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Abstract—We investigate experimentally the collisions of nonlinear
envelope pulses in a left-handed transmission line with regularly spaced
Schottky varactors. By measuring the test line, we successfully
observed that when two nonlinear envelope pulses traveling in opposite
directions collide, two new envelope pulses are developed. These new
pulses satisfy the phase-matching condition, and their carrier wave
frequencies are the sum of the carrier wave frequencies of the original
pulses. This article describes the experimental observations, together
with the fundamental properties and numerical performance prospects
of the test line.

1. INTRODUCTION

Recently, it was found that the collision of two nonlinear envelope
pulses in composite right- and left-handed (CRLH) transmission lines
periodically loaded with Schottky varactors leads to the development
of a pair of envelope pulses (one traveling in the forward direction and
the other in the backward direction) [1]. CRLH lines [2] are able to
manage the dispersive properties of propagating waves [3, 4]. They
have also received attention as the platform for the development of
nonlinear envelope pulses [5–10]. The dispersion of CRLH lines can be
compensated by the nonlinearity introduced by the varactors, resulting
in a soliton-like envelope pulse. The collision-generated pulses can
widen the application of nonlinear pulses in microwave and millimeter-
wave engineering.

It is well known [11] that the efficiency of harmonic-wave
generation in two-wave mixing is maximized, when the phase-matching
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condition is satisfied. This condition is given by

k3 ∼ m1k1 + m2k2, (1)

where k1 and k2 represent the wave numbers of incident waves, and
k3 represents the wave number of the newly generated harmonic wave.
Moreover, m1 and m2 are integers that are specified by the order of
the generated harmonics. When the incident pulses have a common
carrier frequency and are traveling in opposite directions, it results
in the condition k1 = −k2. Hence, the maximal second harmonic
generation can be observed when k3 ∼ 0. Consider the dispersion
relationship of CRLH lines. For left-handed waves, there exists an
upper-most cut-off frequency, called ωl, which corresponds to a wave
number of zero. Hence, nonlinear pulses having a carrier frequency of
∼ ωl/2 can generate second harmonic pulses effectively using collisions.
On the other hand, in the case when the carrier frequencies of two
colliding pulses become unequal, the second harmonic envelope pulse
travels mainly to the left (right) if k3 > (<)0. In addition, the carrier
frequency of the collision-generated pulses is the sum of the frequencies
of the original pulses.

The purpose of this paper is to experimentally validate these
calculations in relation to the collision-generated pulses. It is desirable
that we can fix erroneous operations by reformation of the test circuit
and detect easily voltages at any cells. We thus employed a standard
breadboard. As a penalty of the advantages, the experiments had
to be carried out at MHz frequencies, being much smaller than
the frequencies at which the left-handed lines are utilized in free-
space applications such as the new-type leaky-wave antenna discussed
previously [1]. Moreover, we eliminated the series inductors from the
test line to minimize the wave attenuation caused by the parasitic
resistors. As a result, the test line did not exhibit right-handedness at
any frequency bands. On the other hand, we could observe clearly the
fundamental properties of the collision-generated pulses including the
efficiency of the phase-matching condition.

First, we describe the fundamental properties of the test line
used for the experiments, including the line structure, equivalent
representation, and dispersion relationship. We then describe several
results obtained by the experiments. We observed the development
of collision-generated pulses. Furthermore, the relationship between
the wave numbers and carrier frequencies for the colliding and
newly developed pulses was evaluated to examine whether the phase-
matching condition determines the properties of the newly developed
pulses.
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2. FUNDAMENTAL PROPERTIES OF THE TEST
LEFT-HANDED LINE

Figure 1(a) shows the representation of the unit cell for the test line we
investigated experimentally. The series capacitor and shunt inductor
are represented by CL and LL, respectively. Ri shows the parasitic
resistance of the inductors. As mentioned above, the dispersion
relationship of the test line does not have the right-handed branch,
which appears in the CRLH lines’ dispersion relationship. To introduce
the nonlinearity, the shunt capacitor is replaced with a Schottky
varactor CR, whose capacitance-voltage relationship is generally given
by

C(V ) =
C0(

1− V
VJ

)M
, (2)

(a) (b)

(c)

Figure 1. Properties of the test left-handed line. (a) The unit-cell
structure, (b) the dispersion relationship, and (c) the photograph of
the test line investigated experimentally. In Fig. 1(b) the wave number
corresponding to the points A, B, and C is represented by kA, kB, and
kC , respectively.
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where V represents the terminal voltage and C0, VJ , and M are
the zero-bias junction capacitance, junction potential, and grading
coefficient, respectively. We consider a situation where each Schottky
varactor was biased at −V0(V0 > 0). For convenience, we define C

