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Abstract—In this paper, the problem of target detection in co-
located “multi-input multi-output” (MIMO) radars is considered. A
pulse-train signaling is assumed to be used in this system. As the
doppler effect should be considered for the pulse-train signaling, we
are confronted by a compound hypothesis testing problem, so in this
paper a Generalized Likelihood Ratio (GLR) detector is derived. The
high complexity of this detector makes us derive a new detector based
on the theory of Independent Component Analysis (ICA). It is shown
that the computational load of the ICA-based detector is much less
than the GLR detector. It is also shown that the sensitivity of the
ICA-based detector to the doppler effect is very low. According to this
approach, an appropriate signal design method is presented, based
on the separation performance of the ICA algorithms. It is shown
that independent random sequences are proper signals in the sense of
detection performance.

1. INTRODUCTION

The development of phased array radars has enabled designers to
improve estimation and detection performance of radar systems [1, 2].
The ability to exploit these improvements is limited by the realizable
number of receiver elements. Recently, researchers tend to develop a
new radar structure known as multiple-input multiple-output (MIMO)
radar [3–16]. In the concept of MIMO radars, multiple antennas are
used to transmit several waveforms and employed to receive the echoes
reflected by the targets.

The two major types of MIMO radars are “widely separated” and
“co-located” MIMO radars. In the first type, in order to use spatial
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diversity of target reflection, the distances between antenna elements
are very large compared to the signal wavelength [4]. The diversity
of Radar Cross Section (RCS) improves the detection performance in
this type [12]. Different works are presented in signaling and target
detection of widely separated MIMO radars [13, 17, 18].

Co-located MIMO radar structure is a widespread type of MIMO
radars that is quite similar to the phased-array radars [8]. In this
type, for a given number of receiver elements, signal diversity can
virtually increase the effective number of array elements. In other
words, the signal diversity leads to an increase in the virtual aperture
of receiving array [8]. In the co-located MIMO radars, a point target
model is usually assumed, and also far-field signal source and narrow-
band transmitted signal are considered. Co-located MIMO radars
have many advantages compared to the traditional approach of phased
array signaling. Improvement of angle estimation, better angular Side-
Lobe Level (SLL) and beam shape characteristics are some of these
advantages [8, 19, 20].

These benefits can be obtained only with the assumption of ideal
signal separation in the receiver. In other words, orthogonality should
be considered for the transmitted signals [10]. But for MIMO radars
with numerous transmit elements, it is very difficult to find fully
orthogonal signals. Only frequency separated signals are offered as
fully orthogonal signals for MIMO radar signaling [21–23].

Another signaling approach is to transmit m orthogonal base-band
signals or codes on a single carrier frequency. In this signaling, a bank
of matched-filters or correlators is used to separate these signals in
each receiver [10, 24]. There are some problems in this approach that
cannot be neglected. Range side-lobe level is the first problem that
destroys the radar resolution capability when strong and weak targets
are near each other. The most important problem is to find a set of
orthogonal signals to fulfill all radar signaling restrictions. Even if it
is possible to find orthogonal signals, the doppler effect will destroy
the orthogonality [25]. Few works on target detection in co-located
MIMO radars, are all based on this type of signaling. Presenting a new
space-time coding configuration for target detection and localization is
an example [10]. The ability to steer the transmitted beam pattern
had been the main advantage of this research. The second example is
designing detectors for non-Gaussian clutter condition [26].

In [25], a pulse-train signaling for co-located MIMO radars
has been proposed. In the former techniques, an inter-pulse code
modulation has been employed (first row of Fig. 1). But in the
proposed technique, a pulse-train signaling approach is utilized, and
an intra-pulse code modulation is employed (second row of Fig. 1). In



Progress In Electromagnetics Research, Vol. 122, 2012 415

c
i L1 cc

p : pulse with
w

i
c : i'th sample of

code sequence

p
w = L τ p

c1 i Lcc

_+ + +
_

_
+

_

p
w = τ p

Figure 1. Comparison of the
inter-pulse and the intra-pulse
code modulations.

Figure 2. A uniform linear ar-
ray by a set of m jointly transmit-
ter/receiver antenna elements.

this approach, each radar transmitting element radiates a unique batch
of pulses coded in phase and/or amplitude.

In the presented signaling, different carrier frequencies are used
in different transmitters. Applying the frequency difference of ∆f =
1/τp to all m transmitters, the range resolution can be improved to
cτp/2m according to the idea of “Stepped Frequency Radars” [27–
29]. In the inter-pulse modulation signaling, the codes should be
designed according to the criteria of good separability and proper
pulse compression property. But in the proposed signaling the codes
should be designed only based on the separability criterion and the
pulse compression is achieved by the stepped frequency idea. So,
the complexity of code design is decreased in the proposed signaling
scheme.

