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Abstract—The problem of excitation of electromagnetic fields by
a material body of finite dimensions in presence of coupling hole
between two arbitrary electrodynamic volumes is formulated. The
problem is reduced to two-dimensional integral equations for the
surface electric current on a material body and the equivalent magnetic
current on a coupling hole. A physically correct transition from
the initial integral equations to one-dimensional equations for the
currents in a thin impedance vibrator which, in general case, may
have irregular geometric parameters, and a narrow slot is justified.
A solution of resulting equations system for the transverse slot in
the broad wall of rectangular waveguide and a vibrator with variable
surface impedance in it was found by a generalized method of induced
electro-magneto-motive forces. The calculated and experimental plots
of electrodynamic characteristics of a vibrator-slot structure in a
rectangular waveguide are presented.

1. INTRODUCTION

At present, linear vibrator and slot radiators, i.e., radiators of
electric and magnetic type, respectively, are widely used as separate
receiver and transmitter structures, elements of antenna systems, and
antenna-feeder devices, including combined vibrator-slot structures [1–
4]. Widespread occurrence of such radiators is an objective prerequisite
for theoretical analysis of their electrodynamic characteristics. During
last decades, researchers have published results which make it
possible to create a modern theory of thin vibrator and narrow
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slot radiators. This theory combines the fundamental asymptotic
methods for determining the single radiator characteristics [5–7],
hybrid analytic-numerical approaches [8–10], and direct numerical
techniques for electrodynamic analysis of such radiators [11]. However,
the electrodynamics of single linear electric and magnetic radiators is
far from being completed. It may be explained by further development
of modern antenna techniques and antenna-feeder devices which can be
characterized by such features as multielement structures, integration
and modification of structural units to minimize their mass and
dimensions and to ensure electromagnetic compatibility of radio aids,
application of metamaterials, formation of required spatial-energy and
spatial-polarization distributions of electromagnetic fields in various
nondissipative and dissipative media. To solve these tasks electric
and magnetic radiators, based on various impedance structures with
irregular geometric or electrophysical parameters, and on combined
vibrator-slot structures, should be created [12–20].

Mathematical modeling of antenna-feeder devices requires mul-
tiparametric optimization of electrodynamic problem solution and,
hence, effective computational resources and software. Therefore, in
spite of rapid growth of computer potential, there exists necessity to
develop new effective methods of electrodynamic analysis of antenna-
feeder systems, being created with linear vibrator and slot structures
with arbitrary geometric and electrophysical parameters, satisfying
modern versatile requirements, and widening their application in var-
ious spheres. Efficiency of mathematical modeling is defined by rigor
of corresponding boundary problem definition and solution, by perfor-
mance of computational algorithm, requiring minimal possible RAM
space, and directly depends upon analytical formulation of the models.
Namely, the weightier is the analytical component of the method, the
grater is its efficiency. In this connection, it should be noted that for-
mation of analytical concepts of electrodynamic analysis extending the
capabilities of physically correct mathematical models for new classes
of boundary problems is always an important problem.

This paper presents the methodological basis of a new approach
to solving the electrodynamic problems, associated with combined
vibrator-slot structures, known as a generalized method of induced
electro-magneto-motive forces (EMMF). This approach is based on the
classical method of induced EMMF, i.e., basis functions approximating
the currents along the vibrator and slot elements are obtained in
advance as analytical solutions of key problems, formulated as integral
equations for the currents by the asymptotic averaging method.
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Figure 1. The problem geometry and notations.

2. PROBLEM FORMULATION AND INITIAL
INTEGRAL EQUATIONS

Let us formulate a general problem of electromagnetic waves excitation,
scattering, and radiation by a material body of finite dimensions in
presence of a coupling hole between two arbitrary electrodynamic
volumes. The problem geometry and corresponding notations are
represented in Figure 1. Consider an arbitrary volume, restricted
by perfectly conducting, impedance, or partly impedance surface S1,
which may be infinitely distant. In the surface S1 there exists a
hole Σ, connecting the volume V1 with another volume V2. The
boundary between the two volumes is infinitely thin. A material body,
occupying volume V , restricted by smooth closed surface S, is situated
in the volume V1. The body has homogeneous material parameters:
permittivity ε, permeability µ, and conductivity σ and there exists
electromagnetic field of impressed sources { ~E0(~r ), ~H0(~r )}, depending
upon time t as eiωt (~r is the radius-vector of the observation point,
ω = 2πf is a circular frequency, f is the frequency in Hz). The
permittivity and permeability of the media in the volumes V1 and
V2 are ε1, µ1 and ε2, µ2, respectively, which in the general case are
step functions of coordinates. The field of impressed sources may
be specified as an electromagnetic wave field, incident upon the body
(scattering problem), or as a field of electromotive forces, applied to the
body, nonzero only in a part of the volume V (radiation problem), or,
in the general case, as combination of these fields. It is necessary to find
the full electromagnetic fields { ~EV1(~r ), ~HV1(~r )} and { ~EV2(~r ), ~HV2(~r )}
in the volumes V1 and V2, satisfying the Maxwell’s equations and
boundary conditions on the surfaces S, Σ, S1 and S2.

