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Abstract—Multi-beam antenna arrays have important applications
in the field of communications and radar. The reconfigurable design
problem is to find the element in a sector pattern main beam with
side lobes. The same excitation amplitudes applied to the array
with zero-phase should be in a high directivity, low side lobe pencil
shaped main beam. This paper presents a new method of designing
a reconfigurable antenna with quantized phase excitations using an
improved artificial bee colony, called IABC. Compared with subsequent
quantization, experimental results indicate that the performance of the
discrete realization of the phase-excitation value can be improved.

1. INTRODUCTION

The problem of reconfigurable antenna arrays involves radiating
multiple patterns using a single power-divided network. In the past
decades, this problem has been one of the most active and prolific
research areas since the pioneering work of Bucci et al. [1, 2]. Moreover,
this problem has also been a central and well studied problem with
a strong engineering background in the field of manufacturing and
telecommunications science [3, 4]. In order to solve this problem, many
methods have been proposed to obtain the multi-pattern arrays in
previous literatures [4–8].

Traditionally, exact algorithms such as branch and bound methods
and mixed integer linear programming methods have been widely
used in early days to solve the problem. However, because the
computational time of these methods is always unacceptable, these
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methods can only solve problems of relatively small size. On the other
hand, evolutionary algorithms perform population-based probabilistic
searches with a high speed of convergence rate, and have been proved
to be very successful in solving problems of large scale. When
it comes to solve reconfigurable antenna problems, compared with
traditional algorithms, evolutionary algorithms have the ability of
obtaining excitation phases and amplitudes that can be practically
implemented more easily by imposing additional constraints. So it
is not uncommon, in the past decade, to see that different kinds
of evolutionary algorithms, such as simulated annealing (SA) [4],
genetic algorithm (GA) [5, 6], particle swarm optimization algorithm
(PSO) [7, 8], and tabu search algorithm [9], have been advanced to
handle reconfigurable antenna problems, especially for the problems of
large scale.

Recently, artificial bee colony algorithm [15], ABC for short,
is proposed as a population-based heuristic evolutionary algorithm
inspired by the intelligent foraging behaviour of the honeybee swarm.
In ABC, a honey bee colony consists of three kinds of bees: employed
bee, onlooker bees, and scout bees. Among them, employed bees are
responsible for exploiting the nectar sources explored before, sharing
their information with onlookers within the hive, onlooker bees wait in
the hive and decide on a food source to exploit based on the information
shared by the employed bee colony, and scout bees choose one of
the most inactive solutions and then replace it by a new randomly
generated solution.

In evolutionary algorithm based antenna-array synthesis produc-
ers, phased excitations are always represented by continuous values,
and discrete phase shifters are used to realize the phase excitation
sometimes. Therefore, the excitation phase values obtained by these
approaches are subsequently quantized to the nearest n-bit phase
shifter excitation values. In order to solve the reconfigurable antenna
array with quantized phase excitations, Baskar et al. proposed a mixed
integer optimization method for the first time using an evolutionary
search method, as called the generalized generation-gap model GA
(G3-GA) [10]. The aim is to optimize real-valued amplitude excita-
tions and quantized phase excitations [11]. Akdagli et al. proposed a
method called the clone selection algorithm (CLONALG) to design a
reconfigurable dual-beam linear antenna array with excitation distri-
butions differing only in phase [12]. From the practical implementation
viewpoints, the proposed method took discrete phase shifters into ac-
count during synthesis. However, GA and CLONALG usually trap
into the local minima easily. In [13], we proposed a new method of
designing a reconfigurable with quantized phase excitations using an
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evolutionary algorithm called differential evolution. Compared with
the continuous realization and subsequent quantization, experimental
results indicate better performance of the discrete realization of the
phase-excitation value of the proposed algorithm.

In this paper, we propose a novel best search mechanism to
improve original ABC algorithm. In this way, the newly generated
candidate solutions are always around the random solutions of the
previous iteration. Moreover, a controlled parameter is introduced to
control the frequency of perturbation. By combing these methods,
an improved algorithm as called IABC is proposed. Then we will
use IABC to perform reconfigurable antenna array optimization with
quantized phase excitations. In order to demonstrate the advantages
of the proposed design, the results obtained using discrete-phase
excitations followed are compared. Experimental results show our
algorithm is both effective and efficient.

