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Abstract—The paper studies boundary conditions in transformation-
optics cloaking for two and three dimensional electromagnetic waves.
Implicit boundary conditions for these two cases are derived, no matter
if the source is placed in the interior or exterior of the cloak layer.
More importantly, the two implicit boundary conditions are derived
without solving Mie scattering problems, and these conditions are
characteristics of the clock-air interface. In particular, the implicit
boundary condition for two-dimensional electromagnetic wave case is
reported for the first time. In addition, a sensor can be cloaked in
two-dimensional electromagnetic waves, i.e., waves can penetrate into
the interior of the cloak layer without exterior scattering.

1. INTRODUCTION

Invisibility cloak via transformation optics has received much attention
in the past few years. Pendry et al. proposed the transformation optics
approach to control electromagnetic (EM) fields, by which a space
consisting of the normal free space can be squeezed into a new space
with different volumes and inhomogeneous constitutive parameters.
The fundamental idea is the invariance of Maxwell’s equations under a
space-deforming transformation if the material properties are altered
accordingly [1–10]. When the source is outside the cloak, usually the
Mie scattering problem is solved to obtain the field distributions in
different layers [11, 12]. The case when source is in the interior of the
cloak, which is much less studied in comparison, is usually tackled by a
way similar to the Mie scattering approach, i.e., expressing the source
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field as multipole fields and then matching boundary conditions [6]. For
convenience, we refer to both methods as the Mie scattering approach
(or the method of solving the Mie scattering problem), no matter
if the source is placed in the exterior or interior of the cloak layer.
Boundary conditions at the inner boundary of the cloak have been of
great interest, especially when the source is in the interior of the cloak.
To the best knowledge of the author, all existing publications arrive at
boundary conditions by first solving the Mie scattering problem and
then observing the fields at the boundary.

In this paper, for two-dimensional (2D) and three-dimensional
(3D) EM waves, the boundary conditions are derived from constitutive
parameters of cloak’s material, without resource to the Mie scattering
approach, regardless of whether the source is placed in the interior
or exterior of the cloak layer. In particular, the implicit boundary
condition for 2D EM wave case is reported for the first time. In the
analysis, some small quantities, which have been ignored in previous
publications, are taken into account with the aid of Taylor’s expansions,
which leads to several interesting results that have never been reported
before. The ideal cloaking is accompanied by shielding: There is a
decoupling of the fields inside and outside of the cloaked region, so that
external observations do not provide any indication of the presence
of a cloaked object, nor is any information about the fields outside
detectable inside the cloaked region. In many real-world applications,
however, there are needs for effectively cloaking sensors and detectors
so that their presence may be less disturbing to the surrounding
environment [13, 14]. This paper shows, by using Taylor’s expansions,
that a sensor can be cloaked in 2D EM waves, i.e., waves can penetrate
into the interior of the cloak layer without exterior scattering.

2. TWO-DIMENSIONAL ELECTROMAGNETIC WAVES

For a 2D EM cloak [2, 12, 15], the radial linear transform yields the
permittivity and permeability tensors, ερ/ε0 = µρ/µ0 = (ρ − R1)/ρ,
εφ/ε0 = µφ/µ0 = ρ/(ρ−R1), and εz/ε0 = µz/µ0 = [R2/(R2−R1)]2(ρ−
R1)/ρ, where R1 and R2 are the inner and outer radii of the cloak,
respectively. To avoid singularities, the inner boundary of cloak layer
is shifted to ρ = R1 + δ, where δ is a small positive number. The ideal
cloaking can be obtained as δ approaches zero. We consider the TMz

mode with respect to the longitudinal direction ẑ (Alternatively, it is
referred to as the TExy mode with respect to the xy plane).
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2.1. Source Is inside the Cloak

When a time-harmonic source, with exp(−iωt) dependence, is placed
in the interior of the cloak, the z component of electric field in each
region can be expressed as

Eext
z (ρ, φ)=

∞∑
n=−∞

AnH(1)
n (k0ρ)einφ for ρ > R2 (1)