The problem, thus formulated, can be studied by solving equations
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for electromagnetic fields in a differential or an integral form. The
application of integral equations has an advantage since the fields,
derived by their solutions, are known to satisfy boundary conditions on
the obstacle’s surface automatically. By obstacle we mean a material
body or coupling hole. Besides, integral equations are very effective,
if boundary surfaces S, Σ, S1 and S2 are coordinate surfaces in
different coordinate systems. For example, S1 is a waveguide surface
with cylindrical symmetry, while a body surface S may have another
symmetry type. Therefore, the mathematical model of electromagnetic
processes will be built, based on the integral equations of macroscopic
electrodynamics, equivalent to the boundary problem in whole, i.e., to
Maxwell’s equations and boundary conditions on surfaces S, Σ, and
on surfaces S1 and S2 of electrodynamics volumes.

To solve the above mentioned problem, it is convenient to express
electromagnetic fields in volume V1 and V2 in terms of tangential field
components on the surfaces S and Σ. In the Gaussian unit system
CGS, these equations, known as the Kirchhoff-Kotler’s surface integral
equations [3, 4], may be written as

~EV1(~r )= ~E0(~r ) +
1

4πikε1
(graddiv + k2

1)
∫

S

Ĝe
V1

(~r, ~r ′)[~n1, ~HV1(~r
′)]d~r ′

− 1
4π

rot
∫

S+Σ

Ĝm
V1

(~r, ~r ′)[~n1,2, ~EV1(~r
′)]d~r ′,

~HV1(~r )= ~H0(~r )+
1

4πikµ1
(graddiv+k2

1)
∫

S+Σ

Ĝm
V1

(~r, ~r ′)[~n1,2, ~EV1(~r
′)]d~r ′

+
1
4π

rot
∫

S

Ĝe
V1

(~r, ~r ′)[~n1, ~HV1(~r
′)]d~r ′,

~EV2(~r )=
1
4π

rot
∫

Σ

Ĝm
V2

(~r, ~r ′)[~n2, ~EV2(~r
′)]d~r ′, ~HV2(~r )

=− 1
4πikµ2

(graddiv + k2
2)

∫

Σ

Ĝm
V2

(~r, ~r ′)[~n2, ~EV2(~r
′)]d~r ′.

(1)

Here k = 2π/λ is the wave number; λ is the wavelength in free space;
k1 = k

√
ε1µ1, k2 = k

√
ε2µ2; ~r ′ is the position vector of the sources,

lying on the surfaces S and Σ; ~n1 and ~n2 are unit vectors of outer
normals to these surfaces; Ĝe(~r, ~r ′) and Ĝm(~r, ~r ′) are the electrical and
magnetic tensor Green’s functions for vector potential, corresponding
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to the volumes, and satisfying the vector Helmholtz’s equation and
corresponding boundary conditions on the surfaces S1 and S2. If the
surface S1 or S2 is moved to infinity, the boundary conditions are
transformed into the Sommerfeld radiation condition.

The fields on the left-hand side of Equation (1) may be interpreted,
depending upon the position of observation point ~r where unknown
field being defined. If a point ~r belongs to surface S of volume V or to
the hole aperture Σ, fields ~E(~r ) and ~H(~r ) coincide with the fields in
integrals on the right-hand side of Equation (1). Then, Equations (1)
are the inhomogeneous linear Fredholm integral equations of the second
kind, known to have a unique solution. Let us note once more that the
Maxwell’s equations are partial differential equations having infinite
number of solutions, but only one solution satisfies the boundary
conditions on the body’s surface (or hole), and it coincides with
solution of the integral Equation (1). If a point ~r lies outside the
regions V and Σ, Equations (1) become equalities, defining the full
electromagnetic field in the medium defined by the fields of impressed
sources. Obviously, to find these fields, the integral equations should
be solved in advance. Thus, the merit of integral equations method
consists in the fact that the solution process is divided into two stages.
On the first stage, the fields on the surfaces S and Σ are found as
integral equation solutions for the given fields of impressed sources.
On the second stage, the scattered (radiated) fields in any point of
volumes V1 and V2 are defined by the fields found on the first stage.

Let us mention that formula (1) is often used, if field on a
material body surface can be defined by some additional physical
arguments. Thus, for good conducting bodies (σ → ∞) induced
current concentrates near a body surface. Then, neglecting skin-layer
thickness, it is possible to use the Leontovich-Schukin approximate
impedance boundary condition

[~n1, ~EV1(~r )] = Z̄S(~r )[~n1, [~n1, ~HV1(~r )]], (2)

where Z̄S(~r ) = R̄S(~r ) + iX̄S(~r ) = ZS(~r )/Z0 is distributed surface
impedance (normalized by characteristic impedance of free space Z0 =
120π Ohm). Note that impedance may vary along the body surface.

