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TO POSITION OF TUNING ELEMENTS IN FILTER
TUNING ALGORITHM
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Abstract—This work presents a novel approach in building a
multidimensional approximator which is used as a linear operator for
mapping the vector of detuned filter characteristic to the vector of
deviations of tuning elements. This has been done for the purpose of
using it in postproduction filter tuning algorithm. With the use of
collected sets of deviations of tuning elements and filter characteristics
corresponding to them, the least squares method (LSM) is applied to
determine the matrix which realizes the linear mapping between these
vectors. The matrix found in this method approximates the vectors
of both spaces (filter characteristics and corresponding deviations of
tuning elements). In tuning process this matrix is used to determine
the vector of tuning element deviations for a given detuned filter
characteristic read from Vector Network Analyzer. To increase the
“quality” of linear operator filter characteristics are transformed with
the use of Karhunen-Loeve transform (Principal Component Analysis).
In contrast to non-linear artificial intelligence approximators used in
filter tuning and published to-date, this method does not require a
time-consuming training process. Filter tuning experiments have been
performed and proved the correctness of the presented approach.

1. INTRODUCTION

Microwave filters are devices which are still being designed, developed
and improved. Although the filter theory is well established, the
authors are still proposing new single-band [1, 2] and multi-band [3–
5] filter designs. During the last couple of decades, together with
the marked development of telecommunication, filter production has
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reached a very high level and is still growing. In practice, the whole
filter production process can be done automatically, but its last phase,
filter tuning, is usually performed by human operators. These people
are often not engineers and rely on their experience, adjusting a filter
by looking directly at the characteristics, and changing the tuning
elements until filter characteristics meet specified tuning goals. It
takes a very long time for the operators to become experienced tuners
and do this work without any support from computer algorithms.
As a result, the production costs are significantly increased. During
the last couple of decades the researchers reported many interesting
methods for postproduction filter tuning, both in frequency [6] and
time domain [7]. The method [6] was developed over the years into
coupling matrix (CM) synthesis. Filter tuning algorithms based on
(CM) are interesting due to the fact that the elements of CM directly
correspond to physical filter tuning elements. Novel methods for CM
synthesis are still very popular in researches, which is reflected in
recently published papers [8–10].

The authors in [11] proposed the algorithm based on fuzzy logic
system (FLS) that can be used in tuning of microwave filters. In
their concept they used FLS to generate the entries of filter coupling
matrix for given scattering parameters at the sampling frequencies.
Lately we have proposed novel approaches in filter tuning, with the
use of artificial intelligence algorithms (AIA). In [12] we presented
a new approach to parallel filter tuning, where an algorithm for a
given detuned filter characteristic generates the deviations of all tuning
elements at the same time. In that concept we used Artificial Neural
Network (ANN) for the purpose of mapping the filter characteristic to
the tuning elements of a filter. The ANN was trained using input
and output vector samples, collected randomly during the process
of controlled filter detuning. The learning samples were collected
with the use of a robot [13]. The input vectors were represented
by the discretized detuned filter characteristics and the corresponding
positions of the tuning elements defining the output vectors. The same
algorithm, with the use of a new multidimensional approximator based
on Neuro-Fuzzy System (NFS), was investigated and reported in [14].
The efficiency of the NFS tuning algorithm increased significantly
which, in turn, made it possible to decrease the number of learning
vectors. The consideration on the choice of the proper number of filter
characteristic points according to its topology was reported in [15].
The concept of ANN mapping of filter characteristic to the position of
tuning elements was further developed in the application to sequential
filter tuning [16].

Although such methods can very efficiently model non-linear
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mapping of filter characteristic and tuning element positions, they
require a learning process before they can be used. This process
is always time consuming, especially for the learning sets of high
cardinality.

