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Abstract—The shooting and bouncing rays (SBR) method has been
widely used to predict the radar cross section (RCS) of electrically
large and complex targets. SBR computation time rapidly increases
as the size and the complexity of a target increase. The angular
division algorithm (ADA) can be applied to reduce the number of
intersection tests in SBR, which facilitates faster RCS prediction.
However, ADA has an error in its table construction step, resulting
in incorrect prediction for multiple scattered fields. In this paper, the
error is described, and the modified ADA (MADA) is proposed to
correct the error and to enhance accuracy. Numerical results show
that MADA can achieve good RCS prediction accuracy.

1. INTRODUCTION

High frequency methods can provide fast and robust prediction of
radar cross section (RCS) for electrically large targets [1]. Physical
optics (PO) can provide reasonable solutions for first-order scattered
fields [2], but it cannot consider multiple scattering terms. The
shooting and bouncing rays (SBR) method is widely used to calculate
multiple scattered fields [3–35]. SBR represents an incident plane wave
illuminating the target by a dense grid of ray tubes [3]. To obtain the
scattered field, the ray tubes are traced until there is no reflection from
the target, and then the physical optics integral [2] is performed on the
exit position. RCS prediction using SBR is accurate for electrically
large and complex targets. In SBR, the density of incident ray
tubes should be greater than ten ray tubes per wavelength to make
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results convergent [3]. Hence, SBR requires huge calculation times
for electrically large targets because its computational complexity is
proportional to the number of incident ray tubes. Moreover, the
calculation time increases as the number of facets in the target model
increases because the number of intersection tests per ray tube is
directly proportional to the number of facets.

Numerous techniques have been proposed to accelerate SBR by
reducing those two factors [4–27]: the number of incident ray tubes
and the number of intersection tests per ray tubes. The multiresolution
grid algorithm in SBR (MSBR) was proposed to reduce the number
of incident ray tubes by using relatively larger incident ray tubes than
those of SBR [4]. Furthermore, MSBR was further improved by using a
graphics processing unit [5]. Latterly, beam tracing [6–12] was applied
to RCS predictions. In general, beam tracing requires less incident ray
tubes than conventional SBR for electrically large targets [6, 7].

To decrease the number of intersection tests per ray tube,
space division algorithms, such as the kd-tree [13, 14] and the octree
structure [15, 16], were applied to SBR, and MSBR and the octree were
also combined for SBR acceleration [17]. The angular z-buffer (AZB)
algorithm was proposed to reduce the number of intersection tests in
ray tracing. AZB is widely used to accelerate ray tracing and provides
efficient solutions for the UHF-propagation problems in particular [18–
20]. Recently, the angular division algorithm (ADA) [21, 22] was
proposed which can provide an efficient RCS prediction by reducing
the computational complexity in the intersection tests. Although
ADA has some similarities to AZB, ADA has a certain difference that
makes it especially well suited for RCS predictions. AZB generates Na

angular regions called anxels for a source and finds facets in each anxel.
The facets stored in these anxels are candidates for being “first-order
reflected facets”. AZB can consider nth-order reflections by making
additional anxels for every “(n − 1)th-order reflection facets” using
the image method. As higher-order reflections are considered, the
computational cost to generate anxels increases, but the information in
the anxels decreases [18]. This reduces the efficiency of AZB for high-
order reflection cases. Like AZB, ADA generates Na angular regions for
every facet in the target model. However, facets stored in the angular
regions for facet A could be “next-order reflected facets after reflection
from facet A”. ADA can reduce the number of candidate facets for
each intersection test and has the same efficiency regardless of the
reflection order. Therefore, ADA may be suitable for RCS predictions
that require many ray tracing processes due to multiple reflections [21].

Although the conventional ADA is computationally efficient like
AZB, it has some RCS accuracy problems due to its erroneous
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estimation of θ angle. In Section 2, we describe the drawback of the
conventional ADA that can degrade accuracy of RCS prediction. A
new method called modified ADA (MADA) to overcome the demerit
of the conventional ADA is introduced in Section 3, and several RCS
prediction examples to demonstrate the proposed MADA are presented
in Section 4.

