y) and C(x, y) (given by
Eq. (16)).

s in mm l in mm r ε

Surface 1 state 1 14.9 34.7 0.74 5.2%
state 2 12.8 33.3 0.86 7.1%

Surface 2 state 1 15.3 34.2 0.89 5.5%
state 2 13.7 35.9 0.78 4.6%

Average state 1 15.1 34.5 0.80 -
Average state 2 13.3 34.6 0.84 -
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the influence of profile length and number on the precision of their
estimations. Only few studies have been done on the effect of
sampling coverage on statistical roughness parameters (as s and l)
using 3D-informations with millimetric resolution [9, 15]. In [14], the
bi-dimensional correlation function is computed on squared areas of
60 cm side (that are quite similar in size to the surfaces studied here)
and allows the estimation of directional roughness with considerably
reduced dispersion.

Then, we study the statistical variability of the roughness
parameters due to the single scale Gaussian process and we show
from Monte-Carlo simulations that the variation of correlation length l
between the two states is not meaningful and falls within the dispersion
range observed on the simulated surfaces. A similar conclusion can be
established for the roughness exponent r. On the contrary, we show
that the change of the rms-height s is relevant.

3.3. Simulation of Surface

The surface realizations are obtained by filtering of Gaussian white
noises [17]. The impulse response h(x, y) of the filter is defined as
follows:

h(x, y) = FT−1
(√

FT (R(x, y))
)

(17)

where FT designates the Fourier Transform operation and FT−1, the
inverse operation. Two simulations of 100 2D-surfaces have been
performed in order to test the relevance of roughness parameters s, l, r,
Ii and K obtained in Section 3.2. The surface area is of 2500 cm2 with
a resolution of 1mm. For the first simulation, the filter was determined
with state 1 average values, i.e., s = 15.1mm, l = 34.5mm and r = 0.80
as shown in Table 3. The second simulation includes a white noise of
1mm, modelling possible measurement noise. Table 4 shows that for
the first simulation, the average values of s and l estimated over 100
results are obtained with a bias equal to −0.1 mm and the average
of r has a bias equal to 0.04, which illustrates the reliability of the
simulation process. The estimation of average parameters remains the
same in the second case of additional white noise. The additional white
noise does not change the values of biases and standard deviations.

The isotropy index is 85% in average (82% in noise condition) and
75% of surfaces have an Ii greater than to 80% (70% in noise condition),
which is satisfactory for an isotropy assumption. Nevertheless,
since all the simulated surfaces are supposed to have an isotropic
autocorrelation function, the few surfaces with an Ii smaller than 80%
raise a question. Two causes may explain this observation: 1) The
isotropic index Ii is computed with estimations of correlation lengths
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dependant on the main lobe of autocorrelation function delineation
and 2) the estimation of autocorrelation function is altered by the
finite dimensions of data. The Kurtosis is 2.95 in average (same in
noise condition) and 75% of surfaces have a K within 3±10%, which is
satisfactory for a Gaussian assumption. Here again, the remaining 25%
of surfaces that are supposed to be Gaussian and depart from a kurtosis
of 3, may show some local phenomena that are not compensated by
sufficiently great dimensions of data.

We have studied two plots separated from several meters within
the same field. Comparing surface 1 with surface 2, the observed
differences of rms heights s (from 14.9mm to 15.3 mm for the state
1 and from 12.8 mm to 13.7 mm for the state 2 as shown in Table 3)
are not meaningful with respect to the estimator variance given in
the Table 4. Similar conclusions are established for the correlation
length and the roughness exponent. Comparing state 2 with state
1, the observed difference of rms height s (from 15.1 mm to 13.3mm
as shown in Table 3) is meaningful. According to Monte-Carlo
simulations, s has only 10% of chance to stand below 13.7 mm in
the simulation set of state 1. The differences of correlation length
and of roughness exponent are not meaningful with respect to the
standard deviations defined by Monte-Carlo simulations and given in
Table 4. As a conclusion, among the three parameters characterizing
the statistical autocorrelation function, the only one that presents a
small but meaningful variability between the state 1 and the state 2
is the rms height. Consequently, for the electromagnetic simulations,
the correlation length and the roughness exponent are unchanged and
we take the values averaged over the two states of surfaces. According
to Table 3, l is fixed at 34.55 mm and r at 0.82, respectively. The rms
height is fixed at 15.1mm for state 1 and at 13.3 mm for state 2.