If an observation point is situated on an impedance body surface
S then we arrive at a system of integro-differential equations

ZS(~r ) ~Je(~r ) +
k

ω
rot

∫

Σ

Ĝm
V1

(~r, ~r ′) ~Jm(~r ′)d~r ′

= ~E0(~r ) +
1

iωε1
(graddiv + k2

1)
∫

S

Ĝe
V1

(~r, ~r ′) ~Je(~r ′)d~r ′
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+
1
4π

rot
∫

S

Ĝm
V1

(~r, ~r ′)ZS(~r ′)[~n1, ~Je(~r ′)]d~r ′, (3a)

~H0(~r ) +
1

iωµ1
(graddiv + k2

1)
∫

Σ

Ĝm
V1

(~r, ~r ′) ~Jm(~r ′)d~r ′

+
1

iωµ2
(graddiv + k2

2)
∫

Σ

Ĝm
V2

(~r, ~r ′) ~Jm(~r ′)d~r ′

=
1

iωε1
(graddiv + k2

1)
∫

S

Ĝm
V1

(~r, ~r ′)Z̄S(~r ′)[~n1, ~Je(~r ′)]d~r ′

− k

ω
rot

∫

S

Ĝe
V1

(~r, ~r ′) ~Je(~r ′)d~r ′, (3b)

where ~Je(~r ) is the density of electrical surface current at S, and ~Jm(~r )
is equivalent magnetic surface current at Σ

~Je(~r ) =
c

4π
[~n1, ~H(~r )] ~Jm(~r ) =

c

4π
[~n2, ~E(~r )], (4)

where c ≈ 2.998 · 1010 cm/sec is the speed of light in vacuum.
To derive (3b), we make use of continuity condition for tangential
components of magnetic fields at the hole Σ.

Thus, the problem of electromagnetic waves excitation by the
impedance body of finite dimensions and by the coupling hole between
two electrodynamic volumes is formulated as a rigorous boundary value
problem of macroscopic electrodynamics, reduced to the system of
integral equations for surface currents. Solution of this system is an
independent problem, significant in its own right, since it often presents
considerable mathematical difficulties. If characteristic dimensions of
an object are much greater than wavelength (high-frequency region), a
solution is usually searched as series expansion in ascending power
of inverse wave number. If dimensions of an object are less than
wavelength (low-frequency or quasi-static region), representation of
the unknown functions as series expansion in wave number powers
reduces the problem to a sequence of electrostatic problems. Contrary
to asymptotic cases, resonant region, where at least one dimension
of an object is comparable with wavelength, is the most complex for
analysis, and requires rigorous solution of field equations. It should be
noted that, from the practical point of view, the resonant region is of
exceptional interest for thin impedance vibrators and narrow slots.
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3. INTEGRAL EQUATIONS FOR ELECTRICAL AND
MAGNETIC CURRENTS IN THIN VIBRATORS AND
NARROW SLOTS

Direct solution of Equations (3) for a material body V of complex shape
and a coupling hole Σ of arbitrary geometry essential mathematical
difficulties may be encountered. However, the problem may be
considerably simplified for impedance cylinders, if cross section
perimeter is less than their length and wavelength in a medium
(thin vibrators) and for coupling hole, if one dimension of a slot
satisfies the above conditions (narrow slots). Moreover, in this case,
it is possible to extend the boundary condition (2) for cylindrical
surfaces with arbitrary distribution of complex impedance regardless
of the exciting field structure and the electro-physical characteristics
of vibrator material.

Let us transform the integral equations system (3) to the form
applicable to a thin vibrator, made of a bounded circular cylindrical
wire (radius r and length 2Lv), and for a narrow straight-line slot
(width d and length 2Lsl). In this case, the following inequalities hold

r

2Lv
¿ 1,

r

λ1
¿ 1,

d

2Lsl
¿ 1,

d

λ1,2
¿ 1, (5)

where λ1,2 are the wavelengths in the corresponding media. These
inequalities permit to express the electric current density and
equivalent magnetic current density, induced in the vibrator and in
the slot, respectively, as

~Je
v (~r ) = ~es1Jv(s1)ψ(ρ, ϕ), ~Jm

sl (~r ) = ~es2Jsl(s2)χ(ξ), (6)

where ~es1 and ~es2 are unit vectors along the axes of vibrator and slot,
respectively; ψ(ρ, ϕ) is a function of transverse (⊥) polar coordinate ρ,
ϕ for the vibrator; χ(ξ) is a function of transverse coordinate ξ for the
slot. The functions ψ(ρ, ϕ) and χ(ξ) satisfy normalization conditions

