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Abstract—A compact microstrip-line dual-band bandpass filter with
controllable characteristics is presented using a stub-loaded resonator.
The resonator is formed by loading one open circuit terminated stub in
shunt to a simple uniform impedance line. The passband frequencies
of the dual-band filter can be conveniently controlled by tuning the
lengths of stub-loaded resonators. The bandwidth of the first passband
can be controlled by tuning the parameters of center stub-loaded
resonator, and the bandwidth of the second passband is determined
by the coupling between the sideward stub-loaded resonators. To
illustrate the concept, a second-order dual-band filter is designed,
fabricated and measured. Simulated and measured results are found
in good agreement with each other.

1. INTRODUCTION

In modern wireless communication systems, the dual-band bandpass
filter has become one of the most important circuit components [1], and
many researches regarding them have been carried out. Lately, it is
popular to design the dual-band filters using stub-loaded resonators
and stepped impedance resonators [2—20], mainly because of their
easily controlled resonant frequencies.

The dual-band filters were designed using stub-loaded resonators
proposed in [2-4], the crossed resonators were presented to design the
compact tri-band filters in [5]. However, the bandwidths of these
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multiband filters couldn’t be controlled independently. The dual-
band filters with controllable bandwidths were designed using the
stub loaded resonators presented in [6,7], but the bandwidths of
two passbands were hardly controlled independently, as the second
passband bandwidth was affected by two coupling paths.

In this paper, a second-order dual-band filter with independently
controllable bandwidths is proposed. The filter utilizes three stub-
loaded resonators (two sideward resonators and one center resonator)
and the passband frequencies can be easily tuned. The center stub-
loaded resonator works as a K-inverter between the sideward stub-
loaded resonators. Two coupling routes are utilized. One route delivers
only the signals at the lower passband frequency and the other route is
able to transfer signals at the upper passband frequency. By properly
tuning the coupling strength at each route, the desirable bandwidths
of both passbands can be obtained. Based on the concept, a second-
order dual-band filter is implemented. The design methodology and
experimental results are presented.

2. DUAL-BAND BANDPASS FILTER DESIGN

As shown in Figure 1, the second-order bandpass filter that employs
the open circuit terminated stub inverter is composed of two quarter-
wavelength resonators. The resonators need not be shorted to ground,
because the tapped open circuit terminated stub replaces the stub
shorted to the ground [8]. The bandwidth of the filter can be changed
by tuning the length of the open circuit terminated stub (L1). Figure 1
also shows the simulated insertion loss responses under different L1,
and the bandwidth can be adjusted effectively by tuning L1, meanwhile
the port coupling should be changed to accommodate the bandwidth.

To obtain a dual-passband response, a stub-loaded resonator
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Figure 1. Simulated S2; responses of the bandpass filter using
A/4 resonators with open circuit terminated stub inverter under
differentL;. Lo = 41.8, L3 = 13.7, W =1, all are in millimeter.
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Figure 3. Layout of the proposed Figure 4. Simulated S3; re-
dual-band filter. sponses of the dual-band band-
pass filter under different Lo.

(Figure 2(b)) is introduced to replace the A/4 resonator (Figure 2(a)).
The stub is loaded at the center of the uniform impedance line. So
the configuration in Figure 1 (or Figure 2(c)) can be transferred to the
new structure shown in Figure 2(d).

The first two resonant frequencies of the stub-loaded resonators
(f1, f2) can be designed to be the lower and upper passband frequencies
of the dual-band filter. The resonator is symmetrical and thus odd-
and even-mode analysis can be used to characterize it. Following the
analysis in [2], it is found that f; is only determined by the uniform-
impedance line and the stub only affects fi.

Figure 3 shows the configuration of the dual-band bandpass filter.
The filter utilizes three open circuit terminated stub-loaded resonators
as illustrated in Figure 2(c). The center stub-loaded resonator works
as a K-inverter between the two sideward stub-loaded resonators. The
sideward stub-loaded resonators are meandered properly to obtain an
additional coupling section.