Eclo
z (ρ, φ)=

∞∑
n=−∞

[
BnJn(kc(ρ−R1))+CnH(1)

n (kc(ρ−R1))
]
einφ

forR1+δ<ρ<R2 (2)

Eint
z (ρ, φ)=

∞∑
n=−∞

[
DnJn(k0ρ) + KnH(1)

n (k0ρ)
]
einφ,

for 0 < ρ < R1 + δ, (3)

where kc = k0R2/(R2 −R1). The magnetic field can be derived as

Hρ =
1

iωµρρ

∂Ez

∂φ
(4)

Hφ = − 1
iωµφ

∂Ez

∂ρ
. (5)

Since the source is given, Kn is uniquely determined. For each
multipole (of order n), we will solve for four unknowns An, Bn, Cn,
and Dn. Thus, by matching boundary conditions, i.e., Ez and Hφ are
continuous at ρ = R1 + δ and ρ = R2, we obtain

An/Kn = Cn/Kn =
2i

πk0(R1 + δ)
/Fn (6)

Bn/Kn = 0 (7)
Dn/Kn = Gn/Fn, (8)

where

Fn =
kcδ

k0(R1+δ)
H(1)′

n (kcδ)Jn(k0(R1+δ))−H(1)
n (kcδ)J ′n(k0(R1+δ))(9)

Gn =− kcδ

k0(R1+δ)
H(1)′

n (kcδ)H(1)
n (k0(R1+δ))

+H(1)
n (kcδ)H(1)′

n (k0(R1+δ)) (10)

and the Wronskian Jn(z)H(1)′
n (z)− J ′n(z)H(1)

n (z) = 2i/(πz) is used.
From here onwards, we will use the fact that δ is a small parameter

to simplify the obtained values of Cn and Dn.
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2.1.1. For n = 0

For an infinitesimal parameter z, we have the asymptotics H
(1)
0 (z) ≈

q0 ln z and J0(z) ≈ 1− z2/4 [16]. Using Taylor’s expansion, we obtain

F0 ≈ q0

k0R1
J0(k0R1)− q0 ln(kcδ)J ′0(k0R1) (11)

G0 ≈ − q0

k0R1
H

(1)
0 (k0R1) + q0 ln(kcδ)H

(1)′
0 (k0R1) (12)

When J ′0(k0R1) 6= 0, we obtain D0/K0 = −H
(1)′
0 (k0R1)/J ′0(k0R1) and

C0/K0 = O(1/ ln(δ))), where the Landau big-o notation O(·) denotes
terms of the same order, i.e., neglecting constants multipliers and
higher-order terms. At the boundary ρ = R1 + δ, we see that following
quantities are continuous across the boundary

Bρ = 0 (13)

Hφ = O

(
1

(R1 + δ)/δ
C0H

(1)′
n (kcδ)

)
= O(1/ ln(δ)) (14)

As δ approaches zero, both Bρ and Hφ approach zero.
When J ′0(k0R1) = 0, it is easy to find that D0 = O(ln(δ)), which

is infinite as δ approaches zero. This phenomenon is due to inserting
an active source inside a resonator. In practice, loss must be taken
into account, which avoids the appearance of infinity. The analysis of
such case is beyond the scope of this paper.

2.1.2. For n > 0

For an infinitesimal parameter z and an integer n > 0, we have
the asymptotics H

(1)
n (z) = qnz−n + O(z−n+2) and Jn(z) = pnzn +

O(zn+2) [16]. Using Taylor’s expansion, we obtain

Fn ≈ (kcδ)−nqn

{
−

[
n

k0R1
Jn(k0R1) + J ′n(k0R1)

]
+ O(δ)

}
(15)

Gn ≈ (kcδ)−nqn

{[
n

k0R1
H(1)

n (k0R1) + H(1)′
n (k0R1)

]
+ O(δ)

}
(16)

When J ′n(k0R1) + n
k0R1

Jn(k0R1) 6= 0, we obtain Dn/Kn =

−[H(1)′
n (k0R1) + n

k0R1
H

(1)
n (k0R1)]/[J ′n(k0R1) + n

k0R1
Jn(k0R1)] and

Cn/Kn = O(δn). At the boundary ρ = R1 + δ, we see that although
Bρ and Hφ do not vanish as δ approaches zero, a linear combination
of them,

Bρ − iµ0Hφ = Cn
einφ

ω(R1 + δ)

[
nH(1)

n (kcδ) + kcδH
(1)′
n (kcδ)

]

= CnO((kcδ)−n+2) = O(δ2) (17)
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does vanish as δ approaches zero. As discussed in Section 2.1.1, the
case when J ′n(k0R1)+ n

k0R1
Jn(k0R1) = 0 is not discussed in this paper.