Table 4. Results of two-dimensional surface simulations, (a) over 100
surfaces simulated with parameters s = 15.1mm, l = 34.5mm and
r = 0.80. (b) Over 100 surfaces simulated with same parameters and
additional white noise.

s in mm l in mm r Ii K

Without
noise

Average 15.0 34.4 0.84 0.85 2.95
Bias −0.1 −0.1 0.04 0.15 0.05

Standard deviation 1.0 3.2 0.16 0.10 0.24

With
noise

Average 15.0 34.4 0.84 0.82 2.95
Bias −0.1 −0.1 0.04 0.18 0.05

Standard deviation 1.0 3.2 0.16 0.22 0.24
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4. ELECTROMAGNETIC SIMULATIONS

In this section, we study the rms height and moisture combined
influence upon the direct backscattering coefficients under a given
incidence angle and a given frequency. Let us assume that the radar
provides a measurement of backscattering coefficient for an agricultural
soil in an initial state and for the same soil after a rainfall event. Do
these measures allow differentiating the two states of seedbed surfaces?
We answer this question and discuss simulation results taking into
account the scattering model numerical errors and the radar precision.

As an example, we consider electromagnetic configurations in C-
band. The incident wavelength is fixed at 5.6 cm, the zenith angle at
40◦ and the azimuth angle at 0◦. Table 5 lists the relative permittivity
values for eight values of the soil moisture Wg in volumetric water
contents (cm3/cm3). The relative permittivity is given by the model
presented in references [18, 19]. The bi-static scattering coefficients are
performed over 150 realizations with an area of L × L = 49λ2. The
truncation order value is fixed at 21, the spectral resolution at k+/7.
As shown in Table 1, the equivalent spatial resolution ∆xf associated
with these simulation parameters is λ/6, ∆xg is λ/12 and ∆x is λ/18,
respectively.

4.1. Surfaces of Electromagnetic Simulations

Edge effects can be present when a finite rough surface is illuminated
by a plane wave. Many authors use a tapered-wave incidence in order
to reduce the diffracted field at the edge of the surfaces [20, 21]. For
the electromagnetic simulations, the local function a(x, y) is defined
as the product of b(x, y) by w(x, y). Function b(x, y) is obtained by
filtering of a Gaussian white noise (see Section 3.3). Function w(x, y)
is a weighing window having continuous first and second derivatives [5–
7, 22]. Function w(x, y) is equal to zero outside the domain |x| , |y| >
L/2 and equal to 1 within the domain −L

2 + lt < x, y < +L
2 − lt. The

Table 5. Relative permittivities of soil moistures in volumetric water
content (cm3/cm3) at C-band.

Moisture Wg

(cm3/cm3)
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

Relative permittivity
εr = ε′r − jε′′r

ε′r 3.62 4.52 5.94 7.90 10.4 13.9 17.4 20.8
ε′′r 0.19 0.44 0.85 1.42 2.17 3.22 4.30 5.30
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length lt defines a transition zone where w(x, y) changes continuously
from 1 to 0. For the numerical simulations, lt is fixed at λ/2. As
shown in [6, 7], the use of this weighing function is effective and one
can find results obtained in the literature by other methods associated
with tapered-wave incidence.