In this work we propose a new concept of mapping filter
characteristic to the position of tuning elements. Our investigation
considers the search for such a matrix linear operator which,
after projecting the vector with the elements of discretized filter
characteristic, will produce a vector consisting of these tuning element
deviations which are responsible for filter detuning. The matrix
operator will be determined with the use of Least Squares Method
(LSM) [17]. Following the above, the Principal Component Analysis
(PCA) is introduced. Next, we present the results of “quality” of
the approximation of introduced linear operator for modeling the
relationship between vectors of detuned filter characteristics and
the vectors of tuning elements deviations. The detailed results
demonstrate the influence of PCA transform on the “quality” of the
introduced linear approximator and the tuning process. Further, the
results of tuning experiments for two filters are presented. Conclusions
and discussion are included at the end of the paper.

2. CONCEPT OF LINEAR MAP BETWEEN FILTER
CHARACTERISTIC AND DEVIATION OF TUNING
ELEMENTS

Let us assume that we have M points representing the filter
characteristic denoted by s ∈ RM and, by s0 ∈ RM , the characteristic
of a properly tuned filter. We shall denote the values of N tuning
element positions of a filter by z ∈ RN . Next, we assume the
general function dependence between tuning element position z and
filter characteristic as s = f(z). In the approach published in the
work [12] we introduced a non-linear A operator, which realizes the
inverse dependence f−1, i.e., A : s → ∆z. In that concept, the
sampled detuned reflection characteristics of a filter were used as the
input vectors. The corresponding outputs were the normalized screw
deviations ∆z. Operator A for filter characteristic s generates a tuning
element interval ∆z, which, after applying current tuning elements
z + ∆z, makes the filter properly tuned s0 = f(z + ∆z). For the
characteristic of tuned filter s0,A operator generates ∆z = 0.

In the elaboration [12] the operator A was constructed with the
use of artificial neural network (ANN). In the concept presented here
we investigate linear matrix operator A for the purpose of mapping
filter characteristic to deviations of tuning elements. The projection
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Figure 1. Mapping process between elements s of space R3 to
the elements ∆z of space R2 with the use of matrix approximator
A ∈ R2×3.

of detuned filter characteristic s onto A operator yields the tuning
position interval ∆z = As, necessary to have the filter tuned s0 =
f(z + ∆z).

If we assume the s vector is of a length M and ∆z of a length N ,
the matrix A will be the element of the space RM×N . The matrix A
performs the correspondence from the space RM to RN . Above, Fig. 1
presents an exemplary mapping process of the elements from the space
s ∈ R3 to the space ∆z ∈ R2.

2.1. Preparation of Filter Tuning Algorithm

In the concept proposed in this paper the linear operator A will
be described with the use of LSM presented below in Section 3.
Additionally, the “outliers elimination” procedure proposed in
Section 4 will be applied. The filter characteristics will be transformed
with the use of PCA introduced in Section 5. The flow chart with
the procedures of preparing the tuning algorithm proposed here is
presented below in Fig. 2.

3. LINEAR OPERATOR AND LEAST SQUARES
METHOD

In mathematics, linear maps are one of the most interesting
correspondences between elements of two spaces. If we consider vector
spaces, the map can be realized by matrix operator, which is a linear
operator, i.e., the following conditions are fulfilled{

A(x + y) = A(x) + A(y)
A(cx) = cA(x)

(1)
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Figure 2. The flow chart with the procedures of preparing the tuning
algorithm.

where A is a matrix linear operator, x,y ∈ V are any chosen elements
of vector space V and c is any given scalar value. A real matrix of
dimension M × N defines the linear map from the space RN to RM .
In the approach proposed here such matrix operator will be applied
to map the filter characteristics (one vector space) to tuning element
deviations (second vector space). This operator will be defined with
the use of a set of sample elements from both vector spaces which are
considered.