2.2. Source Is outside of Cloak

When a source is placed in outside the cloak, Ez in each region can be
expressed as

Eext
z (ρ, φ) =

∞∑
n=−∞

[
KnJn(k0ρ)+AnH(1)

n (k0ρ)
]
einφ for ρ > R2 (18)

Eclo
z (ρ, φ) =

∞∑
n=−∞

[
BnJn(kc(ρ−R1)) + CnH(1)

n (kc(ρ−R1))
]
einφ

for R1 + δ < ρ < R2 (19)

Eint
z (ρ, φ) =

∞∑
n=−∞

DnJn(k0ρ)einφ, for 0 < ρ < R1 + δ. (20)

Since the source is given, Kn is uniquely determined. By matching Ez

and Hφ at ρ = R1 + δ and ρ = R2, we obtain
Bn/Kn = 1 (21)
An/Kn = Cn/Kn = Gn/Fn (22)

Dn/Kn =
2i

πkcδ
/Fn (23)

where

Fn = Jn(k0(R1 + δ))H(1)′
n (kcδ)− k0(R1 + δ)

kcδ
J ′n(k0(R1 + δ))H(1)

n (kcδ)

(24)

Gn = −Jn(k0(R1 + δ))J ′n(kcδ) +
k0(R1 + δ)

kcδ
J ′n(k0(R1 + δ))Jn(kcδ)

(25)

2.2.1. For n = 0

Using Taylor’s expansion, we obtain

F0 ≈ −q0
k0R1

kcδ
ln(kcδ)J ′0(k0R1) +

q0

kcδ
J0(k0R1) (26)

G0 ≈ k0R1

kcδ
J ′0(k0R1) + O(δ0) (27)

When J ′0(k0R1) 6= 0, we obtain C0/K0 = O(1/ ln(δ)) and D0/K0 =
O(1/ ln(δ)), both of which approach zero as δ approaches zero.
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When J ′0(k0R1) = 0, we obtain C0/K0 = O(δ) and D0/K0 =
O(δ0). Thus, whereas the scattered field (A0 = C0) approaches zero
as δ approaches zero, the interior field (D0) does not. To the best
of author’s knowledge, this property has never been reported before.
This property can be used to cloak a sensor, which will be discussed
in Section 2.2.3.

At the boundary ρ = R1 + δ, we see that no matter J ′0(k0R1) is
equal to zero or not the following quantities are continuous across the
boundary

Bρ = 0 (28)
Hφ = O

(
D0J

′
0(k0(R1 + δ))

)
= O(1/ ln(δ)) or O(δ) (29)

As δ approaches zero, both Bρ and Hφ approach zero.

2.2.2. For n > 0

Using Taylor’s expansion, we obtain

Fn ≈ (kcδ)−n−1qn

{[−nJn(k0R1)− k0R1J
′
n(k0R1)

]
+ O(δ)

}
(30)

Gn ≈ (kcδ)n−1pn

{[−nJn(k0R1) + k0R1J
′
n(k0R1)

]
+ O(δ)

}
(31)

When J ′n(k0R1) + n
k0R1

Jn(k0R1) 6= 0, we obtain Cn/Kn = O(δ2n) and
Dn/Kn = O(δn), both of which approach zero as δ approaches zero.

When J ′n(k0R1) + n
k0R1

Jn(k0R1) = 0, we obtain Cn/Kn =
O(δ2n−1) and Dn/Kn = O(δn−1). For n > 1, both terms approach
zero as δ approaches zero. For n = 1, whereas the scattered field
(A1 = C1 = O(δ)) approaches zero as δ approaches zero, the interior
field (D1 = O(δ0)) does not. As mentioned earlier, this property can
be used to cloak a sensor.