(0)
R

as C
(0)
R ≡ C(−V0) = C0/(1 + V0/VJ)M .
Using these variables, the long-wavelength dispersion relationship

ω = ω(k) is expressed as [12]

ω(k) =
1√

CLLL

(
C

(0)
R

CL
+ k2 − k4

12 + k6

360

) , (3)

where ω and k represent the angular frequency and wave number,
respectively. Fig. 1(b) shows the sample dispersion relationship
obtained using the line parameters listed in Table 1 and setting V0

to 3.0V. The line has a cut-off frequency fu, which corresponds to the
zero wave number, and exhibits a left-handed property. Presently, fu

is calculated to be 2.9 MHz.

3. EXPERIMENTS

Figure 1(c) shows the photo of a one-dimensional left-handed line used
for the measurements. The circuit was built on a standard breadboard.
The Schottky varactors used were TOSHIBA 1SV101 diodes. Shunt
inductances and series capacitances were implemented using 100µH
inductors (TDK EL0405) and 47 pF capacitors (TDK FK24C0G1),
respectively. The values in Table 1 simulate the test line, which was
fed by pulse signals generated by an NF WF1974 two-channel arbitrary
waveform generator. An envelope pulse with a triangle waveform were
input at both ends of the line, and the pulse widths were set to include
20 cycles of the carrier sinusoidal wave. The pulse’s bandwidth was
in most cases 0.2 MHz for the frequencies we used. The signals along
the test line were detected using Agilent 10073C passive probes and
were monitored in the time domain using an Agilent DSO90254A
oscilloscope. The test line was already validated to ensure that it

Table 1. Line parameters used for numerical evaluations of the test
line.

CL 47 pF M 1.26
LL 100µH VJ 3.6 V
Ri 20.0Ω C0 65 pF
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has the expected dispersive properties [12]. As expected, the parasitic
resistance of the inductors was significant; therefore, the attenuation
constant was estimated to be 1.5× 10−2 nepers/cell. This attenuation
results in limited contribution of nonlinearity.

We first tried to detect the collision-generated pulses. We set V0

to 3.0 V. Envelope pulses having carrier frequencies of 1.25 MHz and
1.40MHz were applied at the left and right ends, respectively. Hence,
the right- and left-going pulses occupy the points A and B, respectively,
in Fig. 1(b). The sum-frequency (= 2.65MHz) corresponds to point
C. The wave numbers kA, kB, and kC were calculated to be 1.98, 1.62,
and 0.36 rad/cell, respectively. This means that the phase-matching
condition was well satisfied, i.e., kA−kB ∼ kC . Moreover, the collision-
generated pulse was supposed to travel to the right. The total cell
number was set to 105. Although this cell number was sufficiently small
to avoid excessive wave attenuation which disables the nonlinearity,
the small cell number made it difficult to secure the time window
to differentiate between the incident and collision-generated pulses.
However, there was sufficient separation between these two pulses in
the frequency domain because the collision-generated pulses have a
sum-frequency carrier. We therefore performed the Fourier-transform
operation on the measured temporal waveforms and operate band-pass
filters to separate the incident and collision-generated pulses in the
frequency domain. Then, the separated time-domain waveforms were
obtained by inverse Fourier transform.

Figure 2 shows the measurement results. Six different spatial
waveforms are plotted with temporal increments of 2.0µs. The red
and blue waveforms represent the incident and collision-generated
pulses, respectively. In Fig. 2(a), the right- and left-going incident
pulses start to collide. It was found that longer-wavelength pulses
are consistently generated by collisions and start to travel to the
right, as we can see in Figs. 2(b)–(f), where arrows are attached to
the collision-generated pulses. We performed the Fourier-transform
operation on the measured spatial waveform and obtained Fig. 3.
Three peaks in the spectrum corresponded to the carrier waves of
the incident and collision generated pulses. The wave numbers of the
left- and right-going incident pulses were estimated to be 1.56 rad/cell
and 1.86 rad/cell, respectively. Moreover, the collision-generated pulse
had the wave number of 0.30 rad/cell, which was coincident with
the difference between the wave numbers of the left- and right-going
incident pulses.