The rest of this paper is organized as follows: in Section 2
we will introduce the problem formulation. Section 3 describes the
fitness function. Section 4 describes the ABC. Section 5 describes
the improved ABC. Corresponding experimental results are given in
Section 6. In the last section we conclude this paper and point out
some future research directions.

2. PROBLEM FORMULATION

The problem described is as follows: in order to design a reconfigurable
dual-beam antenna array, an amplitude distribution can generate
either a pencil-shaped or a sector power pattern, when the phase
distribution of the array is modified appropriately. All excitation
phases are set to be 0◦ for the pencil-shaped beam, and vary in the
range −180◦ ≤ φ ≤ 180◦ for the sector pattern [7]. If the excitation is
symmetrical about the centre of the linear array, the array with even
number of uniformly spaced isotropic elements (2N) can be written
as [10]:

F (θ) = 2
N∑

k=1

(akR cosφk − akl sinφk) (1)

With

φk =
2π

λ
dk sin θ (2)

where dk is the distance between the position of the kth element and
the centre, θ is the scanning angle from broadside, akR is the real
parts of the kth element excitation, akI is the imaginary parts of
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the kth element excitation, and akR and akI are setted within the
range [0, 1] and [−1, 1], respectively. N excitation amplitude and
phase coefficients are chosen to optimize the desired pattern. The
pencil and sector patterns have a high directivity; low side lobe pencil
shaped main beam and a wide sector beam.

3. FITNESS FUNCTION EVALUATION

For the reconfigurable dual-beam optimization, the objective of the
fitness function is to qualify the entire array radiation pattern. The
calculated pattern can be described in terms of the criteria of the
desired pattern. The fitness function for the dual-beam optimization
can be described as follows [7]:

E(P ) =
3∑

i=1

(
P

(p)
i,d − P

(i)
i

)2
+

4∑

i=1

(
P

(s)
i,d − P

(s)
i

)2
(3)

where the superscript p is the design specification for the pencil
pattern, the superscripts s is the design specification of the sector
pattern, the superscript d indicates the desired value of the design
specification, the superscript represents the ith individual, and P
indicates the applicable fitness factor in Table 1. The first part of
this fitness function is summarized in the first column of Table 1, and
the other part of this function is summarized in the second column.
Different from the fitness function of the pencil beam pattern, the
sector pattern needs to calculate the pattern ripple.

In order to decrease the effect of coupling between elements, an
additional term is included in the objective function Equation (4) [10].
The ratio is used to minimize the coupling effect between the
maximum and minimum excitation amplitudes. The minimization of
the amplitude-excitation dynamic range (ARD) can reduce the mutual
coupling problem [17, 18]. The objective function can be expressed as

Table 1. Design specifications.

Design Parameters Pencil Pattern Sector Pattern
Side-lobe level (SLL) −30 dB −25 dB

Half-power bandwidth (HPBW) 6.8◦ 24◦

Bandwidth at SLL 20◦ 40◦

Ripple NA 0.5 dB
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follows:
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where the superscript p is the design specification for the pencil
pattern, the superscripts s is the design specification of the sector
pattern, the superscript d indicates the desired value of the design
specification, the superscript represents the ith individual, P indicates
the applicable fitness factor, and ADR is the amplitude-dynamic ratio.
The ADR is defined as the ratio between the maximum excitation
amplitude to the minimum excitation amplitude. The differences
among the excitation amplitudes are minimized by minimizing the
ADR; therefore, the effect of coupling can be minimized.

4. ARTIFICIAL BEE COLONY

Artificial Bee colony is an evolutionary algorithm first introduced
by Karaboga [15] in 2005. This algorithm simulates the foraging
behavior of the bee colony. In this algorithm, the model of the ABC
algorithm consists of three groups of bees: employed bees, onlooker
bees, and scout bees. Main steps of the ABC algorithm simulating
these behaviors are listed below:

procedure Artificial bee colony Algorithm

begin

Initialize

Repeat

Step 1: Move the employed bees onto their food sources and determine their

nectar amounts.