∫

⊥
ψ(ρ, ϕ)ρdρdϕ = 1,

∫

ξ

χ(ξ)dξ = 1, (7)

while unknown currents Jv(s1), Jsl(s2) obey the boundary conditions

Jv(±Lv) = 0, Jsl(±Lsl) = 0. (8)

Taking into account (7), (8), and relation [~n1, ~Je(~r )] ¿ 1, readily
derived from (5), and projecting Equations (3a) and (3b) on the
vibrator and slot axes, respectively, we obtain a system of integro-
differential equations for currents in a thin impedance vibrator and in a
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narrow slot. This system take into account the vibrator-slot interaction
and may be written (the indexes e and m are omitted) as

(
d2

ds2
1

+ k2
1

) Lv∫

−Lv

Jv(s′1)G
V1
s1

(s1, s
′
1)ds′1

− ikε1~es1rot

Lsl∫

−Lsl

Jsl(s′2)G
V1
s2

(s1, s
′
2)ds′2

=− iωε1E0s1(s1) + iωε1zi(s1)Jv(s1),

1
µ1

(
d2

ds2
2

+ k2
1

) Lsl∫

−Lsl

Jsl(s′2)G
V1
s2

(s2, s
′
2)ds′2

+
1
µ2

(
d2

ds2
2

+ k2
2

) Lsl∫

−Lsl

Jsl(s′2)G
V2
s2

(s2, s
′
2)ds′2

+ ik ~Es2rot

Lv∫

−Lv

Jv(s′1)G
V1
s1

(s2, s
′
1)ds′1 = −iωH0s2(s2),

(9)

where zi(s1) is the internal impedance per unit length of the vibrator
([Ohm/m]); (ZS(~r ) = 2πrzi(~r )), E0s1(s1) and H0s2(s2) are projections
of impressed sources fields on the vibrator and the slot axes; GV1

s1
(s1, s

′
1)

and G
V1(2)
s2 (s2, s

′
2) are components of tensor Green’s functions for the

considered volumes, which may be written as

GV1
s1

(s1, s
′
1) =

∫

⊥
GV1

s1
(s1, ρ, ϕ; s′1, ρ

′, ϕ′)ψ(ρ′, ϕ′)ρ′dρ′dϕ′,

G
V1(2)
s2 (s2, s

′
2) =

∫

ξ

G
V1(2)
s2 (s2, ξ; s′2, ξ

′)χ(ξ′)dξ′.

For single vibrator or slot, as well as for the absence of
electromagnetic interaction between them, system (9) splits into two
independent equations:

(
d2

ds2
1

+ k2
1

) Lv∫

−Lv

Jv(s′1)G
V1
s1

(s1, s
′
1)ds′1

= −iωε1E0s1(s1) + iωε1zi(s1)Jv(s1), (10)
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1
µ1

(
d2

ds2
2

+ k2
1

) Lsl∫

−Lsl

Jsl(s′2)G
V1
s2

(s2, s
′
2)ds′2

+
1
µ2

(
d2

ds2
2

+k2
2

) Lsl∫

−Lsl

Jsl(s′2)G
V2
s2

(s2, s
′
2)ds′2 =−iωH0s2(s2).(11)

In the general case, a vibrator or a slot may have curvilinear axial
configuration. Then, if the radius of curvature of vibrator axis or slot
center line is much greater than their lateral dimensions, the equations
for the electrical current in the vibrator and for the magnetic current
in the slot are reduced to:∫

Lv

{[
∂

∂s1

∂Jv(s′1)
∂s′1

+ k2
1(~es1~es′1)Jv(s′1)

]
Gv(s1, s

′
1)

+Jv(s′1)
[

∂2

∂s2
1

+ k2
1

]
~es1

(
ĜV1

0s1
(s1, s

′
1)~es′1

)}
ds′1

= −iωε1E0s1(s1) + iωε1zi(s1)Jv(s1), (12)∫

Lsl

{
1
µ1

[
∂

∂s2

∂Jsl(s′2)
∂s′2

+ k2
1(~es2~es′2)Jsl(s′2)

]
GV1

sl (s2, s
′
2)

+
1
µ2

[
∂

∂s2

∂Jsl(s′2)
∂s′2

+ k2
2(~es2~es′2)Jsl(s′2)

]
GV2

sl (s2, s
′
2)

+
1
µ1

Jsl(s′2)
[

∂2

∂s2
2

+ k2
1

]
~es2

(
ĜV1

0s2
(s2, s

′
2)~es′2

)

+
1
µ2

Jsl(s′2)
[

∂2

∂s2
2

+ k2
2

]
~es2

(
ĜV2

0s2
(s2, s

′
2)~es′2

)}
ds′2

= −iωH0s2(s2). (13)
Here ~es′1 and ~es′2 are unit vectors of vibrator and slot axes at the sources,
and