The dual-band filter is to be designed on a substrate with dielectric
constant e, = 2.55, loss tangent § = 0.0029, and thickness A = 0.8 mm.
Let the designed frequencies be at 2.4 and 5.25 GHz. The starting
dimensions of the dual-band filter can be obtained from the passband
frequencies, the length of the uniform impedance line is determined by
f2, and the length of the stub (Lg) is determined by fi, the optimized
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parameters of the filter are: Ly = 11.6, Ly =5, Ly = 1, Ls = 7.1,
Lg=3.3, Ly =44, So =0.2, W; =1, all are in millimeter.

As shown in Figure 4, by changing the stub length Lo, the first
passband frequency can be shifted within a wide range, whereas the
second passband characteristics are fixed. As depicted in Figure 1,
the required bandwidth of the first passband is mainly determined by
the center stub-loaded resonator (Lj, L), and the bandwidth of the
second passband is dominated by the coupling between the uniform-
impedance line (S7). To verify the above analysis, different coupling
parameters are presented for demonstration. When S; varies from
0.1mm to 0.5mm (all the other parameters are fixed), the bandwidth
of the second passband decreases obviously, while the characteristics
of the first passband keep fixed, as shown in Figure 5.

According to the discussion, the design procedure of this kind of
dual-band filter can be summarized as follows. Firstly, deduce the
length of the uniform impedance resonator according to the second
passband frequency (f2). Secondly, deduce the length of the stub
according to the first passband frequency (f1). Thirdly, tune the
coupling between the uniform impedance resonators (S7) to satisfy
the bandwidth of the second passband. Fourthly, tune the parameters
of the center stub-loaded resonator to satisfy the bandwidth of the
first passband. Based on this procedure, a compact dual-band filter of
second-order is designed in the next section.

3. SIMULATION AND MEASUREMENT RESULTS

A dual-band filter with second-order Chebyshev frequency response
and 0.1-dB ripple level is designed with the following specifications:
the center frequencies of the two bands (f1, f2) are 2.4, 5.25 GHz.
The fractional bandwidths are 0.015 and 0.04, respectively. The main
physical parameters of the filter have been obtained in the previous
Section. The coupling space between the uniform impedance lines
should be determined firstly according to the bandwidth of the second
passband. S7 = 0.2mm can be obtained quickly using full wave
simulations. Then determine the parameters of the center stub-loaded
resonator according to the bandwidth of the first passband. The
optimized parameters of the dual-band filter are: Ly = 11.6, Ly = 5.6,
Ls=5Ly=1,Ls=71,Lg=33, Ly =4.4,5 =5 =02 W, =1,
all are in millimeter.

The measured frequency responses of the proposed dual-band
bandpass filter are characterized in HP N5230A vector network
analyzer. The size of the filter is about 30mm x 12mm. Figure 6
shows the simulated and measured S-parameters. The measured
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Figure 5. Simulated S5 re- Figure 6. Simulated and mea-
sponses of the dual-band band- sured S-parameters of the dual-
pass filter under different 5;. band filter.

S-parameters agree well with those obtained from the simulation.
As there are two coupling routes between the sideward stub-loaded
resonator, transmission zeros in the stopbands can be obtained. The
first transmission zero is mainly dominated by the magnetic coupling
between the stub-loaded resonator, as shown in Figure 1, and the
second transmission zero is mostly determined by the electric coupling
between the stub-loaded resonator, as shown in Figure 5. The
measured 0.1-dB bandwidths for the two passbands are found to be
2.37 to 2.415GHz, 5.175 to 5.335 GHz, respectively. The minimum
insertion losses measured for the two passbands in the same sequence
are 1.18 and 1.03dB. The two passbands are separated by a 20-dB
stopband extended from 2.72 to 4.48 GHz.

4. CONCLUSION

In this paper, a simple microstrip-line dual-band bandpass filter with
controllable characteristics is proposed, designed, and implemented
based on the stub-loaded resonators. The passband frequencies of the
proposed filter are flexibly controlled, and the bandwidth of the second
passband can be tuned conveniently by adjusting the coupling between
the uniform impedance lines while that of the first passband remains
the same. The experimental results have shown that the proposed
structure will be useful for dual-band bandpass filter applications of
compact size and low loss.
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