Step 2: Move the onlookers onto the food sources and determine their necta-

r amounts.

Step 3: Move the scouts for searching new food sources.

Step 4: Memorize the best food source found so far.

UNTIL (requirement are met)

end.

As we can see in the algorithm, each cycle of the search consists
of three steps: moving the employed and onlooker bees onto the
food sources, calculating their nectar amounts respectively, and then
determining the scout bees and moving them randomly onto the
possible food source. Here, a food source stands for a potential solution
of the problem to be optimized. The ABC algorithm is an iterative
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algorithm, starting by associating all employed bees with randomly
generated food solutions. The initial population of solutions is filled
with SN number of randomly generated n dimensions. Let Xi =
{xi1, xi2, . . . , xin} represent the ith food source in the population, and
SN be the number of food source equal to the number of the employed
bees and onlooker bees. Each food source is generated as follows:

xij = LB j + (UB j − LB j)× r (5)

where i ∈ {1, 2, . . . , SN } and j ∈ {1, 2, . . . , n} are randomly chosen
indexes, r is a uniform random number in the range [0, 1], and LB j

and UB j are lower and upper bounds for the dimension j respectively.
Each employed bee xij generates a new food source vij in the

neighborhood of its present position as follows.

vij = xij + ϕij(xij − xkj) (6)
k = int(rand ∗ (SN − 1)) + 1;

where ϕij = (rand − 0.5) × 2 is a uniformly distributed real
random number within the range [−1, 1], i ∈ {1, 2, . . . , SN }, k ∈
{1, 2, . . . , SN } and k 6= i, and j ∈ {1, 2, . . . , n} are randomly chosen
indexes. The new solution vi will be accepted as a new basic solution,
if the objective fitness of vi is smaller than the fitness of xi, otherwise
xi would be obtained.

When all employed bees finish this process, an onlooker bee can
obtain the information of the food sources from all employed bees and
choose a food source according to the probability value associated with
the food source, using the following expression:

pi = 0.9× fitnessi

max(fitnessi)
+ 0.1 (7)

where fitnessi is the fitness value of the solution i evaluated by its
employed bee. Obviously, when the maximum value of the food source
decreases, the probability with the preferred source of an onlooker
bee decreases proportionally. Then the onlooker bee produces a new
source according to Equation (6). The new source will be evaluated
and compared with the primary food solution, and it will be accepted
if it has a better nectar amount than the primary food solution.

After all onlookers have finished this process, sources are checked
to determine whether they are to be abandoned. If the food source
does not improve after a determined number of the trails “limit”, the
food source is abandoned. Its employed bee will become a scout and
then will search for a food source randomly as follows:

xij = LB j + (UB j − LB j)× r (8)

where r is a uniform random number in the range [0, 1].
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After the new source is produced, another iteration of the ABC
algorithm will begin. The whole process repeats again till the
termination condition is met.

5. IMPROVED ARTIFICIAL BEE COLONY
ALGORITHM

Inspired by the differential evolution, in this section, we propose a best
search mechanism to improve the original ABC algorithm. As we know,
differential evolution is an evolutionary algorithm first introduced
by Storn and Price [14]. Similar to other evolutionary algorithms,
particularly genetic algorithm, DE uses some evolutionary operators
like selection recombination and mutation operators. Different from
genetic algorithm, DE uses distance and direction information from
the current population to guide the search process. The crucial idea
behind DE is a scheme for producing trial vectors according to the
manipulation of target vector and difference vector. If the trail vector
yields a lower fitness than a predetermined population member, the
newly trail vector will be accepted and be compared in the following
generation. Different kinds of strategies of DE have been proposed
based on both the target vector selected and the number of difference
vectors used. The following is a mutation strategy frequently used in
the literature:

DE/rand/1:
vi = xa + F (xb − xc) (9)

where a, b and c are mutually different random integer indices selected
from {1, . . . , SN }, and F is a positive real number denoting the scaling
factor or amplification factor.