In this paper, the problem of target detection in MIMO radars
using this type of signaling is considered. The received signal
modeling and problem formulation are presented in Section 2. It
is shown that due to unknown values of doppler frequency and
target DOA, a compound hypothesis testing problem is confronted.
The standard technique for compound hypothesis tests when the
Probability Distribution Function (PDF) of the unknown parameters
are not known is the Generalized Likelihood Ratio (GLR) detection.

In Section 3, the GLR detector is derived. Except invariance
and asymptotic performance, there is no optimality claimed on
GLR [30]. So, it is reasonable to investigate other detection strategies.
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In Section 4, the problem formulation is simplified and applying
Independent Component Analysis (ICA) algorithms, an ICA-based
detector is presented. A brief review on ICA techniques is also
offered in this section. To achieve a good detection performance, the
performance of ICA techniques for separation of different transmitted
signals is considered as a constraint to design a set of codes for pulse-
train signaling. This signal design technique is presented in Section 5.
A brief analysis of computational complexity of two presented detectors
is offered in Section 6. Finally, in Section 7 simulation results
are presented to evaluate the detection performance of the proposed
detectors.

2. PROBLEM FORMULATION

Without loss of generality, in this paper a co-located MIMO radar
with a Uniform Linear Array (ULA) is considered which is formed by
a set of m jointly transmitting/receiving antenna elements separated
by 0.5λ (Fig. 2).† The pulse-train signaling proposed in [25] is used.
Considering a fixed pulse width of τp and the Pulse Repetition Interval
(PRI) of Tp, the narrow-band transmitted pulse trains are denoted by
sk (t), k = 1, . . . , m:

{
sk(t) 6= 0 q × Tp ≤ t ≤ q × Tp + τp

sk(t) = 0 else
(1)

where q = 0, 1, 2, . . . , L and L is the number of transmitted pulses
from each transmitter. In this signaling, a single chip pulse with
suitable duration τp, according to the desired range resolution (cτp/2m)
is transmitted during each Tp. In each transmitted pulse train, the
amplitude and phase of signal can be changed in a suitable manner to
make all sk (t)s separable. It is assumed that the transmitted signals
have different carrier frequencies, with ∆f = 1/τp differences. If the
center carrier frequency is denoted by fc, each transmitted signal has

a small frequency shift of ∆fk = (k − m + 1
2

) ×∆f related to fc. So
the m × 1 vector of base-band received signal from a far-filled point
target, for each transmitted signal is given by:

xk(t) = αek(θ)bk(θ)sk(t− τ) exp (2πi (fdk
+ ∆fk) t + i× kφ) (2)

where τ is the received signal delay and φ = −2π∆f × τ is the phase
related to this delay. α is a complex constant, containing the effect
† Here, we assume an equal number of transmitting and receiving elements. In our model,
it is possible to have different numbers of them. But the number of receiving elements
should be more than or at least equal to the number of transmitting elements.
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of power, RCS and propagation loss. For a single point target in this
model, α is constant for all the transmitted signals, due to the co-
located antenna assumption. e (θ) is the m×1 array factor of receiving
antennas for the direction of target, bk (θ) is the kth transmitter factor
and depends on the direction of target and fdk

is the target doppler
frequency. Assuming radial velocity V , fdk

is given by:

fdk
=

2V

λk
=

2V

λ
× λ

λk
= fd × λ

λk
(3)

where λk is the wavelength of kth transmitted signal and fd

is the doppler value, corresponding to λ that is the center
wavelength. Completely similar to the theory of “Stepped Frequency
Radars” [27, 28], the range dependent phase variation can be used to
improve the range resolution of this system. If we set ∆f = 1/τp, and
if the delay is τ = n× τp + δτ , the phase would be φ = −2πn− 2π δτ

τp
=

−2π δτ
τp

. As we have only m samples to estimate φ, the resolution of
phase estimation is about 2π/m that is identical to the range resolution
of cτp/2m.

We define fk = (fdk
+ ∆fk) for each transmitted signal and so we

can rewrite (2) as:

xk(t) = αek(θ)bk(θ)sk(t− τ) exp (2πifkt + i× kφ) (4)

The jth element of ek (θ) is given by:

{ek(θ)}j = exp
{

2πi
dj

λk
sin(θ)

}
j, k = 1, . . . , m (5)

Here, dj indicates the relative position of the jth receiving element
from the array center. Also, we can formulate the kth transmitter
factor bk (θ) as:

bk(θ) = exp
{

2πi
dk

λk
sin(θ)

}
k = 1, . . . ,m (6)

Considering n (t) as the vector of additive Gaussian noise of
receiver elements, the vector of received signal (x (t)), would be:

x(t) =
m∑

k=1

xk(t) + n(t)