At the boundary ρ = R1 + δ, both Bρ = Dnn/[ω(R1 +
δ)]Jn(k0(R1 + δ))einφ and Hφ = −Dnk0/(iωµ0)J ′n(k0(R1 + δ))einφ are
continuous. For the cases (1) n > 1 or (2) n = 1 and J ′n(k0R1) +

n
k0R1

Jn(k0R1) 6= 0, both Bρ and Hφ approach zero as δ approaches
zero. For n = 1 and J ′n(k0R1) + n

k0R1
Jn(k0R1) = 0, although Bρ and

Hφ do not vanish as δ approaches zero, a linear combination of them,

Bρ − iµ0Hφ =
Dn

ω

[
n

R1
Jn(k0R1) + k0J

′
n(k0R1) + O(δ)

]
einφ

= D1O(δ) = O(δ) (32)

does vanish as δ approaches zero.
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2.2.3. Cloaking a Sensor

In ideal cloaking, there is a decoupling of the fields inside and outside
of the cloaked region, i.e., external observations cannot detect the
presence of a cloaked object, nor is any field outside detectable inside
the cloaked region. In many real-world applications, however, there
are needs for effectively cloaking sensors and detectors so that their
presence may be less disturbing to the surrounding environment. The
interesting phenomenon presented in Section 2.2.1 and Section 2.2.2
can be used to cloak a sensor. We insert a cylinder of radius R0

inside the cloak, with its center at the origin. The sensor is placed
inside the inserted cylinder and is able to measure the electric field
at the surface of the cylinder. The inserted cylinder has the surface
impedance boundary condition Ez/Hφ = (iωµ0/k0)/α. The electric
field in the space R0 ≤ ρ ≤ R1 is given by

Eint
z (ρ, φ) =

∞∑
n=−∞

[
DnJn(k0ρ) + EnH(1)

n (k0ρ)
]
einφ, (33)

and the fields in other regions are still the same as Eqs. (18) and (19).
The impedance boundary condition at ρ = R0 yields
[
DnJ ′n(k0R0)+EnH(1)′

n (k0R0)
]
+α

[
DnJn(k0R0)+EnH(1)

n (k0R0)
]

= 0.

(34)
A straightforward calculation shows that when we choose α =
−J ′n(k0R0)/Jn(k0R0), the coefficient En has be to zero. In this
case, the linear equation system is exactly the same as those in
Section 2.2.1 and Section 2.2.2. Thus, when J ′0(k0R1) = 0 or
J ′1(k0R1) + 1

k0R1
J1(k0R1) = 0 is satisfied, the electromagnetic fields

in the region R0 ≤ ρ ≤ R1 do not approach zero and at the same time
the scattered fields outside the cloak approach zero. This is to say it
achieves cloaking a sensor. It is worth stressing that the advantage of
the proposed cloaking-sensor method over those published ones [13, 14]
is that it is much simpler.

2.3. Implicit Boundary Condition

Section 2.1 and Section 2.2 discuss several boundary conditions at
ρ = R1 + δ. A careful observation shows that the boundary condition
Bρ − iµ0Hφ = 0 (as δ approaches zero) is always satisfied at ρ =
R1 + δ, regardless of whether the source is in the interior or exterior
of the cloak. In the aforementioned two Sections, we first obtain
electromagnetic fields via solving the Mie scattering problem, and
consequently obtain the aforementioned boundary condition. In fact,
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this boundary condition is characteristic of the cloak-air interface, and
it can be obtained without solving the Mie scattering problem. Now
we only use the permittivity and permeability of the cloak to derive
the boundary condition.

For n = 0, it is obvious that Bρ = 0 and thus it is sufficient to show
Hφ = 0. Due to the asymptotics H

(1)
0 (z) ≈ q0 ln z and J0(z) ≈ 1−z2/4

for a small parameter z [16], we see that the electric field at the inner
boundary of cloak is dominated by Ez(R1 + δ) ≈ C0H

(1)
0 (kcδ). Since

the other side of the boundary is air and the electric field in air is finite,
the continuity of Ez across the boundary yields C0H

(1)
0 (kcδ) = O(δ0).