Based on DE algorithm and the property of ABC, we propose a
novel best search mechanism to improve ABC:

vij = xaj + ϕij(xij − xbj) (10)
k = int(rand ∗ (SN − 1)) + 1;

where ϕij = (rand − 0.5) × 2 is a uniformly distributed real
random number within the range [−1, 1], i ∈ {1, 2, . . . , SN }, k ∈
{1, 2, . . . , SN } and k 6= i, and j ∈ {1, 2, . . . , n} are randomly chosen
indexes. The new search method can generate the new candidate
solutions only around the random solutions of the previous iteration.

Akay and Karaboga [16] proposed a modified ABC algorithm by
controlling the frequency of perturbation. Inspired by this algorithm,
we also use a control parameter, i.e., modification rate (MR), in our
algorithm. In order to produce a candidate food position vij from the
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current memorized xij , IABC algorithm uses the following expression:

vij =
{

xaj + ϕij(xij − xbj), if rij ≤ MR
xij otherwise

(11)

where rij is a uniformly distributed real random number within the
range [0, 1]. The algorithm can be described as follows:

procedure Algorithm description of IABC

begin

Step 1: Set the generation counter G = 0; and randomly initialize a popul-

ation of SN individuals Xi. Initialize the parameter limit.

Step 2: Evaluate the fitness for each individual in P .

Step 3: while stopping criteria is not satisfied do

%% employed bee colony

for i = 1 to NP

Select randomly a 6= b 6= i

vij =

{
xaj + ϕij (xij − xbj ) if rij≤MR

xij otherwise

Apply the greedy selection process between vi and xj, select the better ones.

If the solution xi, does not improve triali = triali + 1; Otherwise triali = 0.

end for

%% Onlooker bee colony

i = 1;

t = 0;

which t ≤ NP

if rand < prob(i)

t=t+1;

Select randomly a 6= b 6= i

vij =

{
xaj + ϕij (xij − xbj ) if rij≤MR

xij otherwise

Apply the greedy selection process between vi and xi, select the better ones.

If the solution xi does not improve triali = triali + 1; Otherwise triali = 0.

end if

i = i + 1

if i == NP + 1

i = 1;

end if

end while
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%% Scout bee colony

If max(triali > limit)

Replace xi with a new randomly produced solution by

xij = lj + (uj − lj)× r

end if

Step 4 : end while

end

6. SIMULATION RESULTS

To evaluate the performance of the IABC, an experiment is conducted
in this paper. The benchmark problems for the experiments have also
been used in [10]. In the experiment, for each instance, there are twenty
design parameters. Among them, ten phase coefficients are represented
as discrete variables, and the other ten are represented as continuous
variables.

In the experiment, 10-phase excitations are indicated as quantized
values corresponding to the n-bit phase shifter used. Therefore, the
values of the phase excitation are quantized between −180◦ and 180◦.
For simulating IABC, the population size SN is 10, MR is 0.6, and the
number of the maximum function evaluations is 20000. For simulating
differential evolution algorithm and generalized generation gap GA
(G3-GA), the population size NP is 20, the number of the maximum
function evaluations is 20000, the crossover rate CR is 0.9, and the
scale factor F is 0.5. In G3-GA, the number of the offspring λ = 6, the
number of the maximum function evaluations is 20000, the population
size NP is 500, and σα = σβ = 0.25. In order to compare the algorithms
fairly, we set these algorithms the same fitness evaluations.

For each instance, the average running time on the 30 runs are
recorded. The computational conditions are listed as follows.