2. DRAWBACK OF THE CONVENTIONAL ADA

Conventional SBR performs intersection tests for each ray with all
facets modeling the target. These tests between ray and facets should
be recursively carried out to obtain scattered fields. As the size and
the complexity of targets increase, the number of intersection tests
rapidly increases, leading to huge computation times. To decrease the
computational complexity, ADA has been applied to the conventional
SBR [21, 22]. ADA generates Na angular regions for each facet in the
target model, i.e., each reference facet. The relative facets, all other
facets except for a given reference facet, are arranged in the angular
regions of the reference facet according to their angular range relative
to the reference facet, the maximum and the minimum φ and θ angles
in spherical coordinates. For example, the relative facet with maximum
and the minimum φ and θ angles φmax, φmin, θmax, and θmin is located
in angular regions 6, 7, 10, and 11 (Figure 1). These arrangements
are stored in the distribution information table (DIT) in advance of
the main ray tracing procedure. ADA finds the angular region where
a ray reflected from the reference facet propagates by using the φ and
θ angles of the ray and then performs the intersection tests with only
facets arranged in that angular region. ADA can significantly reduce

Figure 1. Angular regions: regions are labeled with index numbers.
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(a) (b)

Figure 2. Two-dimensional description of the φ range between two
facets.

the number of intersection tests required in conventional SBR [21, 22].
ADA obtains the maximum and the minimum φ and θ angles

between the reference facet and the relative facet by using the nine
vectors between the vertices of each facet for targets modeled with
triangular facets [21, 22]. For example, consider two facets, the
reference facet P1P2P3 and the relative facet Q1Q2Q3. ADA calculates
the φ and θ angles of nine vectors,

−−−→
P1Q1,

−−−→
P1Q2,

−−−→
P1Q3,

−−−→
P2Q1,

−−−→
P2Q2,−−−→

P2Q3,
−−−→
P3Q1,

−−−→
P3Q2, and

−−−→
P3Q3, and the maximum and minimum angle

values are obtained by comparing those values.
The maximum and minimum φ angles calculated by the above

method can correctly define the φ-range between the two facets. All
rays reflected from the reference facet and hitting the relative facet
have φ values between these maximum and minimum φ angles. In
Figure 2, P1P2P3 and Q1Q2Q3 represent the orthogonal projections
of the reference facet and the relative facet onto the x-y plane,
respectively. Because the φ angles are calculated from only x and
y, the two-dimensional description in Figure 2 can be valid. ADA
calculates the maximum φ as φ2 from

−−−→
P2Q2 and the minimum as φ1

from
−−−→
P1Q3 (Figure 2(a)). For any point P on the reference facet,

Figure 2(b) clearly shows that a ray transmitted from P should have
φ value between φ1 and φ2 for the ray to hit the relative facet.

However, an error in θ values may occur because equivalent
θ-planes have conical shapes and modeling facets have planar
surfaces [20] (Figure 3). As mentioned previously, ADA calculates
the θ values by using vectors from vertices of the reference facet to
vertices of the relative facet. For example, let the point O be one
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Figure 3. Equivalent θ-planes.

vertex of the reference facet and Q1Q2Q3 be a relative facet (Figure 3).
ADA calculates the maximum θ as θ2 from

−−−→
O2Q2 and the minimum

as θ1 from
−−→
OQ1 or

−−−→
O2Q3. However, all points on the line segment

Q1Q3 except Q1 and Q3 have smaller θ values than the minimum θ1

estimated using ADA, as clearly shown in Figure 3. In other words, the
line segment Q1Q3 exists above the equivalent θ-plane corresponding
to the minimum θ1. These incorrect θ values in ADA can result in
an inaccurate DIT. An error in DIT can cause ray-misses for multiple
reflections, leading to RCS prediction errors.

Saeidi and Hodjatkashani presented an efficient remedy for the
above θ problems between a point source and a planar facet [20]. They
presented a mathematical solution for the maximum and minimum θ
values between a point and a line segment. In addition, their solution
can provide correct maximum and minimum θ values between a point
and an arbitrary planar facet in a three-dimensional space.

