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Abstract—In the previous works, based on winding function theory,
the calculation of reluctance machine inductances is carried out
using numerical integration or inexact analytical equations based on
approximated Fourier series expansions of the inverse air gap function.
In this paper, development in Fourier series of the inverse air gap
function has not been used, but a closed form analytical equation is
developed for inductances calculation. This leads to a very precise
computation of the inductances of the faulted machine and more
accurate results. Moreover, all space harmonics ignored by the Fourier
series expansions of the inverse air gap function will be included
in the model. Derived comprehensive equation allows calculating
time varying inductances of reluctance machines with different static,
dynamic and mixed eccentricities in the frame of a single program.
Inductances obtained by the proposed method are compared to those
obtained from FE results. A satisfactory match was found between
them.

1. INTRODUCTION

The mechanical faults are responsible for more than 50% of all failures
in electrical machines. The most important mechanical fault is
eccentricity [1]. Machine eccentricity is the condition of unequal air
gap that exists between the stator and rotor. Many electrical and
mechanical faults in the no-load operation of the motor lead to the
eccentricity between the rotor and stator [2]. Relatively small amount
of eccentricity can have a significant impact on the operational life of
bearings.
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So far, magnetic equivalent circuit, finite element and winding
function approaches have been used for modeling and analysis of
electrical machines with different kinds of faults. Magnetic equivalent
circuit method needs shorter computation time compared with the
finite element method, but it is less accurate. In this method,
the magnetic equivalent circuit is introduced for all sections of the
machine [3, 4]. Studying faulty electrical machines needs precise
mathematical models and this method is not capable to diagnose the
fault in the real cases [1, 2]. The finite element method is based on
the magnetic field distribution and is suitable tool for analysis of
faulty machines considering complicated and non-linear behavior of the
machine [5]. Although, this approach gives accurate results, however
this method is time consuming especially for the analysis of electrical
machines with asymmetry in the motor body such as eccentricity.
Moreover it requires an extensive characterization of the machine, for
example, electromagnetic properties of all the materials making up the
machine and the physical geometry [1, 5–9].

Winding function approach is based on the basic geometry and
winding layout of machine [10]. The only information required
in winding function approach is the winding layout and machine
geometry. One advantage of this method is that the study of the
behavior of any machine with any winding distribution and air gap
length is possible. Hence this method has found application in the
analysis of fault conditions in machines, such as broken rotor bars [11]
and fault condition in stator windings [12]. The modified winding
function approach (MWFA) for asymmetrical air gap in a salient pole
synchronous machine has been proposed in [13]. This theory has
been applied to analyze static, dynamic and mixed eccentricity in
induction and synchronous machines [14–18]. An essential step of
this method is the calculation of machine inductances. Many have
calculated these inductances by taking into account the influence of
spatial harmonics due to winding distribution and slotting effect. An
accurate inductances calculation is necessary to improve the accuracy
of the analysis of electrical machines.

In the previous works, based on winding function theory,
the calculation of reluctance machine inductances is carried out
using numerical integration or inexact analytical equations based
on approximated Fourier series expansions of the inverse air gap
function [19–23]. In this study, development in Fourier series of
the inverse air gap function has not been used, but a closed form
analytical equation is obtained. It is clear that the proposed technique
decreases the time and computation process and leads to more accurate
results. Derived analytical equation prevents the imprecision caused
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by numerical differentiations. The proposed method allows calculating
time varying inductances of reluctance machines with different static,
dynamic and mixed eccentricities in the frame of a single program.

The author in the previous works modeled induction machines and
synchronous machines under different eccentricity conditions utilizing
winding function approach [17, 18, 24]. In this paper, analytical
expressions for inductances and their derivatives are established.

The contributions of the present paper includes: 1) Introducing
a precise geometrical model of reluctance machines under general
eccentricity fault; including static, dynamic and mixed eccentricities,
2) Defining the inverse air gap function of the eccentric reluctance
machine and determining its indefinite integral, 3) Developing a new
closed form analytical expression for calculation of reluctance machine
inductances under different types of eccentricities and 4) Determining
an analytical expression for derivative of inductances.

2. WINDING FUNCTION ANALYSIS

An elementary reluctance machine scheme is presented in Fig. 1.
There are no restrictions about windings distribution for the

analysis. Furthermore, restrictions over the air gap eccentricity are not
assumed. Starting from an arbitrary closed path abca, a modification
of the winding function approach which considers the air gap non-
uniformity derives [13].