Gv(s1, s
′
1) =

π∫

−π

e−ik1

√
(s1−s′1)2+[2r sin(ϕ/2)]2

√
(s1 − s′1)2 + [2r sin(ϕ/2)]2

ψ(r, ϕ)r dϕ, (14)

G
V1,2

sl (s2, s
′
2) =

d/2∫

−d/2

e−ik1,2

√
(s2−s′2)2+(ξ)2

√
(s2 − s′2)2 + (ξ)2

χ(ξ) dξ, (15)

Ĝ0s1 and Ĝ0s2 are regular components of tensor Green’s functions
which take into account a geometry of volumes.
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Solution of the integral equation with the exact kernel
expressions (14) and (15) may be very difficult. Therefore, we will
use approximate expressions, the so called “quasi-one-dimensional”
kernels [5, 15]

Gv(s1, s
′
1) =

e−ik1

√
(s1−s′1)2+r2

√
(s1 − s′1)2 + r2

, (16)

G
V1,2

sl (s2, s
′
2) =

e−ik1,2

√
(s2−s′2)2+(d/4)2

√
(s2 − s′2)2 + (d/4)2

, (17)

derived with the assumption that source points belong to the geometric
axes of the vibrator and slot while observation points belong to vibrator
surface and to slot axis, having coordinates {s2, ξ/2}. In that case, the
functions Gv(s1, s

′
1) and G

V1,2

sl (s2, s
′
2) are everywhere continuous, and

equations for the currents are simplified significantly.
Thus, the problem of electromagnetic waves excitation by thin

impedance vibrators and narrow slots, connecting two electrodynamic
volumes, is reduced to integro-differential equations relative electrical
current in a vibrator and equivalent magnetic current in a slot. The
solution of these equations is the completion phase of the problem,
since full electromagnetic fields in the volumes can be easily found by
expressions (1) and (4).

It should be emphasized that the form of Green’s functions in the
above equations was not defined. Therefore, the equations are valid
for any electrodynamic volume, provided that corresponding Green’s
functions are known or can be constructed.

4. VIBRATOR-SLOT STRUCTURE IN RECTANGULAR
WAVEGUIDE

Now let us consider a problem of electromagnetic wave scattering
by a narrow straight transverse slot in the broad wall of rectangular

Figure 2. Problem geometry and notations.
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waveguide with a passive impedance vibrator in it (Figure 2).
Let the fundamental wave H10 propagate in a hollow rectangular

waveguide {a× b} (index Wg). A thin wire (radius r and length 2Lv)
with a variable surface impedance is placed in the waveguide cross
section plane so that the angle between its axis, and the axis {0x} in
the Cartesian coordinate system is ϕ. A narrow transverse slot (width
d and length 2Lsl), radiating in a free half-space above an infinite
perfectly conducting plane (index Hs), is cut in the broad waveguide
wall, and its thickness is h. z0 is the distance between the axes of the
vibrator and the slot. In this case, system (9) can be transformed to

(
d2

ds2
1

+k2

) Lv∫

−Lv

Jv(s′1)G
Wg
s1

(s1, s
′
1)ds′1−ik

Lsl∫

−Lsl

Jsl(s′2)G̃
Wg
s2

(s1, s
′
2)ds′2

= −iωE0s1(s1) + iωzi(s1)Jv(s1), (18a)
(

d2

ds2
2

+ k2

) Lsl∫

−Lsl

Jsl(s′2)[G
Wg
s2

(s2, s
′
2) + GHs

s2
(s2, s

′
2)]ds′2

−ik

Lv∫

−Lv

Jv(s′1)G̃
Wg
s1

(s2, s
′
1)ds′1 = −iωH0s2(s2), (18b)

where

G̃Wg
s1

(s2, s
′
1) =

∂

∂z
GWg

s1
[x(s2), 0, z; x′(s′1), y

′(s′1), z0],

G̃Wg
s2

(s1, s
′
2) =

∂

∂z
GWg

s2
[x(s1), y(s1), z; x′(s′2), 0, 0]

after substituting z = 0 into G̃Wg
s1 and z = z0 into G̃Wg

s2 after the first
derivation.

If z0 = 0, G̃Wg
s1 = G̃Wg

s2 = 0, the system of coupled Equations (18)
is transformed into two independent equations:
(

d2

ds2
1

+k2

) Lv∫

−Lv

Jv(s′1)G
Wg
s1

(s1, s
′
1)ds′1=−iωE0s1(s1)+iωzi(s1)Jv(s1),(19a)

(
d2

ds2
2

+k2

) Lsl∫

−Lsl

Jsl(s′2)[G
Wg
s2

(s2, s
′
2)+GHs

s2
(s2, s

′
2)]ds′2=−iωH0s2(s2).(19b)