However, Saeidi’s method cannot be directly applied to ADA,
because ADA is based on the maximum and minimum angles between
two facets, rather than between a point and a facet. This is due
to the fact that ADA’s extremum angles between two facets are
affected by the positions of two points on two different planar facets
simultaneously.

3. MODIFIED ADA

We propose a MADA to remedy the ray-miss problems of the
conventional ADA caused by the incorrect θ values mentioned in
Section 2. The conventional ADA defines the angular regions by
max(θ, φ) and min(θ, φ) (Figure 4(a)) [21, 22]. A typical example of
the max(θ, φ) and min(θ, φ) for each angular region in ADA is shown
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(a) (b)

Figure 4. Definition of an angular region: (a) ADA and (b) MADA.

in Figure 1. Specifically, the angular region labeled 7 in Figure 1 has
max(θ, φ) = (135◦, 270◦) and min(θ, φ) = (90◦, 180◦). However, the
angular regions of MADA are defined as a pyramidal region surrounded
by four edge planes. The modified angular region of MADA is defined
by four edge planes, OP1P2, OP2P3, OP3P4, and OP4P1 (Figure 4(b)).
Four unit vectors,

−−→
OP1,

−−→
OP2,

−−→
OP3, and

−−→
OP4, can be obtained using the

max(θ, φ) and min(θ, φ) of the angular region of the conventional ADA.
For example,

−−→
OP1 shown in Figure 4 is a vector of (1,min θ, maxφ)

in spherical coordinates. Angular regions of MADA are the same as
those of conventional ADA in terms of φ, but different in terms of θ,
due to their planar boundaries. For any point P on the upper or lower
boundary of the angular region,

−→
OP has the same θ value as the unit

corner vector,
−−→
OP1,

−−→
OP2,

−−→
OP3, or

−−→
OP4, in ADA, but not in MADA.

For example, in ADA (Figure 4(a)), for a point P, the middle point of
the circular arc P1P4, θ value of

−→
OP is the same as that of

−−→
OP1 and−−→

OP4. In MADA (Figure 4(b)), however, for a point P, the middle point
of the line segment

−−−→
P1P4, θ value of

−→
OP is different from that of

−−→
OP1

and
−−→
OP4, as illustrated in Figure 3.
The conventional ADA arranges the relative facets into angular

regions according to the relative angular range between the reference
and the relative facets (Figure 1). On the other hand, MADA generates
Na angular regions of the reference facet in three-dimensional space
and arranges the relative facets into those angular regions according
to existence of the relative facets in the angular regions. For a ray
reflected from the ith reference facet and whose direction vector heads
toward the jth angular region, the modified angular region of the
reference facet in three-dimensional space, MARij , covers a whole space
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into which the reflected ray can propagate. MARij can be obtained as
follows (Figure 5):

1) Position the origin O of the angular region at any vertex of the
reference facet.

2) Move the angular region along three sides of the reference facet.
3) Find the outermost edge planes, amx + bmy + cmz + dm = 0

(m = 1, 2, . . . , Np, where Np is the number of outermost edge planes),
of the volume generated by moving the angular region. Normal vectors
of the outermost edge planes, n̂m = (am, bm, cm), head toward the
outside of the volume.

4) Define MARij as the space surrounded by those outermost edge
planes.

In MADA, the reflected ray propagation space can be exactly
defined by MARij . We propose a modified DIT (MDIT) based

(a) (b)

(c) (d)

Figure 5. Schematic representation for the procedure to generate an
angular region of the reference facet: (a) step 1, (b) step 2, (c) step 3,
and (d) step 4.
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on MARij to solve the accuracy problem of the conventional ADA.
Construction of the proposed MDIT depends only on the existence
of facets in the region, unlike the conventional DIT of ADA using
incorrect relative angular positions between reference and relative
facets, as mentioned in Section 2. Therefore, MADA has no ray-
miss problem and can provide accurate RCS predictions. The MDIT
construction procedure can be described as follows:

1) For the ith reference facet, generate the angular space.
2) Divide the angular space into a set of Na modified angular

regions.
3) For the jth angular region, generate MARij .
4) Find relative facets in MARij .
5) Construct MDIT, TABLE(i, j, k) which contains the relative

facets obtained in step 4 (i = 1, 2, . . . , N ; j = 1, 2, . . . , Na, k =
1, 2, . . . , Nr, where N is the number of facets modeling the target and
Nr is the number of relative facets in each region).