4.2. Analysis of Numerical Errors

Because the length L and number of realizations Nr have finite
values and as the spatial resolution does not tend to zero, the results
present numerical errors [8]. For the different values of rms height
and permittivity, we quantify the errors on backscattering coefficients
obtained with the simulation parameters listed in the first line of
Table 1. For this purpose, we define a reference configuration for
which we assume that accuracy on the results is ideal. The simulation
parameters of this reference configuration are given in the second
line of Table 1. Because computing time is too high for large 2D-
surface realizations, we determine the errors on the results from
electromagnetic 2D-simulations applied to 1D-surface realizations [5]
and we assume that the errors does not change for electromagnetic
3D-simulations applied to 2D-surface realizations. Figure 3 shows the
absolute errors between the backscattering coefficients associated with
the two series of parameters for both surface states and polarizations.
This estimated error takes into account three effects: a) the effects due
to the finite value of surface area, b) the statistical error due to the
finite value of number of realizations, c) the effects due to the finite
value of spatial resolution. Errors are smaller than 0.21 dB. For the
surfaces under consideration, we can retain the simulation parameters
given in the first line of Table 1 for analyzing the backscattering signal.
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Figure 3. Absolute errors on numerical results versus the moisture
content. Simulation parameters are given in Table 1.
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The typical resolution cell of SAR systems is higher than the
surface area considered in this paper. What should be kept in mind is
that the scattering signal does not depend on the surface size as long
as the surface area is large enough to contain many correlation lengths
and many wavelengths. The backscattering coefficients are performed
over 150 realizations with an area of L × L = 49λ2. The length
L is equal to 7 wavelengths and contains more than 11 correlation
lengths. The backscattering coefficient varies very little for lengths
greater than 7 wavelengths as shown in Figure 3. Consequently, our
numerical results can be considered as good predictions of signals
measured by radar having a higher resolution cell. Nevertheless, such
an approach assumes that the soil under study is a stationary spatial
process and that the statistical properties do not change from one cell
to another. Moreover, this assumes that the ground is flat or that their
low-frequency components can be overlooked.

4.3. Influence of the Radar Precision

Figure 4 shows the backscattering coefficient as a function of soil
moisture for HH-polarization. Figure 5 shows results for V V -
polarization. For the surface under consideration, the rain has a dual
effect on the agricultural area. First, the rainfall events tend to flatten
the soils and after a rainfall, the roughness decreases. Second, under
the effect of rain, the moisture increases. On the electromagnetic point
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backscattering coefficients versus
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indicate results obtained by
Monte-Carlo simulations. Curves
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of view, these two effects are opposite. As shown in Figures 4 and 5, the
backscattering coefficient decreases with the roughness and increases
with the moisture. Nevertheless, the average difference between the
backscattering coefficients corresponding with both roughness states
is equal to 0.3 dB for both polarizations. Such a difference is not
meaningful compared to the numerical error (0.21 dB) due to finite
values of simulations parameters. For the studied configuration, the
moisture content is the discriminating parameter for the backscattering
coefficient in C-band.

The backscattering coefficient can be modelled as a function of
the moisture by:

[σ0]dB = a + bW c
g (18)

For each polarization, the values of the three parameters a, b and c
are listed in Table 6. Figures 4 and 5 show the curves obtained from
this relationship. Comparisons are good. For the configurations under
study, this relationship allows analyzing results with respect to the
radar precision.

Let us assume that the exact values [σ01]dB and [σ02]dB of the
backscattering coefficient for the two states of soil are given by
Equation (18). For a precision ∆σdB, the measured backscattering
coefficients [σm1]dB and [σm2]dB are included in the following ranges:

[σ01]dB −∆σdB ≤ [σm1]dB ≤ [σ01]dB + ∆σdB

[σ02]dB −∆σdB ≤ [σm2]dB ≤ [σ02]dB + ∆σdB
(19)

where [σ02]dB > [σ01]dB because under rain effect, the moisture content
increases. Moreover, let us assume an upper limit of moisture content
of 0.45 cm3/cm3. The differences between the measured backscattering
coefficients are meaningful if one of the following conditions is satisfied:

[σ01]dB + ∆σdB ≤ [σ02]dB −∆σdB (20a)
[σ02]dB + ∆σdB ≤ [σ01]dB −∆σdB (20b)

The condition (20a) occurs when the effect of moisture increasing due
to the rain is more important than roughness decreasing effect. The

Table 6. Parameters of relationship (18) giving the backscattering
coefficient as a function of the moisture content.