The solution of the coupled Equations (18) by the averaging
method is impractical since it results in rather cumbersome expressions
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for the currents, unsuitable for practical use [3, 4]. Therefore, to
find the solution of the coupled Equations (18), we will use the
generalized method of induced EMMF, with approximate expressions
for the currents Jv(s1) = J0vfv(s1) and Jsl(s2) = J0slfsl(s2) (here
J0v and J0sl are treated as unknown amplitudes), previously obtained
by solving Equations (19) by the averaging method. So, we multiply
Equation (18a) by the function fv(s1) and Equation (18b) by the
function fsl(s2) and integrate Equation (18a) over the vibrator length
and Equation (18b) over the slot length. The amplitudes J0v and
J0sl are found as solution of the resulting system of linear algebraic
equations. For the arbitrary vibrator-slot structures and coupled
electrodynamic volumes expressions for fs,a

v (s1) and fs,a
sl (s2) (the

subscripts s, a denote the symmetric and antisymmetric components
of the currents with respect to the vibrator (s1 = 0) and slot
(s2 = 0) centers, respectively), can be obtained from the following
relations [3, 4]:

fs,a
v (s1) ∼



sin k̃(Lv − s1)

s1∫

−Lv

Es,a
0s1

(s′1) sin k̃(Lv + s′1)ds′1

+sin k̃(Lv + s1)

Lv∫

s1

Es,a
0s1

(s′1) sin k̃(Lv − s′1)ds′1



 , (20a)

fs,a
sl (s2) ∼





sin k(Lsl − s2)

s2∫

−Lsl

Hs,a
0s2

(s′2) sin k(Lsl + s′2)ds′2

+sin k(Lsl + s2)

Lsl∫

s2

Hs,a
0s2

(s′2) sin k(Lsl − s′2)ds′2



 , (20b)

where Es,a
0s1

(s1) and Hs,a
0s2

(s2) are projections of symmetric and
antisymmetric components of impressed sources on the vibrator and
the slot axes. Here the sign ∼ means that after integration in
expressions (20), only multipliers, depending upon coordinates s1 and
s2, are left. Thus, for transverse slot with x02 = a/2 and for coordinate
vibrator, i.e., ϕ = 90◦, exited by fundamental wave, in accordance
with (20), we have

fv(s1) = cos k̃s1 − cos k̃Lv, (21a)

fsl(s2) = cos ks2 cos
π

a
Lsl − cos kLsl cos

π

a
s2, (21b)
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where k̃ = k − i2πzav
i

Z0Ω , zav
i = 1

2Lv

Lv∫
−Lv

zi(s1)ds1 is the mean value of the

internal impedance along the vibrator [4], Ω = 2 ln(2Lv/r).
If z0 = 0, i.e., the interaction between the vibrator and slot is

absent, y01 = 0, i.e., the vibrator is monopole, and the normalized
surface impedance, distributed along vibrator as Z̄S(s1) = Z̄Sφ(s1),
where φ(s1) is the given function, the solution of Equations (19) by
generalized method of induced EMMF is as follows:

Jv(s1)=− iω

2kk̃
E0sin

πx01

a

(sin k̃Lv−k̃Lv cos k̃Lv)(cos k̃s1−cos k̃Lv)

ZWg(kr, k̃Lv)+FWg
z (k̃r, k̃Lv)

,(22)

ZWg(kr, k̃Lv) =
4π

ab

∞∑

m=1

∞∑

n=0

εn(k2 − k2
y)k̃

2

kkz(k̃2 − k2
y)2

e−kzr sin2 kxx01

[sin k̃Lv cos kyLv − (k̃/ky) cos k̃Lv sin kyLv]2,

FWg
z (k̃r, k̃Lv) = − i

r

Lv∫

−Lv

f2
v (s1)Z̄S(s1)ds1.

Jsl(s2) = − iω

2k
H0

f(kLsl)
(
cos ks2 cos π

aLsl − cos kLsl cos π
as2

)

[Y Wg(kd, kLsl) + Y Hs(kd, kLsl)]
, (23)

Y Wg(kde, kLsl) =
2π

ab

∞∑

m=1,3,...

∞∑

n=0,1,...

εn(k2 − k2
x)

kkz
e−kz

de
4 I2(kLsl),

I(kLsl) = 2
{

k sin kLsl cos kxLsl − kx cos kLsl sin kxLsl

k2 − k2
x

cos
πLsl

a

−
(

π
a

)
sin πLsl

a cos kxLsl − kx cos πLsl
a sin kxLsl

(π/a)2 − k2
x

cos kLsl

}
,

Y Hs(kde, kLsl) =
1
2k

{(
k cos

πLsl

a
sin kLsl − π

a
cos kLsl sin

πLsl

a

)

−
Lsl∫

−Lsl

fsl(s′2)
[
GHs

s2
(Lsl, s

′
2) + GHs

s2
(−Lsl, s

′
2)

]
ds′2

−kg cos kLsl

Lsl∫

−Lsl

cos
πs2

a

[ Lsl∫

−Lsl

fsl(s′2)

GHs
s2

(s2, s
′
2)ds′2

]
ds2

}
,
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f(kLsl) = 2 cos
πLsl

a

sin kLsl cos πLsl
a − (

π
ka

)
cos kLsl sin πLsl

a

1− (π/ka)2

− cos kLsl
sin 2πLsl

a + 2πLsl
a

(2π/ka)
.