6) Repeat steps 3 to 5 for all angular regions.
7) Repeat steps 1 to 6 for all reference facets.
MDIT construction requires checking whether the relative facets

are within MARij . Recall that the three-dimensional space enclosed
by outermost edge planes and a reference facet is called MARij .
Therefore, the first step for checking the existence of relative facets
within MARij is as follows:

amxn + bmyn + cmzn + dm > 0, for all n (1)

where (xn, yn, zn) (n = 1, 2, 3) are the three vertices of the relative
facet. The relative facets that satisfy (1) are outside of MARij , which
will be discarded from the MDIT. If the relation in (1) does not hold
even for a single n, i.e., even for any single vertex of a relative facet,
then the relative facet is considered as a candidate for being “the facet
within MARij”.

The second step can further reduce the number of candidate facets
using the following relation:

amxn + bmyn + cmzn + dm < 0, for all m (2)

In other words, among candidate relative facets filtered by (1),
facets with any single vertex satisfying (2) should be included in the
MDIT.

Only if candidate relative facets are selected by (1) but dropped
by (2) does the third step perform complex intersection tests. Thus,
MADA does not perform time-consuming intersection tests for all
relative facets, but only for a small number of pre-filtered relative
facets. The intersection test proceeds as follows (Figure 6):
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Figure 6. Intersection tests between the relative facet and MARij .

1) Calculate the projection of MARij onto the plane which
includes the relative facet.

2) Check whether an intersection between the relative facet
and the projected polygon occurs using two-dimensional polygon set
operations [6–8].

3) If any intersection occurs, the relative facet is within MARij .
Otherwise, the facet is not within MARij .

The RCS prediction procedure using MADA is identical to that
using ADA except the MDIT construction method. MADA can reduce
the calculation time of SBR considerably without a loss of RCS
prediction accuracy. The RCS prediction procedure is described as
follows [21, 22]:

1) Model the target as a set of facets.
2) Construct MDIT, TABLE(i, j, k).
3) Construct the incident ray tube grids.
4) Trace each ray tube.
5) Find the reflected facet and save its index number into Ai.
6) Calculate the direction of the reflected ray.
7) Find the angular region that the reflected ray goes into and

save its index number into Aj .
8) Perform the intersection test between the ray and facets stored

in TABLE(Ai, Aj , k).
9) If the reflection occurs, save the index number of the reflected

facet into Ai and go to step 6. Otherwise, terminate ray-tracing and
perform the physical optics integral on the exit position.

10) Repeat steps 4 to 9 for all incident ray tubes.
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4. RESULTS

In this paper, the monostatic RCS of two targets, simple dihedral
and battleship model, were predicted to demonstrate the accuracy
of the proposed method. RCS predictions were performed with a 1
degree increment. It was assumed that targets were made of a perfect
electrical conductor and the maximum allowed reflection order was
five.

The accuracy of the proposed MADA was compared with that of
the conventional ADA using the dihedral model shown in Figure 7.
Both the MADA and ADA simulations used 77 angular regions, as
shown in Figure 8. The monostatic RCS of the dihedral target at a
frequency of 5 GHz was computed in the azimuth and elevation planes
shown in Figure 7 with MADA, ADA, and the conventional SBR,
as shown in Figure 9. As shown in Figure 9(a), MADA and ADA
showed good agreement with the conventional SBR in the azimuth
plane. As mentioned earlier, MADA and ADA construct their tables
with correct φ values, which allow the RCS values calculated by
the two methods to be exactly identical to those calculated by the
conventional SBR, as shown in Figure 9(a). However, in Figure 9(b),
ADA had some prediction errors caused by the incorrect θ values.
ADA calculated the maximum and the minimum φ angles between
the reference facet labeled 1 and the relative facet labeled 7 to be 225◦
and 135◦, respectively, and the maximum and the minimum θ angles
were 45◦ and 35.3◦. Thus, relative facet 7 was stored in four angular

(a) (b)

Figure 7. Simple dihedral model used in simulation: (a) azimuth
plane and (b) elevation plane. Triangular facets are labeled with index
numbers.
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Figure 8. Definition of angular regions. Angular regions are labeled
with index numbers.