Thus, C0 = O(1/ ln(δ)). Consequently, we see from Eq. (4) that
Hφ(R1 + δ) = O( 1

µφ
C0H

(1)′
0 (kcδ)) = O(1/ ln(δ)), which vanishes as

δ approaches zero.
For n > 0, we have the asymptotics H

(1)
n (z) = qnz−n + O(z−n+2)

and Jn(z) = pnzn + O(zn+2) for an infinitesimal parameter z [16]. At
the inner boundary of the cloak ρ = R1 + δ, the electric field at the
inner boundary of cloak is dominated by Ez(R1 + δ) ≈ CnH

(1)
n (kcδ).

Since the other side of the boundary is air and the electric field
in air is finite, the continuity of Ez across the boundary yields
CnH

(1)
n (kcδ) = O(δ0). Thus, Cn = O(δn). We straightforwardly

calculate from Eqs. (4) and (5) that Bρ − iµ0Hφ = einφ/(ω(R1 +

δ))Cn

[
nH

(1)
n (kcδ) + kcδH

(1)′
n (kcδ)

]
= O(Cnδ−n+2) = O(δ2), vanishes

as δ approaches zero.
Thus, we have finished the proof that the condition Bρ−iµ0Hφ = 0

(as δ approaches zero) is always satisfied at ρ = R1 + δ. To the best
of our’s knowledge, this boundary condition has never been reported
before. In addition, this boundary condition can be proven without
solving the Mie scattering problem.

3. THREE-DIMENSIONAL ELECTROMAGNETIC
WAVES

For a 3D EM cloak [1, 2, 5, 6, 11, 17], the radial linear transform yields
the permittivity and permeability tensors, εt/ε0 = µt/µ0 = R2/(R2 −
R1), εr/εt = µr/µt = (r − R1)2/r2, where the subscript t denotes the
tangential components (i.e., components in the θ̂ and φ̂ directions). To
avoid singularities, we let the inner boundary of the cloaking material
be at R1 + δ, where δ is a small positive number.

Electromagnetic fields can be decomposed into two independent
modes, TE and TM modes, which are dual to each other. For the TM



Progress In Electromagnetics Research, Vol. 121, 2011 529

mode, the B field can be expressed as

B = ∇× (r̂ΦM ) . (35)

Now the magnetic field H and the electric field E can be expressed as

H = µ−1
t

(
1

r sin θ

∂ΦM

∂φ
θ̂ − 1

r

∂ΦM

∂θ
φ̂

)
(36)

E =
ε
−1 · µ−1

t

−iω

[
− 1

r2 sin θ

(
∂

∂θ
(sin θ

∂ΦM

∂θ
) +

1
sin θ

∂2ΦM

∂φ2

)
r̂

+
1
r

∂2ΦM

∂r∂θ
θ̂ +

1
r sin θ

∂2ΦM

∂r∂φ
φ̂

]
. (37)

3.1. Source Is inside the Cloak

When a source is placed in the interior of the cloak, the potential ΦM

in the three regions is written as

Φext
M (r, θ, φ) =

∑
n

∑
m

AnmĤ(1)
n (k0r)Y m

n (θ, φ) for r > R2 (38)

Φclo
M (r, θ, φ) =

∑
n

∑
m

[
BnmĴn(kc(r −R1)) + CnmĤ(1)

n (kc(r −R1))
]

Y m
n (θ, φ) forR1 + δ < r < R2 (39)

Φint
M (r, θ, φ) =

∑
n

∑
m

[
DnmĴn(k0r) + KnmĤ(1)

n (k0r)
]
Y m

n (θ, φ)

for 0 < r < R1 + δ, (40)

where kc = ω
√

µtεt, Ĵn(z) = zjn(z) and Ĥ
(1)
n (z) = zh

(1)
n (z) are the

Riccati-Bessel functions of the first and third kinds respectively, and
Y m

n are spherical harmonics.
Since the source is given, Knm is uniquely determined. Eqs. (36)

and (37) indicate that the continuities of tangential components of H
and E across the boundaries r = R1 + δ and r = R2 amount to the
continuities of ΦM/µt and (1/µtεt)∂ΦM/∂r, respectively. We solve the
linear equation system to obtain