Let us assume that we have G pairs of vectors (sg, ∆zg), where
sg ∈ RM , Sg = [sg

1, sg
2, . . . , sg

M ]T , and ∆zg ∈ RN , ∆zg =
[∆zg

1 , zg
2 , . . . , zg

M ]T , for g = 1, 2, . . . , G. The detuned characteristics
of a filter and corresponding tuning element deviations are represented
by sg and ∆zg vectors respectively. We are looking for such a matrix
A which fulfils, for all pairs (sg, ∆zg) the following relation

∆zg = Asg (1)

where

A =




a1,1 . . . a1,N
...

. . .
...

aM,1 . . . aM,N


 (2)

As we must assume that the number of vector pairs G may be larger
than both M and N , the matrix A will approximate the relation
between the elements of space S and ∆Z, so for all vector elements
of these spaces the following condition will be fulfilled

Asg −∆zg = wg (3)
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In our consideration we are looking for such a matrix A which would
best approximate all the elements of both spaces in the sense of
min(wg)2 for all g = 1, 2, . . . , G. In this approach we will use Least
Squares Method [17] to find such a matrix.

Let us denote

I =
G∑

g=1

G∑

m=1

(
N∑

n=1

am,nsg
n −∆zg

m

)2

(4)

where am,n are the elements of matrix A (2).
Following the least squares concept, we are looking for such

elements am,n of A matrix which minimize the function I defined
by (4). The minimum of the sum of squares (4) is found by setting

all the gradients to zero
∂I

∂ai,j
= 0. Since the model contains MN

parameters, we have the same number of gradient equations

∂I

∂ai,j
=2

G∑

g=1

N∑

n=1

(ai,nsg
n−∆zg

i ) sj , i=1, 2, . . . , N, j =1, 2, . . . , N (5)

These equations can be rewritten in the matrix form of the following
system of inhomogeneous linear equations

CMN×MNaMN×1 = bMN×1 (6)
where the main square matrix CMN×MN is defined as follows

CMN×MN =




TN×N 0 . . . 0
0 TN×N . . . 0
...

...
. . .

...
0 0 . . . TN×N


 (7)

and consists of L matrixes T defined as

TN×N =




G∑
g=1
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1s

g
1
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Nsg

1
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...
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. . .
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G∑
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N
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N . . .
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g=1

sg
Nsg

N




(8)

vector b is of the form

bMN×1 =




G∑

g=1

∆zg
1sg

1

G∑

g=1

∆zg
1sg

2 . . .
G∑

g=1

∆zg
1sg

N . . .
G∑

g=1

∆zg
Msg

N




T

(9)
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and vector aMN×1 defines unknown variables; the elements of matrix
A (2).

The system (6) has a solution if the determinant of matrix C does
not equal 0, det (C) 6= 0. The necessary condition for det (C) 6= 0 is
that

G ≥ M (10)

i.e., the number of vector pairs G is bigger than the length of the vector
s containing discretized filter characteristic. For G < M the rank of
matrix C is lower than MN and the system (6) cannot be solved.

4. MINIMIZATION OF LSM APPROXIMATION ERROR
BY ELIMINATION OF OUTLIERS

To build matrix A we will use G different vector pairs (sg, ∆zg), g =
1, 2, . . . , G, collected from a properly tuned filter randomly, with
the use of a robot. In general, the dependence between vectors s
and ∆z is non-linear, and introducing a linear operator A to model
correspondence between them is a simplification, since matrix A works
as a linear approximator. Because of this simplification some elements,
randomly collected, are “unsuitable” candidates to build matrix A.
We propose the following method to eliminate such “unsuitable”
candidates.