=
m∑

k=1

αek(θ)bk(θ) exp(i× kφ)sk(t− τ) exp(2πifkt) + n(t)

= α

m∑

k=1

ak(θ, φ)s̃k(t− τ) + n(t) = αA(θ, φ)̃s(t− τ) + n(t) (7)
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where the m×1 vector ak (θ, φ) which is the kth column of the m×m
mixing matrix A (θ, φ), is given by:

{ak(θ, φ)}j = {ek(θ)}jbk(θ) exp(i× kφ) j = 1, . . . ,m (8)
s̃ (t−τ) is the m×1 vector of delayed and frequency shifted source

signals and we have:
{s̃(t− τ)}k = sk(t− τ) exp(2πifkt) k = 1, . . . ,m (9)

In this model, the direction of target (θ), the exact value of φ and the
doppler value of signal (fd) are assumed to be unknown. Considering
the pulse repetition interval of Tp, after range sampling of the received
array signal at times t = `×Tp+rτp for ` = 1, . . . , L and r = 1, . . . ,

Tp

τp
,

we have R = Tp

τp
range cells and we can form a m × L matrix of

received data for each range cell in which L denotes the number of
transmitted/received pulses. If τ = n× τp + δτ , for the nth range cell,
we have:

Xm×L = αA(θ, φ)S̃m×L + Nm×L = α
m∑

k=1

ak(θ, φ)̃sT
k + Nm×L (10)

where N contains the independent samples of receiver Gaussian noise.
In this notation, (.)T denotes transpose and the L× 1 vector s̃k which
is the kth column of S̃m×L, contains the samples of s̃k (t − τ) at the
desired delay for L consecutive pulses. Each element of s̃k can be
written as:

{s̃k}` = {sk}` × exp(2πifk(`× Tp + nτp)) (11)
where {sk}` = sk(`×Tp+δτ ). Now, we can form the detection problem
as:

X = αA(θ, φ)S̃(fd) + N (12){
H0 : α = 0
H1 : α 6= 0

where θ, fd, φ and α are unknown parameters and so (12) is a
compound hypothesis testing problem. In this paper, we assume that
all of the receiver noise vectors are N (0, σ2

nIm) where σ2
n is known and

the noise vectors of different receiver elements are independent.
When the PDFs of the unknown parameters are not known and

the Uniformly Most Powerful (UMP) detectors can not be found, the
standard technique for compound hypothesis tests would be the GLR
detector. There is no optimality claimed about GLR, except invariance
and asymptotic performance [30]. So, it is reasonable to investigate
other detection strategies. In the next sections, different detectors for
this problem would be proposed.
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3. GLR DETECTOR

The GLR detector for the compound hypothesis test of (12) is:

fX

(
X|H1, θ̂, α̂, φ̂, f̂d

)

fX (X|H0)
≷ η (13)

where θ̂, α̂, φ̂ and f̂d are the Maximum Likelihood (ML) estimations
of θ, α, φ and fd, respectively. This GLR detector is derived for the
compound hypothesis test of (12) in Appendix A and is given by:

max
fd,θ,φ

∣∣∣tr
(
A(θ, φ)S̃(fd)XH

)∣∣∣
2

∥∥∥A(θ, φ)S̃(fd)
∥∥∥

2 ≷ η (14)

In this notation, tr(·) denotes trace of matrix. It is determined
that the GLR detector leads to a maximization over all realizable values
of θ, φ and fd and also comparing this maximum with a threshold. If
nf is the number of desired doppler values in the interval of [0, PRF),
nφ is the number of phase test points and nθ is the number of direction
test points in the interval of [0, π], the complexity of this detector can
be justified with nf × nθ × nφ that requires a heavy processing power.
The frequency space of doppler test point and also, the space between
direction test point are very important in this method. But increasing
the number of doppler, phase and direction test points, would enhance
the computational complexity of GLR detection algorithm.

In the next section, it will be shown that considering the
statistical characteristics of transmitted pulse trains, the ML estimated
parameters used in the GLR detector can be replaced by ICA estimated
values of these parameters to form an ICA-based detector.