System: Windows XP
* CPU: Intel(R) Core(TM) 2 Quad
* RAM: 1 G
* Language: Matlab
* Compiler: Matlab 7.0

6.1. Optimization without ARD and with ARD

In this section, we will use IABC to solve the reconfigurable
antenna-array design without the coupling effects using the objective
function (3), and to solve the problems with the coupling effects
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using the objective function (4). Table 2 shows the results of the
excitation amplitude and phase. The best of optimal results for the
experiment are also listed in Table 2. The Table also illustrates the
ADR of the optimized excitation amplitudes and fitness function value.
As can be seen in Table 2, the ARD is reduced from 7.13 without
coupling effect to 4.26 with coupling effect. For the fitness, it reduces
from 0.16 to 0.09. Therefore, we can reduce the coupling effects by
minimizing the dynamic rang ratio. The optimized excitation patterns
and dual-beam patterns without coupling effect are shown in Figures 1
and 2, respectively. Figure 2 illustrates the satisfaction of designed
parameters simultaneously for both pencil and sector beam. Figures 3
and 4 show the excitation pattern and dual-beam pattern with coupling
effect obtained in the experiment.

Table 2. Optimum results without ADR and with ADR.

Element Number
without ADR

Amplitude
Phase[deg.]

With ADR

Amplitude
Phase[deg.]

1/20 0.128 −174.3 0.227 −174.3

2/19 0.215 −162.9 0.227 −145.7

3/18 0.246 −151.4 0.234 −145.7

4/17 0.288 151.4 0.389 −111.4

5/16 0.454 −54.3 0.464 -111.4

6/15 0.572 60 0.620 111.4

7/14 0.636 −88.6 0.724 −65.7

8/13 0.825 −82.9 0.848 94.3

9/12 0.816 94.3 0.921 111.4

10/11 0.915 82.9 0.968 82.9

ADR 7.14 4.26

Fitness value 0.16 0.09
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Figure 1. Dual-beam array pattern without coupling.



Progress In Electromagnetics Research C, Vol. 25, 2012 203

0 20 40 60 80 100 120 140 160 180
-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

5

Theta (deg)

N
o
rm

a
liz

e
d
 d

ir
e
c
ti
v

e
it
y
 (

d
B

)

Figure 2. Amplitude and phase excitation without coupling effect.
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Figure 3. Amplitude and phase excitation with coupling effect.
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Figure 4. Dual-beam array pattern with coupling effect.

6.2. Comparison with IABC with DE, G3-GA [10] and
MABC for Reconfigurable Antenna-array Design with
Discrete Variable

In order to study the effect of the IABC, we carry out a scalability study
to compare the algorithm with the generalized generation gap genetic
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Table 3. Comparison of G3-GA, DE with IABC for reconfigurable
antenna array with discrete variable.

Algorithm
without ADR with ADR

fitness ADR
fitness

G3-GA [10] 0.619 5.8026 0.2630
DE [13] 0.36 4.7190 0.16

MABC [16] 0.16 4.76 0.22
IABC 0.16 4.26 0.09

algorithm, differential evolution and modified artificial bee colony [16].
The experiment is conducted for the determination of amplitude
and phase excitation patterns for the dual beam optimization with
quantization. The best fitness is reported in Table 3. From Table 3, we
can find that the IABC can obtain better solutions for the experiment,
especially for the reconfigurable antenna-array design with the coupling
effects. For the problems without the coupling effects, the IABC can
obtain the value of o.16 better than the G3-GA’s value of 0.618, the
DE’s value of 0.36 and the MABC’s value of 0.36. By minimizing the
dynamic ratio, we can find that the IABC can provide the 4.26 (ARD)
and 0.09 (fitness) better than those of G3-GA, DE and MABC. This
demonstrates IABC is well suitable to solve the dual beam optimization
problem.

6.3. Comparison with IABC with DE, G3-GA [10] and
MABC for Reconfigurable Antenna-array Design with
Continuous Variable

In order to show the efficiency of the IABC, we compare the algorithms
for reconfigurable antenna-array design with continuous variable. The
experiment is conducted for the determination of amplitude and phase
excitation patterns for the dual beam optimization. As can be seen in
Table 4, we can find that the IABC can obtain better solutions for the
experiment, especially for the reconfigurable antenna-array design with
the coupling effects. For the problems without the coupling effects, all
algorithms can find the best solutions. By minimizing the dynamic
ratio, we can find the IABC can provide the 4.30 (ADR) better than
those of G3-GA, DE and MABC. DE gives the better fitness than
other algorithm. But, the smallest of the ADR + fitness is obtained
by the IABC. This demonstrates IABC can better solve the dual beam
optimization problem.
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Table 4. Comparison of G3-GA, DE with IABC for reconfigurable
antenna array with continuous variable.