Let us define two independent sets containing pairs of detuned
filter characteristics and corresponding deviations of tuning elements.
The first set (Preparing Set), denoted by PS = {(sg

p, ∆zg
p), g =

1, 2, . . . , G}, contains the pairs used in the process of preparing matrix
A according to the procedure presented above in Section 3. The next
set (Testing Set), denoted by TS = {(sh

T , ∆zh
T ), h = 1, 2, . . . , H},

contains the pairs which will be used to investigate the approximation
quality of matrix A. To measure this quality we introduce two error
functions. The first one, PSE — Preparing Set Error (11), tells us
how well matrix A approximates the PS set, i.e., the pairs (sg

L, ∆zg
L),

which were used in the preparation of matrix A. The next one, Testing
Set Error — TSE (12) measures the approximation ability of A, i.e.,
how “good” is the correspondence between the vectors which are the
elements of the TS set, i.e., the pairs (sh

T , ∆zh
T ), — the elements which

were not used in preparing matrix A.

PSE =
2K

G∑
g=1

N∑
n=1

∣∣∣∆zg
0p(n)−∆zg

xp(n)
∣∣∣

GN
[u] where ∆zg

xp(n)=Asg
p (11)
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TSE =
2K

H∑
h=1

N∑
n=1

∣∣∆zh
0T (n)−∆zh

xT (n)
∣∣

HN
[u] where ∆zh

xT (n)=Ash
T (12)

where G — the number of vectors used in preparing matrix A, ∆zg
0p

is an element of PS — vector containing tuning element deviations
— known value, ∆zg

xp — vector defining the product of projection
of detuned filter characteristic onto matrix A, i.e., approximate value
of tuning element deviations, H — number of testing pairs in the
set TS , ∆zh

0T is an element of TS (known proper value) — testing
tuning element deviations, ∆zh

xT — tuning element deviation being
the product of filter characteristic and matrix A. The value of N is
the number of tuning elements of a filter. The value of K is the multiple
value of u and defines the maximum tuning element increment in both
directions. The value of u defines the minimal angle change in (deg)
each of the tuning elements. Both values depend on sensitivity of
physical tuning elements and should be chosen experimentally.

An outlier is an element in the data set, which is numerically
distant from the rest of the data. In the process of data set
approximation, the outliers considerably decrease the quality of
approximation. In the case considered in this work, an outlier denotes
one pair (si

L, ∆zi
L) from the set which impairs the approximation

ability of matrix A. The method of outlier elimination, proposed here,
is supposed to check whether the given pair, if removed, will improve
the quality of matrix A, i.e., the value of TSE defined by (12). If this
criterion is satisfied, this pair is removed from the set PS . All the pairs
(si

L, ∆zi
L), i = 1, 2, . . . , G have to be verified in this way.

5. KARHUNEN-LOEVE TRANSFORM OVER FILTER
CHARACTERISTIC — PRINCIPAL COMPONENT
ANALYSIS

The concept of filter characteristic transform for the purpose of filter
tuning was introduced in [18, 19]. In general, the discrete filter
characteristic, symbolised by numbers, can be represented in different
forms exposing different features, with the use of mathematical tools
called transforms. One of them is the transform called Principal
Component Analysis (PCA), also known as the Karhunen-Loeve (KL)
transform. It refers to a process whereby a data space is transformed
into a feature space. The transformed data representation has exactly
the same dimension as the original data. However, the transform is
designed in such a way that the data set may be represented by a
reduced number of “most effective” features [20, 21].
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KL transform can be described as follows. Let X denote an n×m
dimensional matrix representing the considered data set, n vectors of
observations, each of length m. We assume that each column vector
xi of X (collecting the information at the same index for all n vectors
of observations) has zero mean

E[Xi] = 0, i = 1, 2, . . . m (13)

where E is the statistical expectation operator.
Let q denote a vector of dimension with Euclidean norm of unity

and let us define the square matrix R of dimension m ×m, which is
the correlation matrix of X

R = E
[
XXT

]
(14)

The next step in PCA algorithm is to find eigenvalues and eigenvectors
of matrix R, which will fulfil the following equation

Rq = λq (15)