4. ICA-BASED DETECTOR

In pulse-train technique, we can change the amplitude and/or phase
of signal in a certain manner for each transmitter unit. Random
or pseudo-random pulse to pulse coding is a good example. The
randomness and independency of transmitted signals from pulse to
pulse, enable us to use ICA algorithms as a proper solution in
estimation of unknown parameters. Therefore, instead of applying
ML estimator in the structure of GLR detector, an ICA estimator can
be applied. So, we present the ICA-based detector as:

fX

(
X|H1, θ̌, α̌, φ̌, f̌d

)

fX (X|H0)
≷ η (15)
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where θ̌, α̌, φ̌ and f̌d are the ICA estimations of θ, α, φ and fd.
In Appendix B, it has been shown that the decisive rule of (15) is
equivalent to:∣∣∣∣2Re

[
tr

(
α̌A(θ̌, φ̌)S̃(f̌d)XH

)]
−

∥∥∥α̌A(θ̌, φ̌)S̃(f̌d)
∥∥∥

2
∣∣∣∣ ≷ η (16)

It should be noted that instead of θ̌, α̌, φ̌ and f̌d, we only need to
estimate α̌A (θ̌, φ̌) and S̃ (f̌d). Before presenting the complete solution
of the ICA-based estimators, a brief review to ICA is offered in the
next subsection.

4.1. ICA Model

The theory of ICA, is totally described in [31–34]. In the standard
ICA model, we suppose a linear structure of the form:

X = AS +N (17)

when S is an m×L dimensional matrix of source signals. The rows of
S, named sT

k , k = 1, . . . , m are all independent and each sT
k is a vector

of L i.i.d samples. A is the unknown m × m mixture matrix and N
is the additive Gaussian noise. Also, X is the available data matrix in
which any row (xT

k ) is a linear mixture of independent source signals
(sT

k ) contaminated with noise.
Different ICA methods are all designed to estimate A or

equivalently W = A−1 and the source signals, S. Since A and
S are both unknown, without assuming independent source signals,
the problem cannot be solved in general. Different ICA methods
use different available statistical properties of signals to solve this
estimation problem. ICA finds the desired sources by maximizing the
statistical independence of the estimated components. There are many
ways to define independency and each way may result in a different
form of the ICA algorithm. The two major definitions for independence
in ICA are based on “Minimization of Mutual Information” and
“Maximization of non-Gaussianity”.

The family of ICA algorithms, based on maximization of non-
Gaussianity, originate from the idea of central limit theorem. Higher
order statistics are proper tools to measure the non-Gaussianity of
signals. JADE, introduced by Cardoso [35], is the most commonly used
method in this class. Because of the proper performance for separation
of complex signals, in this paper we focus on using the complex form
of the JADE algorithm [36].

ICA methods have two common restrictions. The first is that
they cannot determine the power and phase of source signals and the
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second is that the separation is not possible for signals with Gaussian
distribution. Due to the ambiguity in signal power, it would be better
to assume that the variances of source signals are equal to one. Also, in
most ICA methods, without loss of generality, it is assumed that both
the data and source signals have a zero mean. In order to simplify the
problem for the practical iterative algorithms, typical ICA methods use
centering, whitening, and dimension reduction as their preprocessing
steps [31].

One important property of ICA methods is that most of the
criteria used as the base of these techniques are not influenced by
additive Gaussian noise. For example, the higher order cumulants are
not affected by the additive Gaussian signals. Therefore, theoretically
JADE and other algorithms that are based on higher order cumulants,
are immune to Gaussian noise for estimating the mixing matrix. But
in practice, because of the limited number of samples, the approximate
values of cumulants are affected by Gaussian noise, which would
increase the error in estimating the mixing matrix. So, to decrease
the noise effect, a noise reduction filter is usually applied before
ICA estimation [31]. A Wiener filter is the ideal structure for noise
cancelation in this case (Appendix C).

The “ICA estimated” signals usually have two ambiguities.
1) The proper scaling or phase of the source signals.
2) A uniquely correct ordering of the source signals.

Comparing Equations (17) and (12) shows that the MIMO radar
problem can be considered as an ICA problem in which A = αA(θ, φ),
S = S̃(fd) and N = N. So, the estimation of αA (θ, φ) and S̃ (fd) can
be derived using ICA techniques. In this problem, the two ambiguities
mentioned above cannot be ignored and should be solved in the MIMO
radar problem. So, as it will be described in the following section, a
proper solution is proposed for removing these ambiguities.

4.2. Derivation of ICA-based Detector

In the problem of pulse-train signaling with unknown values of fd

and θ, we confront an ICA problem of the form demonstrated in
Equation (10). Solving this complex ICA problem, we will find a linear
estimator named Ŵ that ideally should be equal to (αA)−1. Also, the
estimation of received singal is derived by applying Ŵ to the received
signal as:

Ŷ = ŴX = ŴαAS̃ + ŴN (18)

Because of the nature of ICA techniques, even if we consider an
ideal solution and a noise-free signal model, still there is an inevitable
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ambiguity in the phase and order of signals that can be formulated as:

ŷk = exp(iϕk)× s̃j ξ̂k = exp(−iϕk)× aj (19)

where the L× 1 vector ŷk is the kth estimated signal (kth row of Ŷ)
which does not normally correspond to the kth signal ŝk. Also, ξ̂k

is the kth column of Ŵ−1 which is not necessarily equal to the kth
column of αA and ϕks are arbitrary phases. Now, in order to complete
the estimation process, these ambiguities should be removed.