Algorithm
without ADR with ADR

fitness ADR
fitness

G3-GA [10] 0.16 4.4137 0.1028
DE [13] 0.16 4.3470 0.04

MABC [16] 0.16 4.358 0.042
IABC 0.16 4.302 0.06
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Figure 5. 13 Element array for minimum SLL [0◦, 82◦] and [98◦, 180◦]
and NULL 20◦.

6.4. Experimental Results of the Linear Antenna Array

In this experiment, for the artificial bee colony, MR is 0.6, limit = 100.
The parameter of DE uses F = 0.3 and Cr = 0.7 over the problem. For
genetic algorithm, crossover probability is 1, mutation probability is
0.01. For all algorithms, in order to comparison fair, the population size
is 50 and the maximum fitness = 50000. In this case, we are required
to design a 26 element array with minimum SLL in bands [0◦, 82◦]
and [98◦, 180◦] and null direction in 20◦. The array patter from IABC
algorithm is shown in Figure 5, along with patterns obtained using
other algorithms. From Figure 5, it is obviously that IABC suppresses
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Table 5. Geometry of the 26 element linear array, normalized numbers
with respect to λ/2 and null at 20◦.

IABC ±0.337 ±0.990 ±1.589 ±2.429 ±2.675 ±3.793

MABC ±0.330 ±0.979 ±1.821 ±2.039 ±3.267 ±2.897

DE ±0.472 ±1.049 ±2.090 ±2.058 ±2.897 ±3.799

GA ±0.306 ±1.253 ±1.792 ±2.545 ±3.059 ±3.452

IABC ±4.206 ±6.068 ±5.272 ±7.224 ±8.237 ±9.558 ±11.114

MABC ±4.151 6.574 ±7.749 ±4.880 ±5.799 ±9.544 ±10.909

DE ±4.825 ±6.318 ±5.373 ±7.475 ±8.61 ±10.231 ±11.558

GA ±4.369 ±5.480 ±4.3 ±5.901 ±6.961 ±7.565 ±8.684

Table 6. Mean final objective function value, standard deviation,
best, worst, median, and the Rank for problem 2.

Algorithm IABC MABC DE GA

Mean 0.0177 0.0235 0.02763 0.0405

Best 0.0131 0.0182 0.01984 0.0223

Median 0.0167 0.252 0.02915 0.0403

Worst 0.0224 0.0291 0.03396 0.0663

std 0.0039 0.0044 0.00368 0.0120

Rank 1 2 3 4

the side lobes to the greatest extent. Moreover, it also generates lowest
gain at the desired null of 20◦. The position coordinates of the array
elements (normalized to λ/2) are listed in Table 5. Table 6 shows the
mean objective function values, best objective function values, worst
objective function values, median objective function values, standard
deviation obtained and ranks of the algorithms. Tables 5 and 6
show that IABC can beat all other algorithms for the same objective
function.

7. CONCLUSIONS

In this paper, we propose a novel best search mechanism to improve
original ABC algorithm. Moreover, a controlled parameter is
introduced to control the frequency of perturbation of ABC. By
combing these methods, an improved algorithm as called IABC is
proposed. Application of IABC for the reconfigurable antenna array
with quantized phase shifter is then discussed in this paper. The
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effectiveness of the proposed algorithm is demonstrated on the design
of a reconfigurable antenna array with the quantized phase excitations,
a reconfigurable antenna array with continuous variable and a linear
array antenna. In order to reduce the effect of mutual coupling between
the antenna-array elements, the dynamic range ratio is minimized. The
simulation results clearly indicate superior performance of the proposed
algorithm in comparison to some recent optimization algorithms. In
ther future, we will devote to applying our algorithm to slove some
realistic problems, and we hope that this paper will spark a new venue
of research in the problem of solving reconfigurable antenna array.
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