This equation has non-trivial solutions q 6= 0 for certain values of λ,
called eigenvalues of matrix R. The corresponding q vectors are called
eigenvectors of matrix R. Due to its symmetry, the correlation matrix
R is characterized by real, nonnegative eigenvalues and the associated
eigenvectors are unique. Let the eigenvalues of matrix R be denoted
by λ1, λ2, . . . , λm and the associated eigenvectors by q1, q2, . . . , qm.
We may then write the following equation

RQ = QΛ (16)

where Q = [q1,q2, . . . ,qj , . . .qm] and Λ = diag[λ1, λ2, . . . , λj , . . . , λm].
The eigenvalues are arranged in a decreasing order and the

corresponding eigenvectors follow this arrangement. The unique
eigenvectors create unitary matrix Q which fulfils

QT = Q−1 (17)

the Equation (16) can be rewritten in the form known as the orthogonal
similarity transformation

QTRQ = Λ (18)

which can be written as

qT
j Rqk =

{
λj , k = j

0 k 6= j
(19)

The above equations transform the correlation matrix R into a
diagonal matrix of eigenvalues and eigenvectors as follows

R =
m∑

i=1

λiqiqT
i = QΛQT (20)
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Having m unit vectors q we find m projections of the input data
vector x

aj = qT
j x = xTqj , j = 1, 2, . . . , m (21)

where aj are the projections of x onto the principal directions
represented by unit vectors qj . The aj elements are called principal
components and have the same dimension m as the input vector x. The
unit vectors qj represent the basis of data space. The Equation (21)
can be considered as a coordinate transformation, according to which
a point x in the data space is transformed into a corresponding point
a in the feature space. To reconstruct the original vector x from the
projections aj we have to apply the following equation

x = Qa =
m∑

j=1

ajqj (22)

5.1. Compression Mechanism

In order to reduce the number of dimensions of projection a
we may reduce the number of features needed for effective data
representation by discarding those linear combinations (22) which
have small variances and retain only those elements which have large
λ1, λ2, . . . , λl, l ≤ m variances of correlation matrix R. To reconstruct
the approximate data vector x̆ we use the truncated expansion of
Equation (22) after l as follows

x̆ =
l∑

j=1

ajqj (23)

The numerical experiments demonstrating compression concept, which
are described here, can be found in the work [18].

6. NUMERICAL INVESTIGATIONS OF MATRIX A
“QUALITY”

In order to verify our concept in practice, numerical investigations have
been carried out. In our experiments we used RX and TX filter from
900MHz diplexer, previously investigated in [15, 16]. The pictures of
filters and their topologies are presented in Fig. 3.

For both filters the sets PS = {(sg
p, ∆zg

p), g = 1, 2, . . . , G} and
TS = {(sh

T , ∆zh
T ), h = 1, 2, . . . , H} were created with the use of

properly tuned filters in the process of random detuning with the
use of a robot [13]. In this process all the tuning elements can be
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Figure 3. Picture and topology of the RX and TX filters used in the
experiments. The small circles represent tunable couplings and cross-
couplings. The bigger circles represent cavities. There are no tuning
elements for couplings and cross-couplings between the cavities 10–11,
10–12, 12–13, 13–14, 13–15, 15–16, 16–18 in the RX filter and 1–3, 3–5,
5–6, 7–8, 8–9 in the TX filter. Two tuning elements common for both
filters, i.e., No. 10 and No. 11, close to antenna port, were assigned to
the RX filter.

changed simultaneously. In the experiment we considered only cavities;
the couplings and cross-couplings had been pre-tuned and were not
changed during the process of collecting the sets. The PS set had 1000
elements, 500 collected with K = 5, and the next 500 with K = 10.
The TS set had 100 elements, 50 collected with K = 5, and the next 50
with K = 10. For the purpose of our experiments, the value u = 18◦,
which gives us the maximum screw change ∓180◦ during the process
of collecting the elements of sets PS and TS .