Points a and c are located on the stator while b is located on the
rotor. By applying the Ampere’s law over the closed path, shown in
Fig. 1 and using Gauss’s law for magnetic field, the modified winding

Figure 1. Cross section of a reluctance synchronous machine.
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function (MWF) can be expressed as in (1) [13]

M (ϕ, θ) = n (ϕ, θ)−
∫ 2π
0 g−1 (ϕ, θ)n (ϕ, θ)dϕ∫ 2π

0 g−1 (ϕ, θ)dϕ
(1)

where, ϕ is arbitrary angle in stator reference frame, θ is rotor position
angle and g−1 is inverse air gap function. The function n(ϕ, θ) is called
the turns function. This function represents the number of the winding
turns enclosed by the closed path. The permeability of the stator
and rotor iron cores is assumed to be infinite when compared to the
permeability of the air gap. When the air gap distribution is uniform,
(1) can be simplified as follows:

M (ϕ, θ) = n (ϕ, θ)− < n (ϕ, θ) > (2)

Operator < f > is defined as the mean of function f over [0 −2π].
However, (2) is not valid for a non-uniform air gap. For analysis of
reluctance machines which have non-uniform air gap, (1) should be
used. Magnetomotive force distribution in the air gap, produced by
current iA of winding A, can simply be found by product of M(ϕ, θ)
from (1) and the current flowing in the winding.

FA (ϕ, θ) = MA(ϕ, θ)iA (3)

The differential flux through a differential area in the air gap,
lrdϕ, can be written as follows:

dϕ = FA (ϕ, θ)
µ0lrdϕ

g (ϕ, θ)
(4)

where, r is mean radius and l is axial stack length of the machine.
Integrating the differential flux in the region covered by either a stator
coil or rotor coil, yields:

ϕBA = µ0lr

∫ ϕ2

ϕ1

FA (ϕ, θ) g−1 (ϕ, θ) dϕ (5)

nB(ϕ, θ) is equal to the coil turns in the region (ϕ1 < ϕ < ϕ2) and
zero otherwise. Therefore the total flux linking coil B due to current
in winding A, λBA, is obtained from multiplying (5) by nB(ϕ, θ) and
integrating it over the whole surface.

λBA = µ0lr

∫ 2π

0
nB (ϕ, θ) FA (ϕ, θ) g−1 (ϕ, θ) dϕ (6)

The mutual inductance of windings A and B, due to current ia in
the coil A (LBA), is

LBA =
λBA

iA
(7)
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Therefore, the general expression for mutual inductance between
any two windings A and B in any electrical machine is

LBA = µ0lr

∫ 2π

0
nB(ϕ, θ)MA(ϕ, θ)g−1(ϕ, θ)dϕ (8)

Inductances of salient pole machine can be calculated from (8)
using geometrical characteristic of the machine. Mechanical
asymmetry and faults of stator and rotor windings can be simulated
by this technique.

3. MODELING OF DIFFERENT KINDS OF
ECCENTRICITIES IN RELUCTANCE MACHINES

In an ideal machine, three geometric axes; stator (As), rotor (Ar) and
rotation (Ac) coincide with each other. The occurrence of eccentricity
means the displacement of stator geometric axis and rotor geometric
axis. Obviously, the winding functions of the machine windings
don’t change in eccentricity conditions compared to the symmetrical
conditions. However, the function of the air gap length will change
with respect to the symmetrical case.

There are three types of air gap eccentricity; Static, dynamic and
mixed eccentricity [4]. Static eccentricity (SE) occurs when the rotor
rotates about its own centerline, but this centerline does not coincide
with that of the stator bore. Static eccentricity in an elementary
reluctance machine is presented in Fig. 2.

The air gap length variation under SE for salient pole synchronous
machines can be described by air gap functions in polar and interpolar

Figure 2. Static eccentricity in a
reluctance machine.

Figure 3. Dynamic eccentric-
ity in a reluctance machine.
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regions as follows:

gd (ϕ,ϕs, δs) = g0 (1− δscos (ϕ− ϕs)) (9)
gq (ϕ,ϕs, δs) = g1 (1− δscos (ϕ− ϕs)) (10)

where the subscripts d and q refer to the polar and inter-polar regions,
respectively. δs is static eccentricity coefficient, ϕs is angle at which
rotation and stator axes are separated and g0 and g1 are effective air
gap length in polar and interpolar regions, respectively. The stator
slots effect is included by Carter’s coefficient referred to the slots [25].

Dynamic eccentricity (DE) occurs when the rotor geometric center
is not at the center of rotation, producing consequently an air gap
periodic variation as a rotor position function. Fig. 3 shows dynamic
eccentricity in a reluctance machine.