Polarization State of surface a b c

HH
1 −27.05 4.38 0.34
2 −23.68 1.90 0.49

V V
1 −24.95 2.74 0.44
2 −23.20 1.53 0.56
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condition (20b) represents the opposite case. Substituting (18) into
(20a) and (20b), we find:

Wg2 >

(
a1W

b1
g1 + c1 − c2 + 2∆σdB

a1

)1/b2

(21a)

Wg1 ≤ Wg2 ≤
(

a1W
b1
g1 + c1 − c2 − 2∆σdB

a1

)1/b2

(21b)

where Wg1 and Wg2 are the moisture contents associated with the two
roughness states. For a given value of moisture Wg1, the differences
between the measured backscattering coefficients are meaningful only
if the moisture Wg2 checks one of these two conditions (21a) or (21b).
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Figure 6. Final moisture content versus initial moisture content
(in cm3/cm3) under HH polarization. The white area is defined by
the condition (21a). Inside the gray area, the measurements of the
backscattered signal do not permit to differentiate the two states of
the agricultural soil.
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Figure 7. Final moisture content versus initial moisture content (in
cm3/cm3). Same as Figure 6 but under V V polarization.

Figure 6 shows the areas defined from (21) for four values of the
precision ∆σdB (0.25, 0.5, 0.75 and 1 dB) under HH-polarization.
Figure 7 shows results under V V -polarization. The white area is
defined by the condition (21a). For the configuration under study,
the first condition (21a) is more restrictive than the second one (21b).
If Wg1 and Wg2 are in a gray area, the conditions are not checked
and the measurements of the backscattered signal do not discriminate
between the two states of surfaces. Figures 6 and 7 clearly show that
the ability of the measurement system to differentiate seedbed surfaces
is linked to its precision. Conditions are all the more restrictive than
the value of ∆σdB increases. The condition (21a) on the final moisture
Wg2 is all the more restrictive than the initial moisture Wg1 is high.
For the configurations under study, the condition is less restrictive for
the V V -polarization.
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5. CONCLUSION

First, we implemented a consistent roughness parameterisation relying
on bidimensional surface measurement. We considered initial plots of
seedbed surfaces just after tillage. Each initial plot was submitted
to a 40mm hr−1 simulated rainfall during 30 minutes. Soil surface
DEMs measuring 50 cm by 50 cm with a fine resolution of about 1mm
in horizontal and vertical directions were used. We showed that these
seedbed surfaces can be modelled as isotropic Gaussian processes. We
showed that the autocorrelation function is well characterized by three
parameters: the rms height, the correlation length and the roughness
exponent. These parameters were estimated from the experimental
bidimensional autocorrelation function. We showed that the height
variation induced by the rainfall smoothing is meaningful in contrast
to variations of the correlation length and the roughness exponent.

Second, we studied the roughness and moisture influence upon
the direct backscattering coefficients and we discussed results taking
into account the numerical errors and the precision of radar. For
electromagnetic simulations, in agreement with the characterization of
soils, we considered that the rms height is the only roughness parameter
that changes after the rainfall event. The backscattering coefficient
was estimated by averaging the scattering amplitudes over several
realizations. For each realization, the scattering amplitudes were
obtained by the C-method. We defined a procedure in order to quantify
numerical errors on the backscattering coefficients. Errors are smaller
than 0.21 dB. Nevertheless, the difference between the backscattering
coefficients associated with the two soil states is equal to 0.3 dB for
both polarizations. Such a difference is not meaningful compared to
the numerical error. As a result, for the configuration analyzed with the
C-method, the moisture content is the discriminating parameter for the
backscattering coefficient in C-band. For a given radar precision, we
defined the conditions that must be checked by the moisture contents so
that the measurements of backscattering coefficients can differentiate
the seedbed surface in the initial state just after tillage and in the
second state after the rainfall event. Besides the moisture content
conditions, we showed that the ability of the sensor to discriminate
the state of surfaces is clearly linked to its precision.