Below, in Tables 1 and 2 we present Testing Set Error — TSE
defined by (12) of A approximator for the RX filter, obtained with
different configurations: for a different G number of the elements of
PS set and a different number of filter characteristic points M , for
filter characteristics without (first number in a cell) and with (second
number in a cell) “outliers elimination” procedure. Since the results
for TX filter are similar, they have been omitted.

Since for some combinations of G and M values, condition (10)
is not fulfilled, the system (6) cannot be solved, and these cells in the
tables are not filled in.

To check the influence of PCA filter characteristics transform on
the “quality” of A approximator, all filter characteristics of a filter were
then PCA transformed and cut after the 80th element (the original
characteristics in frequency domain had 512 elements). Above, Table 2
presents the Testing Set Error for A approximator prepared with PCA
transformed filter characteristics. Similarly to previous results, the first
number is the error prior to “outlier elimination”, the second number
is the error after the “outlier elimination” procedure.
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Table 1. Testing Set Error TSE for RX filter for different number
G of PS set elements and different number M of the samples of filter
characteristic. Results without and with “outlier elimination”.

G\M 512 256 128 64 32 16 8

10
11.59

2.298

30
1.573

1.414

1.778

1.531

50
0.739

0.692

1.365

1.133

1.754

1.503

100
0.679

0.585

0.591

0.518

1.267

0.933

1.748

1.456

150
1.296

1.113

0.565

0.479

0.601

0.465

1.195

0.919

1.635

1.381

300
0.922

0.815

0.488

0.425

0.440

0.356

0.444

0.391

0.907

0.805

1.368

1.286

600
0.852

0.745

0.497

0.399

0.422

0.336

0.394

0.318

0.419

0.361

0.889

0.780

1.368

1.275

1000
0.489

0.352

0.404

0.293

0.378

0.286

0.373

0.299

0.409

0.349

0.872

0.762

1.387

1.273

Table 2. Testing Set Error TSE with PCA for RX filter for different
number G of PS set elements and different number M of the samples
of filter characteristic. Results without and with “outlier elimination”.
Compression point N = 80.

G\M 512 256 128
150 0.751 0.588
300 0.471 0.394 0.444 0.383
600 0.419 0.343 0.418 0.328 0.398 0.332
1000 0.375 0.289 0.367 0.289 0.370 0.287

While analysing all the obtained results, we can observe that the
application of the proposed “outlier elimination” procedure results in
significant decrease of TSE error for both cases, with and without PCA
transform. The application of PCA transform decreases both errors
considerably, especially for preparing set PS of a small G number of
vector pairs.
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7. THE “QUALITY” OF LINEAR MAPPING WITH AND
WITHOUT PCA

In general, the dependence between filter reflection characteristic and
tuning element deviations, i.e., elements sg and ∆zg, is not linear.
Our simplification ∆zg = Asg, where A is a linear matrix, is limited
to filters which are detuned within a certain range, looking from the
positions of these tuning elements which have been properly set.

In the following part of the paper, we will investigate the influence
on the “quality” of the linear approximator A for the filters detuned
with a different level, i.e., for the filters detuned with a different K
value. In the experiment we will calculate the preparing set error
PSE and the testing set error TSE for the vectors sg and ∆zg taken
from the RX filter, mapped using A matrix, with and without the
outlier elimination procedure described above. Additionally, we will
compare the error data with the results obtained with the use of ANN
approximator introduced in [12]. In the Tables 3 and 4 below we have
presented both PSE and TSE for used approximators. The numbers
in each cell correspond to the following approximation method: “A”
is the error for linear A approximator without “outlier elimination”
procedure, “A OE” is the error for linear A approximator with “outlier
elimination” procedure presented above, “PCA OE” is the error for A
with PCA transformed filter characteristics cut after the 80th element
with “outliers elimination” procedure, “ANN” is the error with the
use of ANN non-linear approximator [12]. In the experiment the
PS had 500 vector pairs, which were represented by discrete filter
characteristics of 64 complex points, which gave, in total, the M = 128
length of vectors sg.