The air gap length variation under DE for reluctance machines
can be described by air gap functions in polar and interpolar regions
as follows:

gd (ϕ,ϕs, δs) = g0 (1− δdcos (ϕ− ϕd) ) (11)
gq (ϕ,ϕs, δs) = g1 (1− δdcos (ϕ− ϕd) ) (12)

where δd is dynamic eccentricity coefficient and ϕd is angle at which
rotation and rotor axes are separated.

In mixed eccentricity (ME) both rotor and rotation axes are
displaced individually in respect to the stator axis. Mixed eccentricity
in a reluctance synchronous machine is presented in Fig. 4.

In ME condition, air gap function can be represented by

gd = g0 (1− δscos (ϕ− ϕs) − δdcos (ϕ− ϕd)) (13)
gq = g1 (1− δscos (ϕ− ϕs) − δdcos (ϕ− ϕd)) (14)

Through geometric analysis on Fig. 4, it is straight forward to
show that

sin(ϕm − ϕs) =
δd sin(ϕd − ϕs)

δ
(15)

Therefore

ϕm = ϕs + sin−1

(
δd sin(ϕd − ϕs)

δ

)
(16)

and
δ =

[
δs

2 + δd
2 + 2δsδd cos(ϕd − ϕs)

] 1
2 (17)

where δ is general eccentricity factor and ϕm is angle at which rotor
and stator centers are separated. In the case of SE, δd = 0 and in
DE, δs = 0.
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Figure 4. Mixed eccentricity in a reluctance machine.

4. ANALYTICAL EXPRESSIONS FOR INDUCTANCES
AND THEIR DERIVATIVES

Calculation of inductances by (8) requires that explicit expressions
for the inverse air gap function be obtained. Generally, in
calculating salient pole machine inductances, approximated Fourier
series expansions of the inverse air gap function are used. To enhance
the accuracy of calculated inductances, more terms of Fourier series
expansion must be included. This makes the calculation more complex.

In this investigation, analytical expressions for inductances of
eccentric reluctance synchronous machines and their derivatives are
derived without any development in Fourier series. It is clear that the
proposed technique decreases the time and computation process and
leads to more accurate results.

To obtain the analytic equations, it is assumed that the functions
fd and fq are indefinite integrals of the functions g−1

d () and g−1
q (),

respectively as follows:

fd (ϕ,ϕm, δ) =
∫

g−1
d (ϕ,ϕm, δ) dϕ =

∫
1

g0(1− δ cos(ϕ− ϕm))
dϕ (18)

fq (ϕ,ϕm, δ) =
∫

g−1
q (ϕ,ϕm, δ) dϕ =

∫
1

g1(1− δ cos(ϕ− ϕm))
dϕ (19)

These expressions are elaborated to yield

fd (ϕ,ϕm, δ) =
1

g0

√
1− δ2

cos−1

(
cos (ϕ− ϕm)− δ

1− δcos (ϕ− ϕm)

)
(20)

fq (ϕ,ϕm, δ) =
1

g1

√
1− δ2

cos−1

(
cos (ϕ− ϕm) − δ

1− δ cos(ϕ− ϕm)

)
(21)

It is assumed that the functions f1 and f2 to be the definite
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integrals as follows:

f1 (ϕm, θ, δ) =
∫ 2π

0
g−1(ϕ,ϕm, θ, δ)dϕ (22)

f2 (ϕm, θ, δ) =
∫ 2π

0
g−1 (ϕ,ϕm, θ, δ) nb(ϕ)dϕ (23)

The air gap functions in polar and interpolar regions are described
by gd and gq, respectively. Separating the associated terms of polar
and interpolar regions and referring to Fig. 5, (22) results in

f1 (ϕm, θ, δ) =
p∑

i=1

(∫ θ+iθd+(i−1)θq

θ+(i−1)θd+(i−1)θq

g−1
d (ϕ,ϕm, δ) dϕ

+
∫ θ+iθd+iθq

θ+iθd+(i−1)θq

g−1
q (ϕ,ϕm, δ) dϕ

)
(24)

where θ is rotor position angle in stator reference frame.
Using the definitions given in (18) and (19), f1 can be obtained.

f1 (ϕm, θ, δ)

=
p∑

i=1

(fd (θ+iθd+(i−1) θq, ϕm, δ)−fd (θ+(i−1) θd+(i−1) θq, ϕm, δ)