In this paper, the roughness measurements are limited to some
plots of seedbed soils. Moreover, the soil is a loamy typic hapludalf
with moderate roughness and unmarked tillage patterns. As a result,
they can hardly be considered representative of agricultural surface
roughness changes due to rain events. Nevertheless, the approach
adopted in this paper to discuss the relevance of the values of roughness
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parameters is efficient because it allows defining the estimator bias
and its variance. This approach can be extended for others soil types.
Our middle-term objective is the construction of a database by means
of roughness and moisture content measurements, radar signatures
and electromagnetic simulations associated with different soil types
and different soil textural compositions [23, 24]. We wish to establish
from this database relationships giving the backscattering coefficients
as functions of incidence parameters (incidence angle, frequency) and
soil parameters. Such relationships used for multifrequency or angle
configurations will be useful for retrieving soil moisture and surface
roughness with consideration of sensor precision [25–28].
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based approach for clods identification and characterization on a
soil surface,” Soil and Tillage Research, Vol. 109, No. 2, 123–132,
2010.

14. Blaes, X. and P. Defourny, “Characterizing bidimensional
roughness of agricultural soil surfaces for SAR modelling,” IEEE
Trans. Geosci. Remote Sensing, Vol. 46, No. 12, 4050–4061, 2008.

15. Marzahn, P. and R. Ludwig, “On the derivation of soil surface
roughness from multi parametric PolSAR data and its potential
for hydrological modelling,” Hydrology Earth System Sciences,
Vol. 13, No. 6, 381–394, 2009.

16. Wu, S. C., M. F. Chen, and A. K. Fung, “Scattering from non-
Gaussian randomly rough surfaces — Cylindrical case,” IEEE
Trans. Geosci. Remote Sensing, Vol. 26, No. 6, 790–798, 1988.

17. Fung, A. K. and M. F. Chen, “Numerical simulation of scattering
from simple and composite surface,” J. Opt. Soc. Am. A, Vol. 2,
No. 12, 2274–2283, 1985.

18. Wang, J. R. and T. J. Schmugge, “An empirical model for the
complex dielectric permittivity of soils as a function of water
content,” IEEE Trans. Geosci. Remote Sensing, Vol. 18, No. 4,
288–295, 1980.

19. Tsang, L., J. A. Kong, K. H. Ding, and C. O. Ao, Scattering
of Electromagnetic Waves — Numerical Simulations, Wiley-
Interscience, New-York, 2001.

20. Thorsos, E. I., “The validity of the Kirchhoff approximation for
rough surface scattering using a Gaussian roughness spectrum,”
J. Acoust. Soc. Am. A, Vol. 82, No. 4, 78–92, 1989.



Progress In Electromagnetics Research, Vol. 125, 2012 437

21. Johnson, J. T., “Surface currents induced on a dielectric half-space
by a Gaussian beam: An extended validation for point matching
method of moment codes,” Radio Sci., Vol. 32, No. 3, 923–934,
1997.

22. Spiga, P., G. Soriano, and M. Saillard, “Scattering of
electromagnetic waves from rough surfaces: A boundary integral
method for low-grazing angles,” IEEE Trans. Antennas and Prop.,
Vol. 56, No. 7, 2043–2050, 2008.

23. Li, J., L.-X. Guo, and H. Zeng, “FDTD method investigation on
the polarimetric scattering from 2-D rough surface,” Progress In
Electromagnetics Research, Vol. 101, 173–188, 2010.

24. Guo, L.-X., Y. Liang, J. Li, and Z.-S. Wu, “A high order integral
SPM for the conducting rough surface scattering with the tapered
wave incidence-TE case,” Progress In Electromagnetics Research,
Vol. 114, 333–352, 2011.

25. Zribi, M. and M. Dechambre, “A new emperical model to retrieve
soil moisture and roughness from C-band radar data,” Remote
Sensing Env., Vol. 84, 42–52, 2002.

26. Singh, D. and A. Kathpalia, “An efficient modeling with GA
approach to retrieve soil texture moisture and roughness from
ERS-2 SAR data,” Progress In Electromagnetics Research, Vol. 77,
121–136, 2007.

27. Mittal, G. and D. Singh, “Critical analysis of microwave
scattering response on roughness parameter and moisture content
for periodic rough surfaces and its retrieval,” Progress In
Electromagnetics Research, Vol. 100, 129–152, 2010.

28. Prakash, R., D. Singh, and N. P. Pathak, “The effect of soil
texture in soil moisture retrieval for specular scattering at C-
band,” Progress In Electromagnetics Research, Vol. 108, 177–204,
2010.