ANN used in the experiment was of the following topology: No.
of input neurons WI = 128, No. of neurons in hidden layer WU = 51,
No. of output neurons WO = 11 for RX filter and WO = 9 for TX
filter (equal to the number of tuning elements). The learning process
for this approximator was performed in 5000 learning epochs, which

Table 3. Preparing Set Error — PSE for RX filter for different levels
of detuning K, 1u = 18◦.

Err\K 5 10 20 30
A (u) 0.216 0.881 3.576 6.981

A OE (u) 0.095 0.401 1.660 3.213
PCA OE (u) 0.070 0.348 1.507 3.324

ANN (u) 0.213 0.410 1.115 2.463
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Table 4. Testing Set Error —TSE for RX filter for different levels of
detuning K, 1u = 18◦.

Err\K 5 10 20 30
A (u) 0.298 1.203 4.402 9.861

A OE (u) 0.205 0.825 3.088 7.386
PCA OE (u) 0.191 0.788 3.035 7.367

ANN (u) 0.242 0.544 2.120 5.288
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Figure 4. Preparing set error (a) and testing set error (b) for RX filter.
Parameter K indicates filter detuning. LSM approximation without
outlier elimination — dashed line, LSM approximation with outlier
elimination — bold solid line, LSM PCA approximation with outlier
elimination — thin solid line, ANN approximation [12] — dotted line.

took, in each experiment, about 26 minutes for each filter.
Above in Fig. 4, we have presented Preparing Set Error and

Testing Set Error in the function of value K, which is the measure
of the filter detuning level.

While analysing the error curves, we can conclude that, for the
considered filter, the mapping between filter reflection characteristic
vectors sg and tuning element deviations ∆zg can be successfully
approximated by the proposed linear matrix operator A. We see that,
in the cases where K ≤ 10(u), our liner approximator A gives us
similar or even better levels PSE of and TSE errors, in comparison to
ANN non-linear approximator.

7.1. Stability of s Vector Projection onto A approximator
with and without PCA Transform

In this part of the paper we investigate the stability of results which are
the tuning element vectors ∆z = As for the case of A approximator,
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created with and without PCA transform. We will examine the
influence of a “slight” change in filter characteristic s on ∆z for these
two considered approximators.

Below in Fig. 5(a) we have presented two filter characteristics (real
and imaginary part), which are very similar. The difference between
them is presented in Fig. 5(b).

The solid line is the filter characteristic of a properly tuned filter,
which was used in the process of preparing A. The characteristic
denoted by the dotted line is used as a probe to verify the stability of
the ∆z = As values.

In this experiment we investigated two linear approximators: A,
which was prepared based on 512 elements of filter characteristics in
frequency domain and Ã prepared with PCA transformed s vectors
cut after 80th element. Table 5 presents two vectors of tuning element
deviations ∆z, obtained with A and Ã for filter characteristic slightly
detuned from Fig. 4(a).

Although the PSE and TSE for A approximators with and
without PCA transform are at a similar level, the results of ∆z = As
can differ significantly for the s filter characteristics, which was not
used in the preparing process of A. Moreover, if we calculate ∆z = As
“on line” for s taken directly from Vector Network Analyser, the values
of ∆z are very unstable and change within the range ∓1(u) from the
mean values. This situation looks completely different for Ã prepared
with PCA, where the ∆z = Ãs are very stable and show proper values.

(a) (b)

Figure 5. (a) Imaginary and real part of tuned and slightly detuned
reflection characteristics of RX filter. The characteristic (tuned)
used in the preparing process of A approximator — solid line, the
characteristic (slightly detuned) used to verify the “quality” of A
approximator — dotted line. Fig. 5(b) shows the difference between
curves DS11 from Fig. 5(a). Solid line presents the real part and dashed
line represents the imaginary part difference.
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Table 5. Tuning element deviation ∆z being the product of A
and Ã approximator and filter characteristics s slightly detuned from
Fig. 4(a). Values are given in u = 18◦ units.