Anm/Knm = i/Fn (41)
Bnm = 0 (42)
Cnm = AnmR2/(R2 −R1) (43)

Dnm/Knm = Gn/Fn, (44)
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where
Fn=Ĥ(1)′

n (kcδ)Ĵn(k0(R1 + δ))− Ĥ(1)
n (kcδ)Ĵ ′n(k0(R1 + δ)) (45)

Gn=−Ĥ(1)′
n (kcδ)Ĥ(1)

n (k0(R1+δ))+Ĥ(1)
n (kcδ)Ĥ(1)′

n (k0(R1+δ)) (46)

and the Wronskian Ĵn(z)Ĥ(1)′
n (z)− Ĵ ′n(z)Ĥ(1)

n (z) = i is used.
For an infinitesimal parameter z, we have the asymptotics Ĵn(z) ≈

anzn+1 and Ĥ
(1)
n (z) ≈ bnz−n [16]. Using Taylor’s expansion, we have

Fn ≈ −bn(kcδ)−(n+1)
[
nĴn(k0R1) + δ(nk0 + kc)Ĵ ′n(k0R1)

]
(47)

Gn ≈ bn(kcδ)−(n+1)
[
nĤ(1)

n (k0R1)+δ(nk0+kc)Ĥ(1)′
n (k0R1)

]
. (48)

When Ĵn(k0R1) 6= 0, Anm = O(δn+1), and Dnm/Knm =
−Ĥ

(1)
n (k0R1)/Ĵn(k0R1). Thus, we see from Eq. (40) that at the inner

boundary of the cloak r = R1 + δ, the potential ΦM approaches zero
as δ approaches zero, and consequently Eqs. (36) and (37) yield that
Hθ, Hφ and Dr all approach zero.

When Ĵn(k0R1) = 0, Anm = O(δn), and Dnm = O(δ−1). In
practice, loss must be taken into account to avoid the appearance of
infinity. As discussed in Section 2.1.1, such case is beyond the scope
of this paper.

3.2. Source Is outside Cloak

When the source is placed outside the cloak, the potential ΦM in the
three regions is written as

Φext
M (r, θ, φ) =

∑
n

∑
m

[
KnmĴn(k0r)+AnmĤ(1)

n (k0r)
]
Y m

n (θ, φ)

for r>R2 (49)

Φclo
M (r, θ, φ) =

∑
n

∑
m

[
BnmĴn(kc(r−R1))+CnmĤ(1)

n (kc(r−R1))
]

Y m
n (θ, φ) forR1 + δ < r < R2 (50)

Φint
M (r, θ, φ) =

∑
n

∑
m

DnmĴn(k0r)Y m
n (θ, φ), forR0 <r,<R1+δ. (51)

Since the source is given, Knm is uniquely determined. By matching
boundary conditions, we obtain

Anm/Knm = Gn/Fn (52)
Bnm/Knm = R2/(R2 −R1) (53)

Cnm = AnmR2/(R2 −R1) (54)
Dnm/Knm = i/Fn, (55)
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where

Fn = Ĵn(k0(R1 + δ))Ĥ(1)′
n (kcδ)− Ĵ ′n(k0(R1 + δ))Ĥ(1)

n (kcδ) (56)

Gn = −Ĵn(k0(R1 + δ))Ĵ ′n(kcδ) + Ĵ ′n(k0(R1 + δ))Ĵn(kcδ). (57)

Using small parameter approximations, we have

Fn≈−bn(kcδ)−(n+1)
[
nĴn(k0R1) + δ(nk0 + kc)Ĵ ′n(k0R1)

]
(58)

Gn≈an(kcδ)n
[
−(n+1)Ĵn(k0R1) + δ(−(n + 1)k0 + kc)Ĵ ′n(k0R1)

]
. (59)

When Ĵn(k0R1) 6= 0, Anm = O(δ2n+1), and Dnm = O(δn+1).
At the inner boundary of the cloak r = R1 + δ, the potential ΦM

approaches zero as δ approaches zero, and consequently Eqs. (36)
and (37) yield that Hθ, Hφ and Dr all approach zero.