We then varied the carrier frequency of the pulse applied to the
left end called fr, from 1.0 MHz to 1.8 MHz with 0.05 MHz increments,
while the carrier frequency was kept fixed at 1.4 MHz for the pulse
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Figure 2. Measured spatial waveforms. The red and blue waveforms
represent the incident and collision-generated pulses, respectively. The
figures are in order of increasing time with 2.0-µs increments.

applied to the right end. To characterize the collision-generated
pulses, we use two quantities: the spectral power and the central
frequency. These two are respectively defined by P =

∫ ft

fb
|S(f)|df and

fc =
∫ ft

fb
f |S(f)|df/P , where S(f) represents the Fourier amplitude of

the frequency f . In addition, fb and ft are respectively the lower and
higher cutoff frequencies of the band-pass filter used to extract the
Fourier components corresponding to the collision-generated pulses.
The black curves in Figs. 4(a) and (b) represent P and fc, which
were obtained by recording and Fourier-transforming the waveforms
at n = 50. The dashed line in Fig. 4(b) represents the positions
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Figure 3. Measured wave numbers. k1 and k2 represent the wave
numbers of the left- and right-going incident pulses, and k3 represents
that of the collision-generated pulse.

(a) (b)

Figure 4. Collision of nonlinear envelope pulses, whose carrier
frequencies differ from each other. The carrier frequency of the
leftgoing pulse is fixed at 1.4MHz, while that of the right-going pulse
is varied from 1.0 MHz to 1.8MHz with 0.05-MHz increments. (a) The
spectral power and (b) the central frequency of the collision-generated
pulses. Black and red curves represent the measured and calculated
dependences, respectively.

of the sum-frequency. We can see that P becomes significant from
fr = 1.2MHz to 1.55 MHz and maximal at fr = 1.45MHz. For
these frequencies, fc becomes close to the sum-frequency line. For
fr ≥ 1.5MHz, the sum-frequency may surpass fu, such that the
collision-generated pulses have to be strongly suppressed. This results
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in an abrupt decrease in P between fc = 1.45 and 1.5 MHz. On
the other hand, for fr < 1.2MHz, the corresponding wave number
becomes much larger than that at fr = 1.4MHz. Therefore, the phase-
matching condition cannot be satisfied, irrespective of what frequencies
are included in the pulse bandwidth.

The black curves in Fig. 5 represent another measured frequency
dependence of P and fc. Presently, the carrier frequencies of the
incident pulses frl are varied from 1.26 to 1.54 MHz with 0.01 MHz
increments such that both the right- and left-going pulses have an
identical frequency. As in Fig. 4, Figs. 5(a) and (b) show P and fc

that are obtained by recording and Fourier-transforming waveforms
at n = 50. The dashed line in Fig. 5(b) corresponds to the
second harmonic frequency. We can see that P becomes maximal at
frl = 1.43MHz, where fc coincides exactly with the second harmonic
frequency. Moreover, for frl < (>)1.43 MHz, fc becomes greater (less)
than the second harmonic frequency. The small discrepancy between fc

and the second harmonic frequency suggests that the proper frequency
components of the incident pulses contribute to the generation of
second harmonic pulses. The black curves in Figs. 6(a) and (b) show
the measured dependence of P and fc on V0. Both the right- and
left-going incident pulses have a 1.4-MHz carrier frequency. We can
see that P becomes maximal at V0 = 3.0V, which suggests that at
this bias voltage, phase matching is mostly satisfied. For other bias
voltages, fu becomes varied. This alteration in dispersion results in the
violation of the phase matching condition and explains the decrease in

(a) (b)

Figure 5. Collision of nonlinear envelope pulses having identical
carrier frequency. (a) The spectral power and (b) the central frequency
of the collision-generated pulses. Black and red curves represent the
measured and calculated dependences, respectively.
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(a) (b)

Figure 6. Properties of collision-generated pulses for different bias
voltages. The carrier frequencies of left- and right-going pulses are both
set to 1.4 MHz. (a) The spectral power and (b) the central frequency
of the collision-generated pulses. Black and red curves represent the
measured and calculated dependences, respectively.

P for these bias voltages. In Fig. 6(b), fc increases as V0 increases. The
carrier frequency of the collision-generated pulses can be managed by
changing V0.

4. DISCUSSION

To predict the behavior of collision-generated pulses, we numerically
solve the transmission equations given by

CL
d

dt
(Vn−1 − Vn) = In, (4)

LL
d

dt

[
C(Vn − V0)

dVn

dt

]
= −RiC(Vn − V0)

dVn

dt
− Vn

+
(

LL
d

dt
+ Ri

)
(In − In+1) , (5)

where Vn and In show the line voltage and current, respectively, at the
nth cell. The setup of the input signals and biasing voltage is the same
as that of the measurements used to obtain Fig. 2.