In the formulas (22), (23), εn =
{

1, n = 0
2, n 6= 0 , kx = mπ

a , ky = nπ
b ,

kz =
√

k2
x + k2

y − k2, m, n are integers, de = de−
πh
2d is “equivalent” slot

width [3] which takes into account a wall thickness h of the waveguide,
and GHs

s2
(s2, s

′
2) is defined by the formula (17).

Let us consider the several simple functions of impedance
distribution along the vibrator: the constant distribution φ0(s1) = 1,
the distribution, decreasing to the vibrator end linearly φ1(s1) = 2[1−
(s1/Lv)] and the linearly increasing distribution φ2(s1) = 2(s1/Lv)
with equal mean value φn(s1) = 1 (n = 0, 1, 2) over the vibrator length.
The expression for FWg

z0 (k̃r, k̃Lv) has the form

FWg
z0 (k̃r, k̃Lv)=− 2iZ̄S

k̃2Lvr



(

k̃Lv

2

)2

(2+cos 2k̃Lv)− 3
8
k̃Lv sin 2k̃Lv


 (24)

for the constant distribution, and for the variable distributions

FWg
z1 (k̃r, k̃Lv) =− 2iZ̄S

k̃2Lvr




(
k̃Lv

2

)2

(2 + cos 2k̃Lv)

−7
4

sin2 k̃Lv − 2(cos k̃Lv − 1)
]

, (25)

FWg
z2 (k̃r, k̃Lv) =− 2iZ̄S

k̃2Lvr




(
k̃Lv

2

)2

(2 + cos 2k̃Lv)

+
7
4

sin2 k̃Lv− 3
4
k̃Lv sin 2k̃Lv+2(cos k̃Lv−1)

]
.(26)

As seen, formulas (24)–(26) for the impedance distribution functions
φn(s1) differ though they have equal mean values along the vibrator.
Thus, though the functional dependency fv(s1) = cos k̃s1 − cos k̃Lv

in the formulas for the current are used for all three impedance
distributions, the current amplitudes and the energy characteristics
for the vibrator in the waveguide are different.

Let us consider the corrugated metallic conductor, located in the
rectangular waveguide, as shown in Figure 3(b), as an example of the
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(a) (b) (c)

Figure 3. The schematic examples and experimental models of the
impedance vibrators.

vibrator with the constant surface impedance. We should remind that
the surface impedance for such vibrator is purely inductive (if the
conductance of the metal is infinite) and is defined by the formula [4]

Z̄S = iX̄S = ikr ln(r/ri), (27)

where r and ri are the outer and inner radiuses of the corrugation,
respectively, and the size of an elementary cell along the axis {0s1} is
considerable less than the operating wavelength. Let the impedance
vary along the vibrator as Z̄S(s1) = ikr ln(r/ri)φn(s1), where ri

corresponds to the case φ0(s1) = 1. The impedance variation along
the vibrator length can be realized by changing of the inner radius of
corrugation as ri(s1) = re− ln(r/ri)φn(s1) (Figures 3(a), (c)).

Energy characteristics of vibrator-slot structure in rectangular
waveguide (S11 and S12 are the field reflection and transmission
coefficients, respectively, and |SΣ|2 is power radiation coefficient) are
defined by the expressions:

S11 =
4πi

abkkg

{
2k2

g

k2

f2(kLsl)
Y Wg(kde, kLsl) + Y Hs(kde, kLsl)

−k2

k̃2

sin2(πx01/a)f2(k̃Lv)

ZWg(kr, k̃Lv) + FWg
zn (kr, k̃Lv)

}
e2ikgz, (28)

S12 = 1 +
4πi

abkkg

{
2k2

g

k2

f2(kLsl)
Y Wg(kde, kLsl) + Y Hs(kde, kLsl)

+
k2

k̃2

sin2(πx01/a)f2(k̃Lv)

ZWg(kr, k̃Lv) + FWg
zn (kr, k̃Lv)

}
, (29)

|SΣ|2 = 1− |S11|2 − |S12|2. (30)
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In the formulas (28)–(30) f(k̃Lv) = (sin k̃Lv − k̃Lv cos k̃Lv), kg =√
k2 − (π/a)2.