4.2.1. Arrangement and Phase Correction

We can rewrite (19) as
ŷk = hj(fd)ρk (20)

where ρk = exp(jϕk), hj (fd) is an L× 1 vector and [hj(fd)]` = [̃sj ]` =
[sj ]` × exp{2πi(fd · λ

λj
+ ∆fj)t`} where t` = ` × Tp + nτp. Then the

Least-Squares (LS) estimator for the unknown parameters minimizes
J , as shown below:

J(ρk, j, fd) = (ŷk − hj(fd)ρk)
H(ŷk − hj(fd)ρk) (21)

To solve this minimization problem, first we suppose that fd and
j or equivalently hj (fd) are known, then we have:

ρ̂k = (hH
j (fd)hj(fd))−1hH

j (fd)ŷk (22)

replacing (22) in (21) we have

J(j, fd) = (ŷk − hj(fd)
(
hH

j (fd)hj(fd)
)−1

hH
j (fd)ŷk)H

×(ŷk − hj(fd)
(
hH

j (fd)hj(fd)
)−1

hH
j (fd)ŷk)

= ŷH
k

(
I − hj(fd)

(
hH

j (fd)hj(fd)
)−1

hH
j (fd)

)
ŷk (23)

since (I − h (hHh)−1hH) is an idempotent matrix [37], minimization
of J (j, fd) is equivalent to maximizing J ′ (j, fd) as

J ′(j, fd) = ŷH
k hj(fd)

(
hH

j (fd)hj(fd)
)−1

hH
j (fd)ŷk (24)

then the estimator is given by:

(ĵ, f̂k
d )=arg max

j=1,...,m,fd∈[0,PRF)

(
J ′(j, fd)

)

=arg max
j,fd




∣∣∣∣
n∑

`=1

ŷk[`]s∗j [`] exp
{
−2πi

(
fd · λ

λj
+ ∆fj

)
·t`

}∣∣∣∣
2

n∑
`=1

∣∣∣∣sj [`] exp
{
2πi

(
fd · λ

λj
+∆fj

)
·t`

}∣∣∣∣
2


(25)
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Considering equal power for the transmitted signals, this estimator
can be simplified as a windowed periodogram estimator as:

(ĵ, f̂k
d )=argmax

j,fd

(
J ′(j, fd)

)

=arg max
j,fd


1

N

∣∣∣∣∣
n∑

`=1

ŷk[`]s∗j [`] exp
{
−2πi

(
fd · λ

λj
+∆fj

)
·t`

}∣∣∣∣∣
2

 (26)

Applying this estimator, the arrangement is complete. According
to (25), (26), the arrangement of signals can be performed with a
weighted FFT in practice. After signal arrangement, the estimated
vector hĵ (f̂k

d ), should be applied to (22). So the phase estimator is
given by:

ρ̂k =
(
hĵ(f̂

k
d )Hhĵ(f̂

k
d )

)−1
hĵ(f̂

k
d )H ŷk (27)

where [hĵ(f̂
k
d )]` = [sĵ ]` × exp{2πi(f̂k

d · λ

λĵ

+ ∆fĵ)t`}. Applying

arrangement and phase correction, the estimated column of array
matrix B = α̂A is obtained as:

bj = ˆαaj = ρ̂∗k · ξ̂k (28)

For a general review, the total processing steps of the proposed
detection algorithm is presented in Fig. 3.

Range-Sampling

And
Matrix Formation

Wiener
Filter

ICA
Estimation

Arrangement
And

Phase Correction

Detector Formation

And
η<>

Figure 3. Block diagram of the presented ICA-based detector.
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5. SIGNAL DESIGN

ICA is a powerful tool used to simplify our detection problem. In this
paper, we use ICA estimation technique to separate the mixture of “the
signal matrix” and “the array matrix”. In ICA techniques, information
about mixed signals enables us to solve the estimation problem.
Independency is the most important granted property, but other
parameters about signals such as probability density function(PDF)
should be considered too. Now the question is, which signals are
better separated in this model? In other words, the performance of
estimation with ICA should be evaluated by a quantitative parameter
such as variance of error or in a more general case, Cramer Rao Bound
(CRB). This question is the basis for designing the transmitted pulse
trains.

As we completely described in [25] and as it was shown
in [38, 39], the bounded magnitude signals such as BPSK and uniformly
distributed signals have better performance according to the CRB. So,
in this paper we consider them for radar signal design as described in
the next subsection.