That is, we use the values listed in Table 1 and set V0 to
3.0V. Moreover, 1.25-MHz and 1.40-MHz envelope pulses are applied
at the left and right ends, respectively. Fig. 7 shows six spatial
waveforms with 2.0-µs increments. We separate the incident and
collision-generated pulses using the above-mentioned flow. The red and
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Figure 7. Calculated spatial waveforms. The red and blue waveforms
represent the incident and collision-generated pulses, respectively. The
figures are in order of increasing time with 2.0-µs increments.

blue waveforms represent the incident and collision-generated pulses,
respectively. We can clearly observe the development of a collision-
generated longer-wavelength envelope pulse, which starts to travel to
the right. The properties of the calculated collision-generated pulses
are shown in Figs. 4 to 6 by the red curves. The similarity between the
measured and calculated properties of the collision-generated pulses in
Figs. 2 to 7 is sufficient to consider the numerical model as reliable
model for the prediction of the behavior of nonlinear pulses. Using
this numerical model, we evaluated the phase-matching condition. We
set the total cell number and Ri to 1000 and 0.0 Ω, respectively. We
performed the Fourier-transform operation on the calculated spatial



Progress In Electromagnetics Research C, Vol. 26, 2012 69

Figure 8. Phase-matching condition for the test lines. k1,2 and k3

represent the wave numbers of the incident and collision-generated
waves, respectively.

waveforms. Fig. 8 shows the result. Red and black curves represent the
separation of the wave numbers corresponding to the incident carrier
waves and the wave number of the collision-generated carrier waves,
respectively. It was clearly seen that k3 ∼ |k1 − k2|, so that the phase-
matching condition governed the properties of the collision-generated
pulses.

5. CONCLUSION

We experimentally characterized the collision of nonlinear envelope
pulses in left-handed transmission line that are periodically loaded
with Schottky varactors. We explicitly observe collision-generated
pulses whose carrier frequencies are given by the sum of the incident
pulses. It was also established that the phase-matching condition
determines the efficiency of obtaining large collision-generated pulses.
Moreover, numerical calculations using a simplified model of the line
well simulated the measured results.

REFERENCES

1. Narahara, K., “Collision of nonlinear envelope pulses developed in
composite right- and left-handed transmission lines periodically
loaded with Schottky varactors,” Progress In Electromagnetics
Research C, Vol. 21, 1–12, 2011.

2. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmis-
sion Line Theory and Microwave Applications, Wiley, 2006.



70 Narahara and Yamane

3. Monti, G. and L. Tarricone, “Signal reshaping in a transmission
line with negative group velocity behaviour,” Microwave Optical
Technol. Lett., Vol. 51, 2627–2633, 2009.

4. Chi, P. and T. Itoh, “Dispersion engineering with CRLH
metamaterials,” Proc. IEEE International Symposium on Radio-
Frequency Integration Technology, 128–131, 2009.

5. Kozyrev, A. B. and D. W. van der Weide, “Nonlinear wave
propagation phenomena in left-handed transmission-line media,”
IEEE Trans. Microwave Theory and Techniques, Vol. 53, 238–245,
2005.

6. Gupta, S. and C. Caloz, “Dark and bright solitons in left-handed
nonlinear transmission line metamaterials,” Proc. IEEE MTT-S
Int’l. Microwave Symp., 979–982, Honolulu, 2007.

7. Kafaratzis, A. and Z. Hu, “Envelope solitons in nonlinear left
handed transmission lines,” Proc. Metamaterials 2007, 22–24,
771–773, 2007.

8. Simion, S., R. Marcelli, G. Bartolucci, G. Sajin, and F. Craci-
unoiu, “Nonlinear composite right/left-handed transmission line
for frequency doubler and short pulse generation,” Proc. Metama-
terials 2008, 492–494, 2008.

9. Gharakhili, F. G., M. Shahabadi, and M. Hakkak, “Bright and
Dark soliton generation in a left-handed nonlinear transmission
line with series nonlinear capacitors,” Progress In Electromagnet-
ics Research, Vol. 96, 237–249, 2009.

10. Ogasawara, J. and K. Narahara, “Short envelope pulse
propagation in composite right- and left-handed transmission
lines with regularly spaced Schottky varactors,” IEICE Electron.
Express, Vol. 6, 1576–1581, 2009.

11. Boyd, R. W., Nonlinear Optics, Academic Press, 2002.
12. Ogasawara, J. and K. Narahara, “Experimental characterization

of left-handed transmission lines with regularly spaced Schottky
varactors,” IEICE Electronics Express, Vol. 7, No. 4, 608–614,
2010.