To illustrate the influence of passive vibrator with constant and
variable surface impedance upon the electrodynamic characteristics
of the slot, Figures 4–6 show the dependence of radiation coefficient
|SΣ|2(λ), reflection coefficient |S11|(λ) and transmission coefficient
|S12|(λ), upon wavelength. As can be seen from the plots, the
curves |SΣ|2(λ) for all examined variations of impedance Z̄S(s1) and
slots lengths are practically identical, both among themselves and
for the slots without the vibrator |SΣ|2(λ), i.e., radiation coefficient
of the vibrator-slot system, in the absence of interaction between
them, is determined primarily by the geometric slot dimensions and
its position relative to the waveguide walls. At the same time, if
passive vibrators of fixed length with different dependencies of surface
impedance on longitudinal coordinate are placed in waveguide, the
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Figure 4. Energy characteristics of vibrator-slot system versus
wavelength at a = 58.0mm, b = 25.0mm, h = 0.5mm, r = 2.0mm,
Lv = 15.0mm, ϕ = 90◦, x01 = a/8, y01 = 0, d = 4.0mm,
2Lsl = 40.0mm, x02 = a/2, z0 = 0: 1 — single slot; 2 —
Z̄S = 0; 3 — Z̄S = ikr ln(4.0); 4 — Z̄S(s1) = ikr ln(4.0)φ1(s1); 5
— Z̄S(s1) = ikr ln(4.0)φ2(s1); 6 — Z̄S(s1) = ikr ln(8.0)φ1(s1); 7, 8, 9
— experimental data.
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Figure 5. Energy characteristics of vibrator-slot system versus
wavelength at a = 58.0mm, b = 25.0mm, h = 0.5mm, r = 2.0mm,
Lv = 15.0mm, ϕ = 90◦, x01 = a/8, y01 = 0, d = 4.0mm,
2Lsl = 32.0mm, x02 = a/2, z0 = 0: 1 — single slot; 2 — Z̄S = 0;
3 — Z̄S = ikr ln(4.0); 4 — Z̄S(s1) = ikr ln(4.0)φ1(s1); 5 — Z̄S(s1) =
ikr ln(4.0)φ2(s1).

substantial variation of |S11|(λ) and |S12|(λ) as compared with those
for the single slot may be achieved.

The comparison of theoretical and experimental curves (Figure 4)
indicates that the solution of integral equations for combined vibrator-
slot structures by the generalized method of induced EMMF with
approximating functions for the currents in the impedance vibrator
and the slot, obtained by averaging method, is quite legitimate.

Note once more that for arbitrary orientations of the vibrator, or
the slot relative to the waveguide walls, or for another impressed field
sources, expressions (20) should be used to determine the distribution
functions of electric and magnetic currents in the vibrator and slot.
For example, for the longitudinal slot in the broad wall of waveguide,
i.e., if axes {0s2} and {0z} coincide, we obtain

fs
sl(s2) = cos ks2 cos kgLsl − cos kLsl cos kgs2,

fa
sl(s2) = sin ks2 sin kgLsl − sin kLsl sin kgs2.

(31)
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Figure 6. Energy characteristics of vibrator-slot system versus
wavelength at a = 58.0mm, b = 25.0mm, h = 0.5mm, r = 2.0mm,
Lv = 15.0mm, ϕ = 90◦, x01 = a/8, y01 = 0, d = 4.0mm,
2Lsl = 48.0mm, x02 = a/2, z0 = 0: 1 — single slot; 2 — Z̄S = 0;
3 — Z̄S = ikr ln(4.0); 4 — Z̄S(s1) = ikr ln(4.0)φ1(s1); 5 — Z̄S(s1) =
ikr ln(4.0)φ2(s1).

If vibrator is excited at its base by voltage δ-generator as in a
waveguide-to-coaxial adapter we have

fv(s1) = sin k̃(Lv − s1). (32)

5. CONCLUSION

This paper presents the methodological basis for application
of the generalized method of induced EMMF for the analysis
of electrodynamic characteristics of the combined vibrator-slot
structures. Characteristic feature of the generalization to a new class
of approximating functions consists in using them as a function of the
current distributions along the impedance vibrator and slot elements;
these distributions are derived as the asymptotic solution of integral
equations for the current (key problems) by the method of averaging. It
should be noted that for simple structures similar to that considered in
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the model problem, the proposed approach yields an analytic solution
of the electrodynamic problem. For more complex structures, the
method may be used to design effective numerical-analytical algorithms
for their analyses. The applicability of the proposed method of the
generalized method of induced EMMF for analyzing the vibrator-slot
systems with an arbitrary structure under the adopted assumptions is
proved by comparative analysis of theoretical and experimental results
in the range of operating wavelengths. This method retains all benefits
of analytical methods as compared with direct numerical methods
and allows significantly expanding the boundaries of numerical and
analytical studies of practically important problems, concerning the
application of single impedance vibrator, including irregular vibrator,
the systems of such vibrators and narrow slots. And this is a natural
step in the further development of general fundamental theory of linear
radiators of electric and magnetic types.
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