+fq (θ + iθd + iθq, ϕm, δ)− fq (θ + iθd + (i− 1) θq, ϕm, δ)) (25)
where fd and fq are calculated from (20) and (21). In a similar way, f2

is calculated in the whole range of ϕ. Function f is defined as follows:

f (ϕm, θ, δ) =
f2 (ϕm, θ, δ)
f1 (ϕm, θ, δ)

(26)

Figure 5. Cross section of an elementary reluctance machine [19].
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Considering (1), (22), (23) and (26), MWF of stator phase b, Mb,
is derived as

Mb (ϕ,ϕm, θ, δ) = nb (ϕ)− f (ϕm, θ, δ) (27)

Replacing (27) in (8) and separating the associated terms of polar
and interpolar regions, Lab is obtained as follows:

Lab =

µ◦ lr

p∑

i=1

[∫ θ+iθd+(i−1)θq

θ+(i−1)θd+(i−1)θq

g−1
d (ϕ,ϕm, θ, δ)na (ϕ)(nb(ϕ)−f(ϕm, θ, δ))dϕ

+
∫ θ+iθd+iθq

θ+iθd+(i−1)θq

g−1
q (ϕ, ϕm, θ, δ) na (ϕ) (nb (ϕ)− f (ϕm, θ, δ))dϕ

]
(28)

where a and b are accounted for the stator phases. It is assumed that,
ϕx2k−1

to ϕx2k
are the stator slots being in polar region (ϕx2k

−ϕx2k−1
=

θd) and ϕx2k
to ϕx2k+1

are the stator slots being in interpolar region
(ϕx2k+1

− ϕx2k
= θq). Therefore

Lab =

µ◦ lr

p∑

k=1




i=x2k∑

i=x2k−1

na (ϕti)(nb (ϕti)−f(ϕm, θ, δ))
∫ ϕi+1

ϕi

g−1
d (ϕ,ϕm, δ) dϕ

+
i=x2k+1∑

i=x2k

na (ϕti) (nb (ϕti)− f (ϕm, θ, δ))
∫ ϕi+1

ϕi

g−1
q (ϕ,ϕm, δ) dϕ


 (29)

where ϕi is angle of stator slot i center, ϕti is angular position between
stator slot i and stator slot i+1 (angle of stator tooth i). ϕx2k−1

, ϕx2k

and ϕx2k+1
can be easily determined at every time step of simulation.

Considering (18) and (19), Lab is obtained as follows:

Lab = µ ◦ lr

p∑

k=1




i=x2k∑

i=x2k−1

[na(ϕti)(nb(ϕti)−f(ϕm, θ, δ))(fd (ϕi+1, ϕm, δ)−fd(ϕi, ϕm, δ))]+
i=x2k+1∑

i=x2k

na(ϕti)(nb(ϕti)−f(ϕm, θ, δ))(fq(ϕi+1, ϕm, δ)−fq(ϕi, ϕm, δ))


(30)

where fd and fq are calculated from (20) and (21), respectively.
Functions f, fq and fd depend on θ because ϕm and δ are θ-

dependent. Therefore, the derivative of Lab versus θ is determined as
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Table 1. Specifications of the simulated machine.

Pole arc (degrees) 57

Inner radius of stator (mm) 80

Air gap length (mm) 0.6

Active axial length (mm) 130

Number of turns per slot 20

Number of stator slots 30

Stator slot pitch (degrees) 12

Rotor outer radius (mm) 79.4

follows:

∂Lab

∂θ
= µ ◦ lr

p∑

k=1

[
i=x2k∑

i=x2k−1

[
na (ϕti) (nb (ϕti)− f (ϕm, θ, δ))

(
∂fd (ϕi+1, ϕm, δ)

∂θ
− ∂fd (ϕi, ϕm, δ)

∂θ

)
−na (ϕti)

∂f (ϕm, θ, δ)
∂θ

(fd (ϕi+1, ϕm, δ)− fd (ϕi, ϕm, δ))

]
+

i=x2k+1∑

i=x2k

[
na (ϕti)

(nb (ϕti)− f (ϕm, θ, δ))
(

∂fq (ϕi+1, ϕm, δ)
∂θ

− ∂fq (ϕi, ϕm, δ)
∂θ

)

−na (ϕti)
∂f (ϕm, θ, δ)

∂θ
(fq (ϕi+1, ϕm, δ)−fq (ϕi, ϕm, δ))

]]
(31)

Derived analytical equation prevents the imprecision caused by
numerical differentiations.