5.1. Code Sequence Design

In this paper, an ICA problem of the form demonstrated in
Equation (10) is discussed. We can easily transform this time domain
equation to an equivalent frequency domain by matrix multiplication
as:

Xf = X · F = AS̃ · F + N · F = AS̃f + Nf (29)

where F is the L × L matrix of discrete Fourier transform, Xf is the
m × L matrix of the received signal in the frequency domain and S̃f

contains the Fourier transform samples of S̃. In the time domain,
the frequency shift of the signal may affect the estimated values of
the covariance matrix, higher order statistics and other statistical
terms required in ICA estimation. Considering the doppler effect in
the frequency domain, it can be seen that the effect may cause only
a circular shift in the frequency samples of the signal. Therefore,
the estimation of data statistics is more robust against the doppler
variation in the frequency domain. Therefore, the frequency domain
modeling of the signal as (29) leads to better results in ICA estimation.
Solving this ICA problem, we will find the estimation of W = (αA)−1

named Ŵ.
In the frequency domain, doppler effect causes only a circular

shift in the frequency samples, which does not change the statistical
characteristics of the data. This forces us to apply our ICA estimator
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1

m

1 × L

1 × L

m × L

m × LInverse FFT 

Transform

Transmitted 

Sequence
Code 

Figure 4. The structure used to select m batches of transmitted codes
for the ICA-based estimator.

in the frequency domain. Therefore, the applied amplitude and phase
code to the transmitted signal should be designed in a special manner
to form a BPSK or uniformly distributed signal in the frequency
domain. In this article, a computer search was used to select proper
signals for the ICA technique. According to Fig. 4, different random
BPSK or uniformly distributed signals are mixed by an array-matrix of
some arbitrary directions and then an ICA estimator is applied to this
mixture. The signal with the best separation performance according
to [25], is selected as the frequency samples of the transmitted signal.
In the next step, applying an inverse FFT to the samples, the m × L
code of the transmitted pulse train would be obtained.

6. ANALYSIS OF COMPUTATIONAL LOAD

In this section, a brief analysis of computational complexity of two
presented detectors is offered. First, we should study the GLR detector
of (14). According to [40], the straightforward method of n × n
matrix multiplication uses O (n3) operations‡. It can be shown that
the production of Mn×p ×Qp×`, will result in complexity of O (np`).
Therefore, we can conclude that the order of complexity of (14) is:

O
(
nf × nθ × nφ ×

[
2L× (m2 + 1) + m× L2

])
(30)

For the ICA-based detection algorithm presented in Fig. 3,
‡ O(·) (Big O)notation is used in computer science to describe the performance or
complexity of an algorithm. O(·) specifically describes the worst-case scenario, and with a
certain algorithm, it can be used to describe the execution time required or the space used
(e.g., in memory or on disk).
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different blocks should be considered independently. If we consider all
possible values for L, the FFT block uses mL2 complex operations.
Wiener filter has a complexity of O (m2L + m3) according to the
structure described in Appendix C. For the JADE algorithm which
is used as the ICA-estimator in this detection method, as described
in [35, 36], the complexity is O ((k + 2)m3 + m4 + 2m2L). Here k is
the number of iterations in Approximate Joint Diagonalization (AJD)
step in JADE algorithm as described in [41] and simulation results
show that k does not exceed 20 in our detection problem. Also, the
complexity of arrangement and phase estimation is O (nf × m2L2 +
4mL). Finally, the complexity of (16) is O (nθ × nφ ×m3 + 2m2L +
mL2). Eventually, the order of complexity of the ICA-based detection
algorithm is:

O
(
m2L + km3 + m4 + nf ×m2L2 + nθ × nφ ×m3

)
(31)

It is important to note that in order to have an acceptable
performance in both GLR and ICA-based detectors, the value of nf

should increase proportional to L and nφ should increase proportional
to m. Comparison of (30) and (31) shows that because of the
multiplicative form of parameters in (30), the computational load of
GLR detector is much more than the ICA-based detector. For example,
for a hypothetical system with parameters of m = 6, nf = 2L,
nφ = 2m, nθ = 1000 and k = 20, Fig. 5 compares the number of
complex iterations for different values of L for both detectors. 5. It can
be easily seen that for these parameters, the difference of complexity
between two detectors is of an order of 103.
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7. SIMULATION RESULTS

In this section, we consider a ULA array of omnidirectional
transmit/receive antennas separated by 0.5λ. As described in
Section 2, in the system presented here, a small shift is applied to the
frequency of different narrow-band transmitted signals. Considering a
center frequency of fc in these simulations, m transmitted frequencies
are uniformly spaced in an interval of fc±5%. In this section, an m = 6
MIMO system with L = 200 is considered and the obtained sequences
according to Fig. 4 are used for simulation. Simulation results show
that in order to have equivalent performance with the case of known
φ (Loss ≤ 0.1 dB), we should select nφ ≥ 3m. So, nφ = 3m is used for
the simulations in this section.