When Ĵn(k0R1) = 0, by Wronskian we see that Ĵ ′n(k0R1) 6= 0.
Consequently, Anm = O(δ2n+1), and Dnm = O(δn). Since the lowest
multipole in electromagnetic radiation is the dipole, n starts from
one. Thus, Dnm approaches zero as δ approaches zero. At the
inner boundary of the cloak, the potential ΦM approaches zero as δ
approaches zero, and consequently Hθ, Hφ and Dr all approach zero.

3.2.1. Cloaking a Sensor

Since the electromagnetic fields inside the cloak always approach zero
as δ approaches zero, no matter Ĵn(k0R1) equals zero or not, the
interesting sensor effect, as presented in Section 2.2.3 in 2-D case,
does not appear in 3-D case. The main reason for such a difference is
that the lowest multipole in 2D case is monopole, whereas it is dipole
in 3D case. It is worth mentioning that although the radial linear
transformation cannot achieve cloaking a sensor for 3D EM waves,
there are advanced linear transformations that can achieve it [18].

3.3. Implicit Boundary Condition

For the TM mode, from Eq. (37), we see that the tangential
components of electric field (Eθ and Eφ) at the inner boundary of
cloak r = R1 + δ is dominated by Cnm∂Ĥ

(1)
n (kcδ)/∂r. Since the

other side of the boundary is air and the electric field in air is finite,
the continuity of Eθ and Eφ requires Cnm∂Ĥ

(1)
n (kcδ)/∂r = O(δ0).

Thus, Cnm = O(δn+1). We straightforwardly calculate from Eqs. (39)
and (50) that Φclo

M (R1+δ) = O(CnmĤ
(1)
n (kcδ)) = O(Cnmδ−n) = O(δ1),

which vanishes as δ approaches zero. Consequently, Eqs. (36) and (37)
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yield that Hθ, Hφ, Dr all approach zero as δ approaches zero. Thus,
the implicit boundary condition for the TM mode is the perfectly
magnetic conductor (PMC). For the TE mode, we obtain by duality
that the implicit boundary condition is the perfectly electric conductor
(PEC). Alternatively, no matter for the TE mode or TM mode, or a
linear combination of them, the implicit boundary condition can be
summarized as Dr = Br = 0. Once again, the implicit boundary is
obtained without solving the Mie scattering problem.

4. CONCLUSION AND DISCUSSION

Transformation-optics cloaking for 2D and 3D electromagnetic waves
is discussed in this paper. No matter if the source is placed in the
interior or exterior of the cloak layer, there are implicit boundary
conditions in the inner boundary of the cloak. More importantly,
the two implicit boundary conditions are derived without solving Mie
scattering problems. In particular, the implicit boundary condition for
2D electromagnetic wave case is reported for the first time. Taylor’s
expansion is used to take into account some small quantities, which
leads to several interesting results that have never been reported
before. One of such results is that a sensor can be cloaked in 2D
electromagnetic waves, i.e., waves can penetrate into the interior of
the cloak layer without exterior scattering, which has many real-
world applications since the presence of sensor that is cloaked is less
disturbing to the surrounding environment. The method presented in
this paper can be extended to study acoustic wave cloaking as well. For
an acoustic cloak that is based on the radial linear transformation, the
normal component of velocity approaches zero at the inner boundary of
the cloak. In a way similar to that presented in Section 2.2.3, cloaking
a sensor can also be achieved for the monopole component of acoustic
wave when the condition j ′0(k0R1) = 0 is satisfied. Finally, it is worth
mentioning that since the cloak layer is made of metamaterials,which
are usually periodic composite materials, it may be difficult in practice
to accurately control the infinitely small perturbation of the inner
boundary of the cloak layer.
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