5. COMPUTATION OF INDUCTANCES

In this section, the inductances of a reluctance synchronous machine
whose parameters are given in Table 1, are computed under healthy and
different eccentricity conditions. Inductances are calculated by means
of obtained analytical equation and determined geometrical models. It
should be noted that magnetic saturation and leakage flux have not
been considered.
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(a) (b)

Figure 6. (a) Calculated magnetizing inductance of stator phase A
and (b) mutual inductance between stator phase A and stator phase
B under different SE conditions.

(a) (b)

Figure 7. (a) Calculated magnetizing inductance of stator phase A
and (b) mutual inductance between stator phase A and stator phase
B under different DE conditions.

The profiles of magnetizing inductance of stator phase A and
mutual inductance between phase A and B of stator under different
eccentricity conditions are shown in Figs. 6, 7 and 8. Comparison of
plots in these figures show how SE, DE and ME affect the profile
of magnetizing and mutual inductances. ME causes asymmetrical
magnetizing and mutual inductances, whereas, DE and SE cause
symmetrical inductances. In the cases of DE and SE, by increasing the
eccentricity severity, the magnitude of these inductances increases. The
rate of increase of the magnetizing inductance is higher than that of the
mutual inductance. Referring to Fig. 8 it is seen that the asymmetry
occurred in the magnetizing inductance in the case of ME is higher
than that of the mutual inductance.
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(a) (b)

Figure 8. (a) Calculated magnetizing inductance of stator phase A
and (b) mutual inductance between stator phase A and stator phase
B under different ME conditions.

Table 2. Specifications of a reluctance synchronous machine [19].

Pole arc/pole pitch 0.57
Inner radius of stator (mm) 40.3

Air gap length (mm) 0.3
Active axial length (mm) 75
Number of turns per slot 58
Number of stator slots 36

Stator slot pitch (degrees) 10
Rotor outer radius(mm) 40

6. COMPARISON WITH FINITE ELEMENT RESULTS

In order to validate the proposed method, the inductances of a
reluctance synchronous machine whose parameters are given in the
Table 2, is compared with FE results. A 2-D finite element analysis
was used to determine the inductances of stator windings [19]. The
magnetic saturation was neglected in order to match the winding
function model which considers infinite permeability.

The plots of magnetizing inductance of stator phase A and mutual
inductance between stator phase A and stator phase B obtained from
FE method and proposed method are shown in Figs. 9 and 10.

The results from the FE method, shown in Fig. 9, can be compared
with those in Fig. 10, obtained by the proposed method. The small
ripple which is present in the inductances profiles in Fig. 10 is due
to MMF variations across the slots. Minimum and maximum values
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Table 3. Minimum and maximum values of inductances from two
methods (proposed method — FE method).

max-value (Henry) min-value (Henry)
Lsaa 0.263–0.275 0.175–0.180
Lsab 0.043–0.039 −0.21–−0.215

Figure 9. Self inductance of stator phase A (a) and mutual inductance
between stator phase A and stator phase B (b) using FE method [19].

(a) (b)

Figure 10. (a) Calculated self inductance of stator phase A and (b)
mutual inductance between stator phase A and stator phase B using
proposed technique.

of inductances from two methods are summarized in Table 3. The
comparison indicates a good agreement between these two results.
The main reason for good agreement between the proposed method
results and the FE results is that in the proposed method, development
in Fourier series of the inverse air gap function has not been used,
but closed form equations are employed for inductances calculation.
With this approach, all space harmonics ignored by the Fourier series
expansions of the inverse air gap function will be included in the model.
The author plans to apply the calculated inductances in a coupled
electromagnetic model of reluctance synchronous machine in the future
for fault analysis.
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7. CONCLUSION

In this paper, for calculation of reluctance synchronous machine
inductances under different eccentricity conditions, a novel closed form
analytical expression is developed. For this purpose, the inverse air gap
function of the eccentric reluctance machine has been defined and its
indefinite integral has then been determined. Derived comprehensive
equation allow calculating time varying inductances of reluctance
machines with different static, dynamic and mixed eccentricities in
the frame of a single program. The comparison between the proposed
method and FEM results indicates a good agreement between these
two results. The main reason for good agreement is that in the
proposed method, development in Fourier series of the inverse air gap
function has not been used, but a closed form equation is employed
for inductances calculation. This leads to a very precise computation
of the inductances of the faulted machine and more accurate results.
Moreover, all space harmonics ignored by the Fourier series expansions
of the inverse air gap function will be included in the model. The
calculated inductances can be applied in a coupled electromagnetic
model of reluctance synchronous machine for fault analysis.
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