7.1. Sensitivity of Arrangement Algorithm to nf

For the first simulation, sensitivity of the arrangement algorithm of
Section 4.2.1 to nf is discussed (this has been presented in [25], too).
Hence, the probability of error (Pe) in the arrangement is derived
for different numbers of frequency points (nf ). Pe is calculated by
averaging over all doppler values in the interval of [0, PRF). The result
is shown in Fig. 6. It is shown that for (nf > L/2), the arrangement
is ideally done for every doppler value of the received signal. In other
words, the largest acceptable doppler step for proper arrangement is
about 2PRF/L (nf = L/2).

Probability of Error
0.06

0.05

0.04

0.03

0.02

0.01

0

P
e

0.4 0.425 0.45 0.475 0.5 0.525 0.55 0.575 0.6

n f X L

Figure 6. Probability of error in arrangement, for different frequency
test points.
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7.2. Code Selection

As mentioned in Section 5.1, a computer search is used to select proper
transmitted signals for the ICA-based detector. The procedure is
completely described in Fig. 4. In this procedure, different sets of
uniformly distributed and random binary signals are applied. It is
seen that ICA has a better performance in separation for the sets
of uniformly distributed signals. So, in our simulations, this set of
m × L uniform signals (named c1) is utilized for ICA-based detector.
A similar computer search is used for selecting a proper set of signals for
GLR detector. In this procedure, different sets of uniform and random
binary signals are studied. The set with the highest probability of
detection (Pd) is selected. It was found that the GLR detector is not
so sensitive to the selected code. Therefore, in our simulations, a set
of m× L uniform signals named c2 is utilized for the GLR detector.

7.3. Detection Performance

In this stage, the performance of the ICA-based and the GLR detectors
for different SNR values of received signal is derived by simulation. In
the following notation, Pfa denotes “probability of false alarm” and Pd

denotes probability of detection for each detector. According to the
results of Fig. 6, the number of frequency test point of arrangement
algorithm of ICA-based detector is set to nf = L/2. In order to check
the doppler sensitivity of GLR detector, three different forms of this
detector with nf = L/2, nf = L and nf > 2L are studied in this
simulation. For the simulations of this section, a target with θ = 20◦
and φ = 30◦ is considered. The value of fd for this target is adjusted
to have the maximum frequency distance with the doppler test points.
In Figs. 7 and 8, the power function of these four detectors is derived
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for Pfa = 10−3 and Pfa = 10−4. It is shown that in identical condition
of nf = L/2, the GLR detector has a very poor detection performance
compared to the ICA-based detector. Also, it can be seen that even
with nf = L the performance of the GLR detector is weaker than
ICA-based detector with nf = L/2. For example, for Pd = 0.9 and
Pfa = 10−3, the GLR detector with nf = L is about 0.2 dB weaker than
ICA-based detector and this difference is even greater for lower values
of Pd. This difference is about 0.4 dB for Pd = 0.9 and Pfa = 10−4.
Figs. 7 and 8 show that unlike the ICA-based detector, the performance
of the GLR detector is very sensitive to nf . In this context, it is shown
that changing nf up to more than 2L improves the performance of
GLR detector about 2 dB.

8. CONCLUSION

The problem of target detection in a pulse-train co-located MIMO
radar is investigated in this paper. Because of the unknown doppler
value and unknown direction of target, we confront a compound
hypothesis testing problem, so, a GLR detector is derived in this paper.
As the complexity of the GLR detector is very high, the practical
realization of this detector is very difficult. So, a new detector based on
the theory of ICA algorithms is derived in this paper. In this context,
a proper estimator is offered to rectify the phase and order ambiguity
of ICA algorithms. A brief analysis of computational complexity of
these two detectors is offered and it is shown that the computational
load of the ICA-based detector is much less than the GLR detector. In
addition, simulation results show that the sensitivity of the ICA-based
detector to the doppler effect is very low. Thus, with equal number of
doppler test points, better detection performance is gained in the ICA-
based detector. Finally, an appropriate signal design method based
on the separation performance of ICA algorithms is presented in this
research.