(a) (b)

Figure 9. Monostatic RCS of the dihedral model.

regions, 52, 53, 54, and 55. The intersection tests between facet 7 and
rays reflected from facet 1 were not performed when the reflected rays
headed outside of those angular regions. However, the true minimum
θ value is 26.6◦. Therefore, the reflected ray from facet 1 missed the
facet 7 when the ray had θ values between 26.6◦ and 35◦, leading
to the discontinuity at an elevation of 55◦ in Figure 9(b). In this
simulation using a simple dihedral target, the conventional ADA can
provide correct results if intersection tests were performed for angular
regions 67, 68, 69, and 70. This can be achieved by changing the 35◦
θ boundary to 36◦ or greater.

A battleship model was also considered to demonstrate the
accuracy of the proposed method (Figure 10). The target was modeled
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Figure 10. Angle planes and dimensions of the battleship model used
in simulation.

Figure 11. Definition of angular regions. Angular regions are labeled
with index numbers.

with 8402 facets. The monostatic RCS of the target at a frequency of
10GHz were predicted with the proposed MADA, the conventional
ADA, and the conventional SBR in azimuth and elevation planes as
illustrated in Figure 10. Both MADA and ADA simulations used
77 angular regions, as shown in Figure 11 to uniformly divide the
angular space. In Figure 12, the RCS values calculated with the
proposed MADA are exactly identical to those of the conventional
SBR, while the relative RMS error between the conventional ADA and
conventional SBR are 0.30 dB and 0.12 dB in the azimuth and elevation
planes, respectively. The discrepancy between ADA and conventional
SBR was caused by ray-misses for multiple reflections. Therefore,
as multiple scattered fields from the target are more dominant than
single reflection terms, this discrepancy may increase. If θ boundary



Progress In Electromagnetics Research, Vol. 123, 2012 117

values of the angular regions shown in Figure 8 were changed, the
ADA results shown in Figure 12 could be changed but still had some
errors compared with SBR. However, the results from MADA had no
error irrespective of θ boundary values. Moreover, accuracy of the
results with ADA depend on the number of angular regions, the shape
of targets or the number of facets modeling targets, while the results
with MADA are always identical with those of the conventional SBR.
The results in Figure 9 and Figure 12 show that the proposed MADA
has better RCS prediction accuracy than the conventional ADA.

Computational complexities including times and table size are
compared in Table 1 for the battleship model. The table construction
of MADA, which is performed only once when the geometry of
the target is given, requires more computation time than that of
ADA because MADA requires a more complex table construction
algorithm to fix the incorrect θ problems in ADA. Clearly, MADA
and ADA perform much faster RCS predictions than conventional
SBR. MADA required slightly more computation time than ADA.

(a) (b)

Figure 12. Monostatic RCS of the battleship model: (a) azimuth
plane and (b) elevation plane.

Table 1. The calculation time, table size, and table construction time
for the battleship model.

Methods
Ray tracing time [sec] Table

size [MB]

Table construction

time [sec]Azimuth Elevation

SBR with MADA 413.994 312.161 28.31 272.503

SBR with ADA 413.880 306.929 29.16 218.037

Conventional SBR 4174.380 5504.620 - -
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As aforementioned, MADA performed intersection tests without ray-
miss, unlike the conventional ADA. This can lead to more intersection
tests, taking more computation time. However, it is noteworthy that
MADA can achieve an RCS prediction accuracy comparable to the
conventional SBR with much less computation time.

5. CONCLUSION

In this paper, MADA has been proposed to improve the accuracy
of the conventional ADA. The DIT of the conventional ADA is
generated according to incorrect relative angular position between
reference and relative facets, which gives rise to ray-miss problems
for multiple reflections. MADA precisely defines the three-dimensional
space where the reflected ray can propagate by MARij . Then, a MDIT
is constructed using the facets in MARij . Thus, MADA can provide
more accurate RCS predictions than conventional ADA. Simulation
results show that MADA can achieve good RCS predictions accuracy
with much less computation time than the conventional SBR.
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