Tuning

Element

No.

1 2 3 4 5 6 7 8 9 10 11

∆z(m) (u)

for A

without

PCA

−3 −1 2.1 1.1 −1 1.8 2.2 0.8 0.3 −2 2

∆z̃(m) (u)

for

Ã with

PCA

−0.08 0.01 −0.01 0.03 0.04 −0.04 −0.01 0.07 −0.01 0.02 0.03

The possible reason for this can be the high dimension of matrix A (512
columns) without PCA, which can cause numerical errors in calculating
∆z.

8. FILTER TUNING EXPERIMENT

Filter tuning experiments were performed with the use of Ã
approximator, which was prepared based on the PS and TS sets
investigated in Section 6. The initial vectors sg

p of the length 512 were
PCA transformed and shortened to 20 first elements. This gave us the
reduction of A from 512 to 20 columns. Then A approximator was
constructed with the use of LSM .

Using the presented tuning concept, for s characteristic read from
VNA, the tuning element deviation vector is calculated as ∆z = Ãs.
By setting the tuning elements one by one in a proper position we
set the zero values for elements in ∆z vector. During the tuning, the
order of the screws can be chosen randomly. The tuning ends if all the
elements in ∆z vector equal zero, ∆z = 0.

Tables 6 and 7 present ∆z vectors for RX and TX filters
before and after tuning; the corresponding reflection and transmission
characteristics are presented in Figs. 6(a), (b).

While analyzing the obtained tuning results we can observe that
both filters were very well tuned. Normally the tuning is finished after
one iteration (each tuning element is positioned only once). In some
cases, after one tuning iteration it is necessary to run another iteration
if, for some tuning elements, the value of ∆z (i) does not equal zero.
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Table 6. Tuning element deviation ∆z which is the product of A
approximator and filter characteristic s, before and after tuning for
RX filter.

Tuning

Element No.
1 2 3 4 5 6 7 8 9 10 11

∆z (m) before

tuning (u)
−1 12 3 −6 8 −6 0 −7 6 6 −5

∆z (m) after

tuning (u)
0 0 0 0 0 0 0 0 0 0 0

Table 7. Tuning elements deviation ∆z which is the product of A
approximator and filter characteristic s, before and after tuning for
TX filter.

Tuning Element No. 1 2 3 4 5 6 7 8 9

∆z (m) before tuning (u) −7 −7 7 0 −5 −5 7 2 8

∆z (m) after tuning (u) 0 0 0 0 0 0 0 0 0

(a) (b)

Figure 6. Transmission and reflection characteristics for (a) RX filter
and (b) TX filter. solid lines show scattering curves before tuning and
dotted curves present the filter condition after tuning.

9. CONCLUSIONS

In this work th,e least squares method has been employed to realize
linear mapping of detuned filter characteristic to tuning element
deviations, for the purpose of applying it in filter tuning algorithm.
Such mapping from one vector space to another, which is, in fact, non-
linear, can be successfully approximated by a linear matrix operator
found with the use of least squares method. This operator is built
based on vector pairs which are PCA transformed filter characteristics
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and tuning element deviations corresponding to them. This approach,
in contrast to non-linear artificial intelligence approximators presented
earlier in literature [12, 14–16, 18, 19], does not require a training
process, and thus significantly reduces the time of filter tuning
algorithm customization. For the filters presented in the paper,
the time needed for preparing A linear PCA approximator was
only 10 seconds which, in comparison to 26 minutes for ANN [12]
approximator, is a significant advantage. Moreover, the application
of PCA transform over filter characteristics ensures stable projection
results for ∆z = Ãs, while s is read “on line” from Vector Network
Analyser. The filter tuning experiments, performed on two filters of
high order, show the reliability of the presented approach.
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