APPENDIX A. DERIVATION OF GLR DETECTOR

To solve the detection problem of (12), we should reform it to a vector
structure of:

vx = α.H(fd).vA(θ, φ) + vN (A1)

where

vx = Vec
(
XT

)
vN = Vec

(
NT

)

vA(θ, φ) = Vec
(
AT (θ, φ)

)
H(fd) = Im ⊗ S̃T (fd)

(A2)
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In this equation ⊗ denotes the Kronecker matrix product, Vec(·)
denotes the vectorization of a desired matrix and vN is the white
gaussian noise vector that is N (0, σ2

nIL×m). Now, the detector of (13)
can be formed as:

max
fd,α,φ,θ

fvx (vx|H1, θ, α, φ, fd)
fvx (vx|H0)

≷ η (A3)

We can simplify (A3) by replacing the formulation of complex
Gaussian PDFs as:

max
α,fd,φ,θ





exp
[
− 1

σ2
(vx−α·H(fd)·vA(θ, φ))H(vx−α·H(fd)·vA(θ, φ))

]

exp
[
− 1

σ2
(vx)H(vx)

]





≷ η′ (A4)
This equation can be simplified to:

max
fd,θ,φ

{
max

α

{
Re

[
2×vH

x α·H·vA − (α·H·vA)H (α·H·vA)
]}}

≷ η (A5)

The maximization over α is derived by applying a derivative to
inner argument o f Re[·] in (A5) and we have:

2× vH
x ·H · vA − 2× α∗ (H · vA)H (H · vA) = 0 (A6)

⇒ α̂ =
(H · vA)H vx

(H · vA)H (H · vA)
Replacing α̂ in (A5), the detector can be simplified to:

max
fd,θ,φ

vH
x (HvA) (HvA)H vx

(HvA)H (HvA)
≷ η (A7)

According to (A2) we have:

HvA =
(
Im ⊗ S̃T

)
Vec

(
AT

)
= Vec

(
S̃TAT

)
(A8)

and then

(HvA)H (HvA) =
∥∥∥S̃TAT

∥∥∥
2

=
∥∥∥AS̃

∥∥∥
2

(A9)

Also according to (A2) we have:

(HvA)H vx = Vec
(
S̃TAT

)H
Vec

(
XT

)
=

(
tr

(
AS̃XH

))∗
(A10)

Replacing (A9) and (A10) in (A7), the GLR detector is:

max
fd,θ,φ

∣∣∣tr
(
A(θ, φ)S̃(fd)XH

)∣∣∣
2

∥∥∥A(θ, φ)S̃(fd)
∥∥∥

2 ≷ η (A11)
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APPENDIX B. DERIVATION OF ICA-BASED
DETECTOR

To derive an ICA-based detector for (12), we should initially reform it
to a vector structure as:

vx = α ·H(fd) · vA(θ, φ) + vN (B1)

where the same definitions as (A2) are true in this notation too. In
this equation, vN is the white Gaussian noise vector of N (0, σ2

nIL×m).
Now, the detector of (15) can be formed as:

fvx

(
vx|H1, θ̌, α̌, φ̌, f̌d

)

fvx (vx|H0)
≷ η (B2)

where θ̌, α̌, φ̌ and f̌d are the ICA estimations of θ, α, φ and fd. We
can simplify (B2) by replacing the formulation of complex Gaussian
PDFs as:

exp
[
− 1

σ2

(
vx−α̌·H(f̌d)·vA(θ̌, φ̌)

)H(
vx−α̌·H(f̌d)·vA(θ̌, φ̌)

)]

exp
[− 1

σ2 (vx)H(vx)
] ≷ η′ (B3)

This equation can be simplified to:

Re
[
2× vH

x α̌ ·H(f̌d) · vA(θ̌, φ̌)− (
α̌ ·H(f̌d) · vA(θ̌, φ̌)

)H

(
α̌ ·H(f̌d) · vA(θ̌, φ̌)

) ]
≷ η (B4)

According to (A2) the ICA-based detector is:
∣∣∣∣2Re

[
tr

(
α̌A(θ̌, φ̌)S̃(f̌d)XH

)]
−

∥∥∥α̌A(θ̌, φ̌)S̃(f̌d)
∥∥∥

2
∣∣∣∣ ≷ η (B5)

APPENDIX C. WIENER FILTER

Considering the described model in Section 2, the received signal of (10)
is composed of L independent samples (pulses) of m×1 receiver vector.
For each pulse, the vector of m received signals can be formulated as

x = As̃ + n = q + n (C1)

where n is the vector of i.i.d. noise variables. Considering a white
Gaussian distribution as N (0, σ2

n), we can form the Wiener filter [42]
or equivalently Linear Mean Square estimator of q as

F = R−1
x Rqx (C2)
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where Rx is the correlation matrix of received data and Rqx is the
cross-correlation matrix of data and signal. By definition we have

Rx = E
{
xxH

}
(C3)

Rqx = E
{
qxH

}
= E

{
qqH

}
= Rq

But as only L samples of each variable is available in this model, the
estimated form of these parameters are

R̂x = XXH/L (C4)

R̂q = XXH/L− σ2
nIm×m

By applying F̂ = R̂−1
x R̂q as a pre-multiply operation to the signal

matrix, we have
X̌ = F̂X = AS̃ + E (C5)

where E = X̌−AS̃ is the error of estimation.
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